1
|
Yu YH, Liu F, Li LQ, Jin MY, Yu X, Liu X, Li Y, Li L, Yan JK. Recent advances in dietary polysaccharides from Allium species: Preparation, characterization, and bioactivity. Int J Biol Macromol 2024; 277:134130. [PMID: 39053822 DOI: 10.1016/j.ijbiomac.2024.134130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Allium plants, including garlic, onions, shallots, and leeks, belong to the Alliaceae family and are utilized as vegetable, medicinal, and ornamental plants. These plants are consumed both raw and cooked and are noted in traditional medicine for their antibacterial, antitumor, and diuretic properties. Allium plants are a rich source of polyphenols, organosulfur compounds, flavonoids, alkaloids, and polysaccharides, which contribute to their health benefits. As consumer interest in the association between diet and health grows, there is an increasing market demand for foods that promote health, particularly those rich in dietary fiber or non-starch polysaccharides. Allium polysaccharides (APS) have molecular weights of 1 × 103-1 × 106 Da containing small amounts of pectin, glucofructan, or glycoproteins and large amounts of fructans. APS, despite its complex structure, is one of the principal active components of Allium plants but is often overlooked, which restricts its practical application. This paper provides a comprehensive overview of the extraction and purification, structural and functional characteristics, bioactivities, structure-function relationships, and chemical modifications of APS, as well as the effects of APS processing and storage. Additionally, this paper outlines future research directions for APS, which will inform its development and application in the food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Ya-Hui Yu
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Fengyuan Liu
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Long-Qing Li
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Ming-Yu Jin
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Xiangying Yu
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Xiaozhen Liu
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Yuting Li
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Lin Li
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jing-Kun Yan
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
2
|
Teka N, Lazreg H, Horchani M, Rihouey C, Le Cerf D, Ben Jannet H, Majdoub H. Characterization, α-Amylase Inhibition and In Silico Docking Study of Polysaccharides Extracted from Rosy Garlic (Allium roseum) Bulbs. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Yan JK, Zhu J, Liu Y, Chen X, Wang W, Zhang H, Li L. Recent advances in research on Allium plants: functional ingredients, physiological activities, and applications in agricultural and food sciences. Crit Rev Food Sci Nutr 2022; 63:8107-8135. [PMID: 35343832 DOI: 10.1080/10408398.2022.2056132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fruits and vegetables (FVs) have long been a major source of nutrients and dietary phytochemicals with outstanding physiological properties that are essential for protecting humans from chronic diseases. Moreover, the growing demand of consumers for nutritious and healthy foods is greatly promoting the increased intake of FVs. Allium (Alliaceae) is a perennial bulb plant genus of the Liliaceae family. They are customarily utilized as vegetable, medicinal, and ornamental plants and have an important role in agriculture, aquaculture, and the pharmaceutical industry. Allium plants produce abundant secondary metabolites, such as organosulfur compounds, flavonoids, phenols, saponins, alkaloids, and polysaccharides. Accordingly, Allium plants possess a variety of nutritional, biological, and health-promoting properties, including antimicrobial, antioxidant, antitumor, immunoregulatory, antidiabetic, and anti-inflammatory effects. This review aims to highlight the advances in the research on the bioactive components, physiological activities and clinical trials, toxicological assessment for safety, and applications of different Allium plants. It also aims to cover the direction of future research on the Allium genus. This review is expected to provide theoretical reference for the comprehensive development and utilization of Allium plants in the fields of functional foods, medicine, and cosmetics.
Collapse
Affiliation(s)
- Jing-Kun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Jie Zhu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Yujia Liu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Xu Chen
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
| | - Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| |
Collapse
|
4
|
Petropoulos SA, Di Gioia F, Polyzos N, Tzortzakis N. Natural Antioxidants, Health Effects and Bioactive Properties of Wild Allium Species. Curr Pharm Des 2020; 26:1816-1837. [PMID: 32013820 DOI: 10.2174/1381612826666200203145851] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND There is an increasing interest from the pharmaceutical and food industry in natural antioxidant and bioactive compounds derived from plants as substitutes for synthetic compounds. The genus Allium is one of the largest genera, with more than 900 species, including important cultivated and wild species, having beneficial health effects. OBJECTIVE The present review aims to unravel the chemical composition of wild Allium species and their healthrelated effects, focusing on the main antioxidant compounds. For this purpose, a thorough study of the literature was carried out to compile reports related to health effects and the principal bioactive compounds. Considering the vast number of species, this review is divided into subsections where the most studied species are presented, namely Allium ampeloprasum, A. flavum, A. hookeri, A. jesdianum, A. neapolitanum, A. roseum, A. stipitatum, A. tricoccum, and A. ursinum, with an additional composite section for less studied species. METHODS The information presented in this review was obtained from worldwide accepted databases such as Scopus, ScienceDirect, PubMed, Google Scholar and Researchgate, using as keywords the respective names of the studied species (both common and Latin names) and the additional terms of"antioxidants" "health effects" and "bioactive properties". CONCLUSION The genus Allium includes several wild species, many of which are commonly used in traditional and folklore medicine while others are lesser known or are of regional interest. These species can be used as sources of natural bioactive compounds with remarkable health benefits. Several studies have reported these effects and confirmed the mechanisms of action in several cases, although more research is needed in this field. Moreover, considering that most of the studies refer to the results obtained from species collected in the wild under uncontrolled conditions, further research is needed to elucidate the effects of growing conditions on bioactive compounds and to promote the exploitation of this invaluable genetic material.
Collapse
Affiliation(s)
- Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia, Magnissia, Greece
| | - Francesco Di Gioia
- Department of Plant Science, Pennsylvania State University, Pennsylvania, United States
| | - Nikos Polyzos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia, Magnissia, Greece
| | - Nikos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
5
|
Castro JPLD, Costa LEC, Pinheiro MP, Francisco TDS, Vasconcelos PHMD, Funari LM, Daudt RM, Santos GRCD, Cardozo NSM, Freitas ALP. Polysaccharides of red alga Gracilaria intermedia: structure, antioxidant activity and rheological behavior. POLIMEROS 2018. [DOI: 10.1590/0104-1428.013116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Tang Y, Zhu ZY, Liu Y, Sun H, Song QY, Zhang Y. The chemical structure and anti-aging bioactivity of an acid polysaccharide obtained from rose buds. Food Funct 2018; 9:2300-2312. [DOI: 10.1039/c8fo00206a] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An acid polysaccharide, named R-PL, was extracted from rose buds by hot water (80 °C) extraction and purified by Sephadex G-200.
Collapse
Affiliation(s)
- Yun Tang
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Science and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Zhen-Yuan Zhu
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Science and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Yao Liu
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Science and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Huiqing Sun
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Science and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Qiao-Ying Song
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Science and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Yongmin Zhang
- Université Pierre et Marie Curie-Paris 6
- Institut Parisien de Chimie Moléculaire
- CNRS UMR 8232
- 75005 Paris
- France
| |
Collapse
|
7
|
Advanced analysis of polysaccharides, novel functional components in food and medicine dual purposes Chinese herbs. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Liu X, Chen Y, Wu L, Wu X, Huang Y, Liu B. Optimization of polysaccharides extraction from Dictyophora indusiata and determination of its antioxidant activity. Int J Biol Macromol 2017; 103:175-181. [DOI: 10.1016/j.ijbiomac.2017.04.125] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/18/2017] [Accepted: 04/25/2017] [Indexed: 12/01/2022]
|
9
|
Gao W, Lin P, Zeng XA, Brennan MA. Preparation, characterisation and antioxidant activities of litchi (Litchi chinensis Sonn
.) polysaccharides extracted by ultra-high pressure. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Wenhong Gao
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Pingzhou Lin
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Xin-an Zeng
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Margaret A. Brennan
- Centre for Food Research and Innovation; Department of Wine, Food and Molecular Biosciences; Lincoln University; Lincoln 85084 New Zealand
| |
Collapse
|
10
|
Preparation, characterization and antiglycation activities of the novel polysaccharides from Boletus snicus. Int J Biol Macromol 2016; 92:607-614. [DOI: 10.1016/j.ijbiomac.2016.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/07/2016] [Accepted: 07/03/2016] [Indexed: 11/17/2022]
|
11
|
YAO ZH, QIN ZF, DAI Y, YAO XS. Phytochemistry and pharmacology of Allii Macrostemonis Bulbus, a traditional Chinese medicine. Chin J Nat Med 2016; 14:481-98. [DOI: 10.1016/s1875-5364(16)30058-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 10/21/2022]
|
12
|
Zhang Z, Wang F, Wang M, Ma L, Ye H, Zeng X. A comparative study of the neutral and acidic polysaccharides from Allium macrostemon Bunge. Carbohydr Polym 2015; 117:980-987. [DOI: 10.1016/j.carbpol.2014.10.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/14/2014] [Accepted: 10/13/2014] [Indexed: 12/16/2022]
|
13
|
Lu J, You L, Lin Z, Zhao M, Cui C. The antioxidant capacity of polysaccharide fromLaminaria japonicaby citric acid extraction. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12072] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jianghong Lu
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou ; 510640; Guangdong; China
| | - Lijun You
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou ; 510640; Guangdong; China
| | - Zongyi Lin
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou ; 510640; Guangdong; China
| | - Mouming Zhao
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou ; 510640; Guangdong; China
| | - Chun Cui
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou ; 510640; Guangdong; China
| |
Collapse
|