1
|
Tricou LP, Al-Hawat ML, Cherifi K, Manrique G, Freedman BR, Matoori S. Wound pH-Modulating Strategies for Diabetic Wound Healing. Adv Wound Care (New Rochelle) 2024; 13:446-462. [PMID: 38149883 PMCID: PMC11535470 DOI: 10.1089/wound.2023.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023] Open
Abstract
Significance: Chronic diabetic wounds on the lower extremities (diabetic foot ulcers, DFU) are one of the most prevalent and life-threatening complications of diabetes, responsible for significant loss of quality of life and cost to the health care system. Available pharmacologic treatments fail to achieve complete healing in many patients. Recent studies and investigational treatments have highlighted the potential of modulating wound pH in DFU. Recent Advances: Data from in vitro, preclinical, and clinical studies highlight the role of pH in the pathophysiology of DFU, and topical administration of pH-lowering agents have shown promise as a therapeutic strategy for diabetic wounds. In this critical review, we describe the role of pH in DFU pathophysiology and present selected low-molecular-weight and hydrogel-based pH-modulating systems for wound healing and infection control in diabetic wounds. Critical Issues: The molecular mechanisms leading to pH alterations in diabetic wounds are complex and may differ between in vitro models, animal models of diabetes, and the human pathophysiology. Wound pH-lowering bandages for DFU therapy must be tested in established animal models of diabetic wound healing and patients with diabetes to establish a comprehensive benefit-risk profile. Future Directions: As our understanding of the role of pH in the pathophysiology of diabetic wounds is deepening, new treatments for this therapeutic target are being developed and will be tested in preclinical and clinical studies. These therapeutic systems will establish a target product profile for pH-lowering treatments such as an optimal pH profile for each wound healing stage. Thus, controlling wound bed pH could become a powerful tool to accelerate chronic diabetic wound healing.
Collapse
Affiliation(s)
- Léo-Paul Tricou
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
- ISPB Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon, France
- Chemical Engineering Department, Polytechnique Montreal, Montréal, Canada
| | | | - Katia Cherifi
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | | | - Benjamin R. Freedman
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon Matoori
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| |
Collapse
|
2
|
Alfei S, Schito GC, Schito AM, Zuccari G. Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal. Int J Mol Sci 2024; 25:7182. [PMID: 39000290 PMCID: PMC11241369 DOI: 10.3390/ijms25137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
3
|
Magdas TM, David M, Hategan AR, Filip GA, Magdas DA. Geographical Origin Authentication-A Mandatory Step in the Efficient Involvement of Honey in Medical Treatment. Foods 2024; 13:532. [PMID: 38397509 PMCID: PMC10887874 DOI: 10.3390/foods13040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Nowadays, in people's perceptions, the return to roots in all aspects of life is an increasing temptation. This tendency has also been observed in the medical field, despite the availability of high-level medical services with many years of research, expertise, and trials. Equilibrium is found in the combination of the two tendencies through the inclusion of the scientific experience with the advantages and benefits provided by nature. It is well accepted that the nutritional and medicinal properties of honey are closely related to the botanical origin of the plants at the base of honey production. Despite this, people perceive honey as a natural and subsequently a simple product from a chemical point of view. In reality, honey is a very complex matrix containing more than 200 compounds having a high degree of compositional variability as function of its origin. Therefore, when discussing the nutritional and medicinal properties of honey, the importance of the geographical origin and its link to the honey's composition, due to potential emerging contaminants such as Rare Earth Elements (REEs), should also be considered. This work offers a critical view on the use of honey as a natural superfood, in a direct relationship with its botanical and geographical origin.
Collapse
Affiliation(s)
- Tudor Mihai Magdas
- Department of Anatomy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania; (T.M.M.); (G.A.F.)
| | - Maria David
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania; (M.D.); (A.R.H.)
| | - Ariana Raluca Hategan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania; (M.D.); (A.R.H.)
| | - Gabriela Adriana Filip
- Department of Anatomy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania; (T.M.M.); (G.A.F.)
| | - Dana Alina Magdas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania; (M.D.); (A.R.H.)
| |
Collapse
|
4
|
DeLong MR, Wells MW, Chang IA, Vardanian AJ, Harris H. Data Requirement for Animal-Derived Wound Care Devices: Limitations of the 510(k) Regulatory Pathway. J Am Coll Surg 2024; 238:218-224. [PMID: 37796150 DOI: 10.1097/xcs.0000000000000884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
BACKGROUND Device classification and preclinical data requirements for animal-derived wound care products were recently reviewed by the FDA. Given the possible performance differences for these products, we evaluated the FDA data requirements as well as the published literature for all animal-derived wound care products ever cleared through the FDA. STUDY DESIGN The publicly available online database was queried for all animal-derived wound products; premarket data requirements for each product were recorded. A PubMed search was conducted to determine the number of published clinical studies for each product, and manufacturer websites were accessed to obtain the price for each product. RESULTS A total of 132 animal-derived wound products have been cleared by the FDA since the Center for Devices and Radiological Health was established in 1976. Of these, 114 had a publicly available clearance statement online. Preclinical biocompatibility testing was performed in 85 products (74.6%) and referenced in 10 (8.8%). Preclinical animal wound healing testing took place in 17 (14.9%). Only 9 products (7.9%) had clinical safety testing, and no products had clinical effectiveness data. We found no published peer-reviewed clinical data for 97 products (73%). Cost was infrequently available but ranged from $4.79 to $2,178 per unit. CONCLUSIONS Although the current pathway is appropriate for efficiently clearing new wound care products, clinical effectiveness is not included in the regulatory review process. Wound care products are primarily evaluated by the FDA for safety and biocompatibility. Thus, any claims of clinical effectiveness require independent validation, which is often lacking.
Collapse
Affiliation(s)
- Michael R DeLong
- From the division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, Los Angeles, CA (DeLong, Vardanian)
| | - Michael W Wells
- From the division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, Los Angeles, CA (DeLong, Vardanian)
- Case Western Reserve University, School of Medicine, Cleveland OH (Wells, Chang)
| | - Irene A Chang
- Case Western Reserve University, School of Medicine, Cleveland OH (Wells, Chang)
| | - Andrew J Vardanian
- From the division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, Los Angeles, CA (DeLong, Vardanian)
| | - Hobart Harris
- Division of Gastrointestinal Surgery, Department of Surgery, University of California, San Francisco, CA (Harris)
| |
Collapse
|
5
|
Patenall BL, Carter KA, Ramsey MR. Kick-Starting Wound Healing: A Review of Pro-Healing Drugs. Int J Mol Sci 2024; 25:1304. [PMID: 38279304 PMCID: PMC10816820 DOI: 10.3390/ijms25021304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
Cutaneous wound healing consists of four stages: hemostasis, inflammation, proliferation/repair, and remodeling. While healthy wounds normally heal in four to six weeks, a variety of underlying medical conditions can impair the progression through the stages of wound healing, resulting in the development of chronic, non-healing wounds. Great progress has been made in developing wound dressings and improving surgical techniques, yet challenges remain in finding effective therapeutics that directly promote healing. This review examines the current understanding of the pro-healing effects of targeted pharmaceuticals, re-purposed drugs, natural products, and cell-based therapies on the various cell types present in normal and chronic wounds. Overall, despite several promising studies, there remains only one therapeutic approved by the United States Food and Drug Administration (FDA), Becaplermin, shown to significantly improve wound closure in the clinic. This highlights the need for new approaches aimed at understanding and targeting the underlying mechanisms impeding wound closure and moving the field from the management of chronic wounds towards resolving wounds.
Collapse
Affiliation(s)
| | | | - Matthew R. Ramsey
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA (K.A.C.)
| |
Collapse
|
6
|
Khataybeh B, Jaradat Z, Ababneh Q. Anti-bacterial, anti-biofilm and anti-quorum sensing activities of honey: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116830. [PMID: 37400003 DOI: 10.1016/j.jep.2023.116830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Man has used honey to treat diseases since ancient times, perhaps even before the history of medicine itself. Several civilizations have utilized natural honey as a functional and therapeutic food to ward off infections. Recently, researchers worldwide have been focusing on the antibacterial effects of natural honey against antibiotic-resistant bacteria. AIM OF THE STUDY This review aims to summarize research on the use of honey properties and constituents with their anti-bacterial, anti-biofilm, and anti-quorum sensing mechanisms of action. Further, honey's bacterial products, including probiotic organisms and antibacterial agents which are produced to curb the growth of other competitor microorganisms is addressed. MATERIALS AND METHODS In this review, we have provided a comprehensive overview of the antibacterial, anti-biofilm, and anti-quorum sensing activities of honey and their mechanisms of action. Furthermore, the review addressed the effects of antibacterial agents of honey from bacterial origin. Relevant information on the antibacterial activity of honey was obtained from scientific online databases such as Web of Science, Google Scholar, ScienceDirect, and PubMed. RESULTS Honey's antibacterial, anti-biofilm, and anti-quorum sensing activities are mostly attributed to four key components: hydrogen peroxide, methylglyoxal, bee defensin-1, and phenolic compounds. The performance of bacteria can be altered by honey components, which impact their cell cycle and cell morphology. To the best of our knowledge, this is the first review that specifically summarizes every phenolic compound identified in honey along with their potential antibacterial mechanisms of action. Furthermore, certain strains of beneficial lactic acid bacteria such as Bifidobacterium, Fructobacillus, and Lactobacillaceae, as well as Bacillus species can survive and even grow in honey, making it a potential delivery system for these agents. CONCLUSION Honey could be regarded as one of the best complementary and alternative medicines. The data presented in this review will enhance our knowledge of some of honey's therapeutic properties as well as its antibacterial activities.
Collapse
Affiliation(s)
- Batool Khataybeh
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
7
|
Salvo J, Sandoval C, Schencke C, Acevedo F, del Sol M. Healing Effect of a Nano-Functionalized Medical-Grade Honey for the Treatment of Infected Wounds. Pharmaceutics 2023; 15:2187. [PMID: 37765158 PMCID: PMC10536296 DOI: 10.3390/pharmaceutics15092187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Based on the qualities of Ulmo honey (Eucryphia cordifolia), a medical-grade honey (Ulmoplus®) has been developed. Relevant to this, the use of copper represents an emerging therapy for the treatment of wounds. Therefore, the aim of this study was to see how this medical-grade honey with copper nanoparticles (CuNPs) helped to heal infected or non-infected wounds. Twenty-four guinea pigs (Cavia porcellus) were divided into four groups for phase 1 (without and with infection, U + F1 and U + F2), and two groups for phase 2 (selected formulation, without and with infection, U + F2NI and U + F2I). Bacteriological and histopathological studies, collagen fibers content evaluation, and stereological analysis were performed. The selected formulation displayed the same antibacterial potency as Ulmoplus®, indicating that this medical-grade honey by itself can be used as an antibacterial agent. However, the evaluation of collagen content demonstrated a significant increase in fibroblast and type III collagen fibers for infected and uninfected groups, which correlated with the histopathological study. Therefore, it is correct to affirm that adding CuNPs to Ulmoplus® improved the maturation of collagen fibers. Finally, polymorphonuclear cells presented similar values between experimental groups, which would indicate that the formulation under study was able to regulate the inflammatory process despite their infectious condition.
Collapse
Affiliation(s)
- Jessica Salvo
- Escuela de Enfermería, Facultad de Salud, Universidad Santo Tomás, Temuco 4811230, Chile;
- Programa de Doctorado en Ciencias Morfológicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Cristian Sandoval
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
| | - Carolina Schencke
- Carrera de Psicología, Facultad de Ciencias Sociales y Humanidades, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Francisca Acevedo
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile;
- Núcleo Científico-Tecnológico en Biorecursos (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile
| | - Mariano del Sol
- Programa de Doctorado en Ciencias Morfológicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile;
- Centro de Excelencia en Estudios Morfológicos y Quirúrgicos (CEMyQ), Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
8
|
Salvo J, Sandoval C, Schencke C, Acevedo F, del Sol M. Healing Effect of a Nano-Functionalized Medical-Grade Honey for the Treatment of Infected Wounds. Pharmaceutics 2023; 15:2187. [DOI: https:/doi.org/10.3390/pharmaceutics15092187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Based on the qualities of Ulmo honey (Eucryphia cordifolia), a medical-grade honey (Ulmoplus®) has been developed. Relevant to this, the use of copper represents an emerging therapy for the treatment of wounds. Therefore, the aim of this study was to see how this medical-grade honey with copper nanoparticles (CuNPs) helped to heal infected or non-infected wounds. Twenty-four guinea pigs (Cavia porcellus) were divided into four groups for phase 1 (without and with infection, U + F1 and U + F2), and two groups for phase 2 (selected formulation, without and with infection, U + F2NI and U + F2I). Bacteriological and histopathological studies, collagen fibers content evaluation, and stereological analysis were performed. The selected formulation displayed the same antibacterial potency as Ulmoplus®, indicating that this medical-grade honey by itself can be used as an antibacterial agent. However, the evaluation of collagen content demonstrated a significant increase in fibroblast and type III collagen fibers for infected and uninfected groups, which correlated with the histopathological study. Therefore, it is correct to affirm that adding CuNPs to Ulmoplus® improved the maturation of collagen fibers. Finally, polymorphonuclear cells presented similar values between experimental groups, which would indicate that the formulation under study was able to regulate the inflammatory process despite their infectious condition.
Collapse
Affiliation(s)
- Jessica Salvo
- Escuela de Enfermería, Facultad de Salud, Universidad Santo Tomás, Temuco 4811230, Chile
- Programa de Doctorado en Ciencias Morfológicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Cristian Sandoval
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
| | - Carolina Schencke
- Carrera de Psicología, Facultad de Ciencias Sociales y Humanidades, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Francisca Acevedo
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile
- Núcleo Científico-Tecnológico en Biorecursos (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile
| | - Mariano del Sol
- Programa de Doctorado en Ciencias Morfológicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile
- Centro de Excelencia en Estudios Morfológicos y Quirúrgicos (CEMyQ), Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
9
|
Pennington E, Bell S, Hill JE. Should video laryngoscopy or direct laryngoscopy be used for adults undergoing endotracheal intubation in the pre-hospital setting? A critical appraisal of a systematic review. JOURNAL OF PARAMEDIC PRACTICE : THE CLINICAL MONTHLY FOR EMERGENCY CARE PROFESSIONALS 2023; 15:255-259. [PMID: 38812899 PMCID: PMC7616025 DOI: 10.1002/14651858] [Citation(s) in RCA: 2696] [Impact Index Per Article: 1348.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The safety and utility of endotracheal intubation by paramedics in the United Kingdom is a matter of debate. Considering the controversy surrounding the safety of paramedic-performed endotracheal intubation, any interventions that enhance patient safety should be evaluated for implementation based on solid evidence of their effectiveness. A systematic review performed by Hansel and colleagues (2022) sought to assess compare video laryngoscopes against direct laryngoscopes in clinical practice. This commentary aims to critically appraise the methods used within the review by Hansel et al (2022) and expand upon the findings in the context of clinical practice.
Collapse
Affiliation(s)
| | - Steve Bell
- Consultant Paramedic, North West Ambulance Service NHS Trust
| | - James E Hill
- University of Central Lancashire, Colne, Lancashire
| |
Collapse
|
10
|
Hossain ML, Lim LY, Hammer K, Hettiarachchi D, Locher C. Design, Preparation, and Physicochemical Characterisation of Alginate-Based Honey-Loaded Topical Formulations. Pharmaceutics 2023; 15:pharmaceutics15051483. [PMID: 37242724 DOI: 10.3390/pharmaceutics15051483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Honey has widespread use as a nutritional supplement and flavouring agent. Its diverse bioactivities, including antioxidant, antimicrobial, antidiabetic, anti-inflammatory, and anticancer properties, have also made it an aspirant natural product for therapeutic applications. Honey is highly viscous and very sticky, and its acceptance as a medicinal product will require formulation into products that are not only effective but also convenient for consumers to use. This study presents the design, preparation, and physicochemical characterisation of three types of alginate-based topical formulations incorporating a honey. The honeys applied were from Western Australia, comprising a Jarrah honey, two types of Manuka honeys, and a Coastal Peppermint honey. A New Zealand Manuka honey served as comparator honey. The three formulations were a pre-gel solution consisting of 2-3% (w/v) sodium alginate solution with 70% (w/v) honey, as well as a wet sheet and a dry sheet. The latter two formulations were obtained by further processing the respective pre-gel solutions. Physical properties of the different honey-loaded pre-gel solutions (i.e., pH, colour profile, moisture content, spreadability, and viscosity), wet sheets (i.e., dimension, morphology, and tensile strength) and dry sheets (i.e., dimension, morphology, tensile strength, and swelling index) were determined. High-Performance Thin-Layer Chromatography was applied to analyse selected non-sugar honey constituents to assess the impacts of formulation on the honey chemical composition. This study demonstrates that, irrespective of the honey type utilised, the developed manufacturing techniques yielded topical formulations with high honey content while preserving the integrity of the honey constituents. A storage stability study was conducted on formulations containing the WA Jarrah or Manuka 2 honey. The samples, appropriately packaged and stored over 6 months at 5, 30, and 40 °C, were shown to retain all physical characteristics with no loss of integrity of the monitored honey constituents.
Collapse
Affiliation(s)
- Md Lokman Hossain
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia
| | - Katherine Hammer
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Cooperative Research Centre for Honey Bee Products Limited, 128 Yanchep Beach Road, Yanchep, WA 6035, Australia
| | - Dhanushka Hettiarachchi
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia
| | - Cornelia Locher
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia
- Cooperative Research Centre for Honey Bee Products Limited, 128 Yanchep Beach Road, Yanchep, WA 6035, Australia
| |
Collapse
|
11
|
Evidence for Natural Products as Alternative Wound-Healing Therapies. Biomolecules 2023; 13:biom13030444. [PMID: 36979379 PMCID: PMC10046143 DOI: 10.3390/biom13030444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Chronic, non-healing wounds represent a significant area of unmet medical need and are a growing problem for healthcare systems around the world. They affect the quality of life for patients and are an economic burden, being difficult and time consuming to treat. They are an escalating problem across the developed world due to the increasing incidence of diabetes and the higher prevalence of ageing populations. Effective treatment options are currently lacking, and in some cases chronic wounds can persist for years. Some traditional medicines are believed to contain bioactive small molecules that induce the healing of chronic wounds by reducing excessive inflammation, thereby allowing re-epithelisation to occur. Furthermore, many small molecules found in plants are known to have antibacterial properties and, although they lack the therapeutic selectivity of antibiotics, they are certainly capable of acting as topical antiseptics when applied to infected wounds. As these molecules act through mechanisms of action distinct from those of clinically used antibiotics, they are often active against antibiotic resistant bacteria. Although there are numerous studies highlighting the effects of naturally occurring small molecules in wound-healing assays in vitro, only evidence from well conducted clinical trials can allow these molecules or the remedies that contain them to progress to the clinic. With this in mind, we review wound-healing natural remedies that have entered clinical trials over a twenty-year period to the present. We examine the bioactive small molecules likely to be in involved and, where possible, their mechanisms of action.
Collapse
|
12
|
Anthocyanin/Honey-Incorporated Alginate Hydrogel as a Bio-Based pH-Responsive/Antibacterial/Antioxidant Wound Dressing. J Funct Biomater 2023; 14:jfb14020072. [PMID: 36826871 PMCID: PMC9961009 DOI: 10.3390/jfb14020072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Infection is a major problem that increases the normal pH of the wound bed and interferes with wound healing. Natural biomaterials can serve as a suitable environment to acquire a great practical effect on the healing process. In this context, anthocyanin-rich red cabbage (Brassica oleracea var. capitata F. rubra) extract and honey-loaded alginate hydrogel was fabricated using calcium chloride as a crosslinking agent. The pH sensitivity of anthocyanins can be used as an indicator to monitor possible infection of the wound, while honey would promote the healing process by its intrinsic properties. The mechanical properties of the hydrogel film samples showed that honey acts as a plasticizer and that increasing the incorporation from 200% to 400% enhances the tensile strength from 3.22 to 6.15 MPa and elongation at break from 0.69% to 4.75%. Moreover, a water absorption and retention study showed that the hydrogel film is able to absorb about 250% water after 50 min and retain 40% of its absorbed water after 12 h. The disk diffusion test showed favorable antibacterial activity of the honey-loaded hydrogel against both Gram-positive and Gram-negative Staphylococcus aureus and Escherichia coli, respectively. In addition, the incorporation of honey significantly improved the mechanical properties of the hydrogel. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay proved the antioxidant activity of the honey and anthocyanin-containing hydrogel samples with more than 95% DPPH scavenging efficiency after 3 h. The pH-dependent property of the samples was investigated and recorded by observing the color change at different pH values of 4, 7, and 9 using different buffers. The result revealed a promising color change from red at pH = 4 to blue at pH = 7 and purple at pH = 9. An in vitro cell culture study of the samples using L929 mouse fibroblast cells showed excellent biocompatibility with significant increase in cell proliferation. Overall, this study provides a promising start and an antibacterial/antioxidant hydrogel with great potential to meet wound-dressing requirements.
Collapse
|
13
|
Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells 2023; 12:199. [PMID: 36611992 PMCID: PMC9818774 DOI: 10.3390/cells12010199] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is an important Gram-negative opportunistic pathogen which causes many severe acute and chronic infections with high morbidity, and mortality rates as high as 40%. What makes P. aeruginosa a particularly challenging pathogen is its high intrinsic and acquired resistance to many of the available antibiotics. In this review, we review the important acute and chronic infections caused by this pathogen. We next discuss various animal models which have been developed to evaluate P. aeruginosa pathogenesis and assess therapeutics against this pathogen. Next, we review current treatments (antibiotics and vaccines) and provide an overview of their efficacies and their limitations. Finally, we highlight exciting literature on novel antibiotic-free strategies to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy M. Kuzel
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Islam S, Pramanik MJ, Biswas S, Moniruzzaman M, Biswas J, Akhtar-E-Ekram M, Zaman S, Uddin MS, Saleh MA, Hassan S. Biological Efficacy of Compounds from Stingless Honey and Sting Honey against Two Pathogenic Bacteria: An In Vitro and In Silico Study. Molecules 2022; 27:6536. [PMID: 36235073 PMCID: PMC9570921 DOI: 10.3390/molecules27196536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Honey inhibits bacterial growth due to the high sugar concentration, hydrogen peroxide generation, and proteinaceous compounds present in it. In this study, the antibacterial activity of stingless and sting honey against foodborne pathogenic bacteria isolated from spoiled milk samples was examined. The isolated bacterial strains were confirmed as Bacillus cereus and Listeriamonocytogenes through morphological, biochemical, and 16 s RNA analysis. Physiochemical characterizations of the honey samples revealed that both of the honey samples had an acidic pH, low water content, moderate reducing sugar content, and higher proline content. Through the disc diffusion method, the antibacterial activities of the samples were assayed and better results were observed for the 50 mg/disc honey. Both stingless and sting honey showed the most positive efficacy against Bacillus cereus. Therefore, an in silico study was conducted against this bacterium with some common compounds of honey. From several retrieved constituents of stingless and sting honey, 2,4-dihydroxy-2,5-dimethyl 3(2H)-furan-3-one (furan) and 4H-pyran-4-one,2,3-dihydro of both samples and beta.-D-glucopyranose from the stingless revealed high ligand-protein binding efficiencies for the target protein (6d5z, hemolysin II). The root-mean-square deviation, solvent-accessible surface area, the radius of gyration, root-mean-square fluctuations, and hydrogen bonds were used to ensure the binding stability of the docked complexes in the atomistic simulation and confirmed their stability. The combined effort of wet and dry lab-based work support, to some extent, that the antimicrobial properties of honey have great potential for application in medicine as well as in the food industries.
Collapse
Affiliation(s)
- Shirmin Islam
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Joy Pramanik
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Moniruzzaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Jui Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Akhtar-E-Ekram
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Sabry Hassan
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
15
|
Hewett SR, Crabtrey SD, Dodson EE, Rieth CA, Tarkka RM, Naylor K. Both Manuka and Non-Manuka Honey Types Inhibit Antibiotic Resistant Wound-Infecting Bacteria. Antibiotics (Basel) 2022; 11:1132. [PMID: 36010001 PMCID: PMC9405051 DOI: 10.3390/antibiotics11081132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Postoperative infections are a major concern in United States hospitals, accounting for roughly 20% of all hospital-acquired infections yearly. Wound-infecting bacteria, in particular, have a high rate of drug resistance (up to 65%), creating life-threatening complications. Manuka honey, native to New Zealand, has been FDA-approved for wound treatment in the United States after studies demonstrated its ability to inhibit a variety of bacterial species and facilitate wound healing. The aim of this study was to identify alternative (non-manuka) honey types that can be specifically used against antibiotic resistance bacteria in wound infections. We utilized a honey-plate method to measure the minimum inhibitory concentration (MIC) of honey to avoid the limitations of agar diffusion, where large, nonpolar polyphenols (which will not diffuse efficiently) play an important role in bioactivity. This study demonstrated that there are several alternative (non-manuka) honey types, particularly fresh raw Arkansas wildflower honeys, that comparably inhibit the growth of the antibiotic-resistant bacterial species specifically implicated in wound infections. Concentrations of 10-30% honey inhibited the growth of the highly antibiotic-resistant organisms colloquially referred to as "superbugs", which the WHO declared in 2017 to be in critical need of new antibiotics. There was no statistical difference between manuka honey and fresh summer Arkansas wildflower honey in overall bacterial inhibition. These results could transform wound care in the United States, where manuka honey can be expensive and difficult to obtain and where antibiotic resistance remains a troubling concern for wound treatment.
Collapse
Affiliation(s)
- Samantha R. Hewett
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA
| | | | - Esther E. Dodson
- Department of Chemistry, University of Central Arkansas, Conway, AR 72035, USA
| | - C. Alexander Rieth
- Department of Chemistry, University of Central Arkansas, Conway, AR 72035, USA
| | - Richard M. Tarkka
- Department of Chemistry, University of Central Arkansas, Conway, AR 72035, USA
| | - Kari Naylor
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA
| |
Collapse
|
16
|
Honey: An Advanced Antimicrobial and Wound Healing Biomaterial for Tissue Engineering Applications. Pharmaceutics 2022; 14:pharmaceutics14081663. [PMID: 36015289 PMCID: PMC9414000 DOI: 10.3390/pharmaceutics14081663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
Honey was used in traditional medicine to treat wounds until the advent of modern medicine. The rising global antibiotic resistance has forced the development of novel therapies as alternatives to combat infections. Consequently, honey is experiencing a resurgence in evaluation for antimicrobial and wound healing applications. A range of both Gram-positive and Gram-negative bacteria, including antibiotic-resistant strains and biofilms, are inhibited by honey. Furthermore, susceptibility to antibiotics can be restored when used synergistically with honey. Honey’s antimicrobial activity also includes antifungal and antiviral properties, and in most varieties of honey, its activity is attributed to the enzymatic generation of hydrogen peroxide, a reactive oxygen species. Non-peroxide factors include low water activity, acidity, phenolic content, defensin-1, and methylglyoxal (Leptospermum honeys). Honey has also been widely explored as a tissue-regenerative agent. It can contribute to all stages of wound healing, and thus has been used in direct application and in dressings. The difficulty of the sustained delivery of honey’s active ingredients to the wound site has driven the development of tissue engineering approaches (e.g., electrospinning and hydrogels). This review presents the most in-depth and up-to-date comprehensive overview of honey’s antimicrobial and wound healing properties, commercial and medical uses, and its growing experimental use in tissue-engineered scaffolds.
Collapse
|
17
|
Chhawchharia A, Haines RR, Green KJ, Barnett TC, Bowen AC, Hammer KA. In vitro antibacterial activity of Western Australian honeys, and manuka honey, against bacteria implicated in impetigo. Complement Ther Clin Pract 2022; 49:101640. [PMID: 35868137 DOI: 10.1016/j.ctcp.2022.101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022]
Abstract
Impetigo is a contagious skin disease caused by Staphylococcus aureus and Streptococcus pyogenes. Without treatment, impetigo may be recurrent, develop into severe disease, or have serious, life-threatening sequelae. Standard treatment consists of topical or systemic antibiotic therapy (depending on severity), however, due to antibiotic resistance some therapies are increasingly ineffective. In this study we evaluated the potential for honey as an alternative treatment for impetigo. A broth microdilution assay in 96-well microtitre trays was used to determine the minimum inhibitory concentrations (MICs) of six monofloral honeys (jarrah, marri, red bell, banksia, wandoo, and manuka), a multifloral honey and artificial honey against S. aureus (n = 10), S. pyogenes (n = 10), and coagulase-negative staphylococci (CoNS) (n = 10). The optical density (OD) of all microtitre tray wells was also determined before and after assay incubation to analyse whether sub-MIC growth inhibition occurred. Jarrah, marri, red bell, banksia, and manuka honeys were highly effective at inhibiting S. aureus and CoNS, with MIC50 values ranging from 4 to 8% w/v honey. S. pyogenes was also inhibited by these same honeys, albeit at higher concentrations (8-29% w/v). Wandoo and multifloral honeys had the least antibacterial activity with MICs of >30% (w/v) for all isolates. However, OD data indicated that sub-MIC concentrations of honey were still partially restricting bacterial growth. Our pre-clinical data indicate that honey may be a potential therapeutic agent for the routine treatment of mild impetigo, and we suggest that clinical trials would be appropriate to further investigate this.
Collapse
Affiliation(s)
- Ayushi Chhawchharia
- School of Biomedical Sciences, The University of Western Australia, Crawley, 6009, Australia
| | - Robbie R Haines
- School of Biomedical Sciences, The University of Western Australia, Crawley, 6009, Australia; Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), 128 Yanchep Beach Road, Yanchep, 6035, Australia
| | - Kathryn J Green
- School of Biomedical Sciences, The University of Western Australia, Crawley, 6009, Australia; Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), 128 Yanchep Beach Road, Yanchep, 6035, Australia
| | - Timothy C Barnett
- School of Biomedical Sciences, The University of Western Australia, Crawley, 6009, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, 6009, Australia
| | - Asha C Bowen
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, 6009, Australia; School of Medicine, The University of Western Australia, Crawley, 6009, Australia; Department of Infectious Diseases, Perth Children's Hospital, Nedlands, 6009, Australia
| | - Katherine A Hammer
- School of Biomedical Sciences, The University of Western Australia, Crawley, 6009, Australia; Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), 128 Yanchep Beach Road, Yanchep, 6035, Australia.
| |
Collapse
|
18
|
Schilrreff P, Alexiev U. Chronic Inflammation in Non-Healing Skin Wounds and Promising Natural Bioactive Compounds Treatment. Int J Mol Sci 2022; 23:ijms23094928. [PMID: 35563319 PMCID: PMC9104327 DOI: 10.3390/ijms23094928] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation is one of the hallmarks of chronic wounds and is tightly coupled to immune regulation. The dysregulation of the immune system leads to continuing inflammation and impaired wound healing and, subsequently, to chronic skin wounds. In this review, we discuss the role of the immune system, the involvement of inflammatory mediators and reactive oxygen species, the complication of bacterial infections in chronic wound healing, and the still-underexplored potential of natural bioactive compounds in wound treatment. We focus on natural compounds with antioxidant, anti-inflammatory, and antibacterial activities and their mechanisms of action, as well as on recent wound treatments and therapeutic advancements capitalizing on nanotechnology or new biomaterial platforms.
Collapse
|
19
|
The Identification of Multidrug-Resistant Microorganisms including Bergeyella zoohelcum Acquired from the Skin/Prosthetic Interface of Amputees and Their Susceptibility to Medihoney™ and Garlic Extract (Allicin). Microorganisms 2022; 10:microorganisms10020299. [PMID: 35208754 PMCID: PMC8874569 DOI: 10.3390/microorganisms10020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Users of prosthetic devices face the accumulation of potentially drug-resistant pathogenic bacteria on the skin/prosthesis interface. In this study, we took surface swabs of the skin/prosthesis interface of eleven disabled athletes to identify microorganisms present. In addition to determining their antimicrobial resistance profile, we assessed their sensitivity to Manuka honey and Garlic extract (allicin). Eleven volunteers were directed to swab the skin at the skin/prosthesis interface. After initial isolation of microorganisms, we employed the following general microbiological methods: Gram stain, Catalase test, Oxidase test, lactose fermenting capability, haemolytic capability, Staphaurex, mannitol fermenting capability, Streptex; API Staph, 20E, Candida, and BBL crystal identification system tests. Once identified, isolates were analysed for their sensitivity to penicillin, erythromycin, ampicillin, vancomycin, ceftazidime, ciprofloxacin, gentamicin, and colistin-sulphate. Isolates were also analysed for their sensitivity to allicin (Garlic Extract (GE)) and Manuka honey (Medihoney™) (MH). Eleven isolates were identified: Bacillus cereus, Staphylococcus haemolyticus, Staphylococcus aureus, Micrococcus luteus, Pseudomonas oryzihabitans, Micrococcus spp., Bacillus subtilis, Group D Streptococcus, Pantoea spp., Enterobacter cloacae, and Bergeyella zoohelcum. All isolates were resistant to 1 unit of penicillin and 10 μg of ampicillin. Bergeyella zoohelcum was observed to have the widest range of resistance with observed resistance against five of the eight antimicrobials employed in this study. This study highlights the prevalence of uncommon drug-resistant microorganisms on the skin within a vulnerable population, highlighting the potential for MH or GE intervention.
Collapse
|
20
|
Nezhad-Mokhtari P, Javanbakht S, Asadi N, Ghorbani M, Milani M, Hanifehpour Y, Gholizadeh P, Akbarzadeh A. Recent advances in honey-based hydrogels for wound healing applications: Towards natural therapeutics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
21
|
Cataloguing the small RNA content of honey using next generation sequencing. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 2:100014. [PMID: 35415639 PMCID: PMC8991712 DOI: 10.1016/j.fochms.2021.100014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/02/2022]
Abstract
Plant miRNAs are present in Australian polyfloral and Leptospermum scoparium honey. Sequencing shows that honey contains a diverse range of small, non-coding RNAs. Honey RNA comes from different phylogenies including invertebrates and prokaryotes. Unique small RNA profiles can provide insight into honey production conditions.
Honey adulteration is a problem that effects the global honey industry and specifically, has been discovered in the Australian market. Common methods of adulteration include dilution with sugar syrup substitutes and the mislabelling of the floral and geographic origin(s) of honey. Current authentication tools rely on the molecular variability between different honeys, identifying unique chemical profiles and/or DNA signatures characteristic of a particular honey. Honey is known to contain plant miRNAs derived from its floral source. To explore the composition and variability of honey RNA molecules, this is the first study to catalogue the small RNA content of Australian polyfloral table honey and New Zealand Leptospermum scoparium honey using next generation sequencing. The data shows that in addition to miRNAs, honey contains a variety of small non-coding RNAs including tRNA-derived fragments. Moreover, the honey small RNAs are derived from a range of phylogenetic sources, including from plant, invertebrate, and prokaryotic species. The data indicates that different honeys contain unique small RNA profiles, which suggests a novel avenue in developing molecular-based honey authentication tools.
Collapse
|
22
|
Abstract
Honey, a concentrated natural product, is produced by honeybees (Apis mellifera) from the nectar of flowers. It contains over 200 compounds that exert various biological or pharmacological activities, ranging from antioxidant, anti-inflammatory, antimicrobial, and antihypertensive to hypoglycemic effects. Due to the presence of a plethora of bioactive compounds, as well as unique physicochemical properties, honey has been widely used as medicine throughout human history along with its extensive utilization as common food and flavoring agent. The application of neat honey for therapeutic purpose, however, poses some difficulties such as the maintenance of a required therapeutic concentration over an adequate timeframe due to the problem of liquefaction and leakage. This has driven researchers to incorporate honey into a range of formulations, for example, hydrogels, dressings, ointments, pastes, or lozenges. After a brief discussion of the chemistry and medicinal use of honey, this review focuses on commercial honey-based medicinal formulations as well as in vitro, in vivo, and clinical studies on noncommercial honey formulations for the treatment of various ailments. In addition to this, it also covers the application of honey formulations and the evidence underpinning their use.
Collapse
|
23
|
Hachem R, Parikh UM, Reitzel R, Rosenblatt J, Kaul A, Vargas-Cruz N, Hill L, Moore L, Meyer J, Chaftari AM, Gagea M, Balaji S, Raad II. Novel antimicrobial ointment for infected wound healing in an in vitro and in vivo porcine model. Wound Repair Regen 2021; 29:830-842. [PMID: 33956391 DOI: 10.1111/wrr.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 12/01/2022]
Abstract
Microbial contamination of wounds is a significant problem that delays healing, particularly when bacterial biofilms are present. A novel combination of pectinic acid (PG) + caprylic acid (CAP) was previously found in vitro to be highly effective in eradicating various pathogens in biofilms with minimal cytotoxicity. In this study, a novel wound ointment was formulated with PG + CAP and first assessed in vitro using a well-established biofilm eradication model. In vitro, the PG + CAP ointment was shown to be efficacious in reducing the microbial biofilms. This ointment was then tested in vivo in two pilot porcine wound healing models, with and without Staphylococcus aureus microbial challenge. Ointments were applied to each wound daily, and healing by wound closure area measurement was assessed weekly over 4 weeks. After 4 weeks, pigs were sacrificed and wounds were scored for reepithelialization, inflammation, granulation tissue, and collagen deposition. We compared PG + CAP to hydroxyethylcellulose + glycerol ointment base (control) and MediHoney (comparator). In the porcine microbial challenge model, the novel antimicrobial PG + CAP wound ointment rapidly eradicated bacterial organisms embedded in wounds, was safe and well-tolerated, and was associated with enhanced healing compared to ointment base and MediHoney. Specifically, the cumulative histopathology, reepithelialization of epidermis, and mature granulation tissue in the wound bed was significantly better with PG + CAP than with control and MediHoney treatments. This ointment warrants further study as a non-antibiotic ointment for use in treating a wide array of infected wounds.
Collapse
Affiliation(s)
- Ray Hachem
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Umang M Parikh
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Ruth Reitzel
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joel Rosenblatt
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aditya Kaul
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Nylev Vargas-Cruz
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lori Hill
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lisa Moore
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer Meyer
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anne-Marie Chaftari
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mihai Gagea
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Swathi Balaji
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Issam I Raad
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
24
|
Fana SE, Ahmadpour F, Rasouli HR, Tehrani SS, Maniati M. The effects of natural compounds on wound healing in Iranian traditional medicine: A comprehensive review. Complement Ther Clin Pract 2020; 42:101275. [PMID: 33429123 DOI: 10.1016/j.ctcp.2020.101275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022]
Abstract
Wounds are physical and anatomical disruption in healthy skin and represent an important healthcare concern around the world. Wound healing is a complex and dynamic cascade of cellular and molecular interactions which include four main phases: hemostasis, inflammatory, proliferative, and remodeling. Therefore, some pharmacological activities such as anti-inflammatory, antioxidant, and antimicrobial activities can play a key role in the process of wound healing. Iranian Traditional Medicine (ITM) has a rich background of practice and a wealth of ancient medicine scientists from the Old Persian days until today. This paper presents and characterizes pure data from original references of ITM about wound remedies and verifies their function by reviewing articles from three databases (Google Scholar, PubMed, and Scopus), which could be an interesting and comprehensive resource for future researchers interested in traditional medicine (TM) generally and in ITM in particular. Selected natural compounds from the references were divided into 5 groups, including herbs, herbal products, animal products, minerals, and animals. In total, 23 natural compounds with regard to the current state of knowledge and ITM were introduced and verified. The present review will provide better insights into ITM and its extensive experience in topics such as wound healing.
Collapse
Affiliation(s)
- Saeed Ebrahimi Fana
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fathollah Ahmadpour
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hamid Reza Rasouli
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran; Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
25
|
Wijesooriya LI, Waidyathilake D. Antimicrobial Properties of Nonantibiotic Agents for Effective Treatment of Localized Wound Infections: A Minireview. INT J LOW EXTR WOUND 2020; 21:207-218. [PMID: 32746677 DOI: 10.1177/1534734620939748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Wounds present serious health problems in humans and animals. Importantly, if left untreated, wounds invariably lead to long-term morbidity. The inappropriate use and costs of antibiotics place significant challenges globally and affect the health budgets of many countries. Though some antibiotics are administered systemically, treatment of localized infections, in particular, chronic wound infections, does not need such therapy-this would minimize development of antibiotic resistance. Of these measures, nanoparticles of silver, ZnO, and gold seem to give promising results against common wound pathogens while having few limitations. Chemical components of essential oils, which are extracted from different plants, have been shown to act against common wound pathogens. Plant extracts have shown different mechanisms in biofilm elimination. Chlorhexidine and chlorine derivatives act as wound antiseptics. Attempts with biological agents such as maggots have also been shown to provide anti-infective as well as mechanical removal of wound debris. Honey, including those obtained from bees, has a wide coverage against wound pathogens. Glycerin and hypertonic saline are anti-infective through the concentration-dependent killing of pathogens. Hyperbaric oxygen acts against many wound pathogens, in particular anaerobes. This review is focused on nonantibiotic attempts for the cure of localized infections, in particular, chronic wounds with common wound pathogens.
Collapse
|
26
|
Yilmaz AC, Aygin D. HONEY DRESSING IN WOUND TREATMENT: A SYSTEMATIC REVIEW. Complement Ther Med 2020; 51:102388. [PMID: 32507418 DOI: 10.1016/j.ctim.2020.102388] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Accepted: 03/23/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE The use of honey for wound treatment and care purposes is based on thousands of years of history. The development of science and in vitro/in vivo studies have demonstrated that honey contributes to wound healing by showing therapeutic effects by means of the bioactive compounds it contains. The aim of this systematic review was to evaluate the place of honey in wound treatment by investigating the randomized controlled studies. METHOD 30 publications which were obtained as a result of the scans in the databases and which comply with the evaluation criteria were included in the review. RESULTS In the results of the study, it was reported that honey in acute and chronic wounds provided rapid epithelization and wound contraction in wound healing, had anti-inflammatory and debridement effect, decreased the pain, ensured infection control, shortened the time of wound healing and was cost-effective.
Collapse
Affiliation(s)
- Ayse Celik Yilmaz
- Sakarya University, Faculty of Health Sciences, Nursing Department Serdivan, Sakarya, TR 54055, Turkey.
| | - Dilek Aygin
- Sakarya University, Faculty of Health Sciences, Nursing Department Serdivan, Sakarya, TR 54055, Turkey
| |
Collapse
|
27
|
Lane JA, Calonne J, Slattery H, Hickey RM. Oligosaccharides Isolated from MGO™ Manuka Honey Inhibit the Adhesion of Pseudomonas aeruginosa, Escherichia Coli O157:H7 and Staphylococcus Aureus to Human HT-29 cells. Foods 2019; 8:E446. [PMID: 31581550 PMCID: PMC6835506 DOI: 10.3390/foods8100446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 01/01/2023] Open
Abstract
Historically, honey is known for its anti-bacterial and anti-fungal activities and its use for treatment of wound infections. Although this practice has been in place for millennia, little information exists regarding which manuka honey components contribute to the protective nature of this product. Given that sugar accounts for over 80% of honey and up to 25% of this sugar is composed of oligosaccharides, we have investigated the anti-infective activity of manuka honey oligosaccharides against a range of pathogens. Initially, oligosaccharides were extracted from a commercially-available New Zealand manuka honey-MGO™ Manuka Honey (Manuka Health New Zealand Ltd)-and characterized by High pH anion exchange chromatography coupled with pulsed amperiometric detection. The adhesion of specific pathogens to the human colonic adenocarcinoma cell line, HT-29, was then assessed in the presence and absence of these oligosaccharides. Manuka honey oligosaccharides significantly reduced the adhesion of Escherichia coli O157:H7 (by 40%), Staphylococcus aureus (by 30%), and Pseudomonas aeruginosa (by 52%) to HT-29 cells. This activity was then proven to be concentration dependent and independent of bacterial killing. This study identifies MGO™ Manuka Honey as a source of anti-infective oligosaccharides for applications in functional foods aimed at lowering the incidence of infectious diseases.
Collapse
Affiliation(s)
- Jonathan A Lane
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland.
| | - Julie Calonne
- Department of Biological Sciences, Cork Institute of Technology, Cork T12 P928, Ireland.
| | - Helen Slattery
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland.
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland.
| |
Collapse
|
28
|
Azam NANM, Amin KAM. Influence of Manuka Honey on Mechanical Performance and Swelling Behaviour of Alginate Hydrogel Film. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/440/1/012024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Manji J, Thamboo A, Sunkaraneni V, Singh A, Tebbutt S, Garnis C, Javer A. The association of Leptospermum honey with cytokine expression in the sinonasal epithelium of chronic rhinosinusitis patients. World J Otorhinolaryngol Head Neck Surg 2018; 5:19-25. [PMID: 30775697 PMCID: PMC6364513 DOI: 10.1016/j.wjorl.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 01/09/2023] Open
Abstract
Objective To identify the differences in cytokine expression between sinonasal tissue from patients treated with Leptospermum (Manuka) honey (LH) irrigation versus normal saline irrigation twice-daily for twelve weeks following sinus surgery (FESS). Methods Forty-six CRS patients were recruited. Sinus tissue biopsies were collected during FESS and then at 5 and 12 weeks postoperatively during the course of treatment. A multi-plex cytokine assay quantified the abundance of 17 cytokines in biopsied tissue. Cytokine expression fold-change was analyzed between each time point using a robust linear regression model and compared between the two treatment groups. Results Compared to the saline irrigation group, five cytokines were differently expressed (CI = 95%) in sinonasal tissue obtained from subjects in the LH irrigation group during the 12-week treatment period. Cytokines IL-6 (P = 0.0400), IL-8 (P = 0.0398), MCP-1 (P = 0.0284), and MIP-1β (P = 0.016) were significantly increased in the LH irrigation group compared to the saline irrigation group. IL-13 was significantly increased in the saline irrigation group compared to the LH group (P = 0.0086). Conclusion LH may potentially act to modulate the expression of IL-6, IL-8, IL-13, MCP-1 and MIP-1β in sinonasal tissue.
Collapse
Affiliation(s)
- Jamil Manji
- St. Paul's Sinus Centre, Division of Otolaryngology, Department of Surgery, St. Paul's Sinus Centre, Vancouver, BC, Canada.,BC Cancer Research Centre, Division of Otolaryngology, Department of Surgery, Vancouver, BC, Canada
| | - Andrew Thamboo
- St. Paul's Sinus Centre, Division of Otolaryngology, Department of Surgery, St. Paul's Sinus Centre, Vancouver, BC, Canada
| | - Vishnu Sunkaraneni
- St. Paul's Sinus Centre, Division of Otolaryngology, Department of Surgery, St. Paul's Sinus Centre, Vancouver, BC, Canada.,Royal Surrey County Hospital, Egerton Road, Guildford, UK
| | - Amrit Singh
- PROOF Centre of Excellence, St. Paul's Hospital, Vancouver, BC, Canada.,James Hogg Research Centre, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Scott Tebbutt
- PROOF Centre of Excellence, St. Paul's Hospital, Vancouver, BC, Canada.,James Hogg Research Centre, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Cathie Garnis
- BC Cancer Research Centre, Division of Otolaryngology, Department of Surgery, Vancouver, BC, Canada
| | - Amin Javer
- St. Paul's Sinus Centre, Division of Otolaryngology, Department of Surgery, St. Paul's Sinus Centre, Vancouver, BC, Canada
| |
Collapse
|
30
|
Bugeja L, Low JK, McGinnes RA, Team V, Sinha S, Weller C. Barriers and enablers to patient recruitment for randomised controlled trials on treatment of chronic wounds: A systematic review. Int Wound J 2018; 15:880-892. [PMID: 29927054 DOI: 10.1111/iwj.12940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 04/26/2018] [Indexed: 12/01/2022] Open
Abstract
Randomised controlled trials represent the gold standard in intervention efficacy evaluation. However, suboptimal recruitment affects completion and the power of a therapeutic trial in detecting treatment differences. We conducted a systematic review to examine the barriers and enablers to patient recruitment for randomised controlled trials on chronic wound treatment. Review registration was under PROSPERO 2017:CRD42017062438. We conducted a systematic search of Ovid MEDLINE, EBSCOhost CINAHL, Ovid Cochrane Library, Ovid EMBASE, and Ovid PsycINFO databases in June 2017 for chronic wound treatment randomised controlled trials. Twenty-seven randomised controlled trials or qualitative studies met the inclusion criteria. Among the 24 randomised controlled trials, 21 were assessed as low quality in relation to recruitment, and 3 were assessed as high quality. All 27 studies reported barriers to recruitment in chronic wound randomised controlled trials. The reported barriers to recruitment were: study-related, patient-related, clinician-related, health system-related, and/or operational-related. No study reported recruitment enablers. To enhance randomised controlled trial recruitment, we propose the need for improved integration of research and clinical practice. To alleviate the problems arising from inadequate reporting of randomised controlled trials, the Consolidated Standards of Reporting Trials Statement could include an additional item on recruitment barriers. This approach will allow for increased awareness of the potential barriers to recruitment for Randomised controlled trials (RCTs) in both wound management and other health care research.
Collapse
Affiliation(s)
- Lyndal Bugeja
- Monash Nursing and Midwifery, Monash University, Clayton, Victoria, Australia
| | - Jac Kee Low
- Monash Nursing and Midwifery, Monash University, Clayton, Victoria, Australia
| | - Rosemary A McGinnes
- Monash Nursing and Midwifery, Monash University, Clayton, Victoria, Australia
| | - Victoria Team
- Monash Nursing and Midwifery, Monash University, Clayton, Victoria, Australia
| | - Sankar Sinha
- Discipline of Surgery, School of Medicine, Faculty of Health, Clinical School, University of Tasmania, Hobart, Tasmania, Australia
| | - Carolina Weller
- Monash Nursing and Midwifery, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
31
|
Minden-Birkenmaier BA, Bowlin GL. Honey-Based Templates in Wound Healing and Tissue Engineering. Bioengineering (Basel) 2018; 5:bioengineering5020046. [PMID: 29903998 PMCID: PMC6027142 DOI: 10.3390/bioengineering5020046] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/07/2018] [Accepted: 06/10/2018] [Indexed: 01/09/2023] Open
Abstract
Over the past few decades, there has been a resurgence in the clinical use of honey as a topical wound treatment. A plethora of in vitro and in vivo evidence supports this resurgence, demonstrating that honey debrides wounds, kills bacteria, penetrates biofilm, lowers wound pH, reduces chronic inflammation, and promotes fibroblast infiltration, among other beneficial qualities. Given these results, it is clear that honey has a potential role in the field of tissue engineering and regeneration. Researchers have incorporated honey into tissue engineering templates, including electrospun meshes, cryogels, and hydrogels, with varying degrees of success. This review details the current state of the field, including challenges which have yet to be overcome, and makes recommendations for the direction of future research in order to develop effective tissue regeneration therapies.
Collapse
Affiliation(s)
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, 3806 Norriswood Ave., Memphis, TN 38152, USA.
| |
Collapse
|
32
|
Oliveira A, Ribeiro HG, Silva AC, Silva MD, Sousa JC, Rodrigues CF, Melo LDR, Henriques AF, Sillankorva S. Synergistic Antimicrobial Interaction between Honey and Phage against Escherichia coli Biofilms. Front Microbiol 2017; 8:2407. [PMID: 29276503 PMCID: PMC5727068 DOI: 10.3389/fmicb.2017.02407] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/20/2017] [Indexed: 01/21/2023] Open
Abstract
Chronic wounds afford a hostile environment of damaged tissues that allow bacterial proliferation and further wound colonization. Escherichia coli is among the most common colonizers of infected wounds and it is a prolific biofilm former. Living in biofilm communities, cells are protected, become more difficult to control and eradicate, and less susceptible to antibiotic therapy. This work presents insights into the proceedings triggering E. coli biofilm control with phage, honey, and their combination, achieved through standard antimicrobial activity assays, zeta potential and flow cytometry studies and further visual insights sought by scanning electron microscopy and transmission electron microscopy. Two Portuguese honeys (PF2 and U3) with different floral origin and an E. coli-specific phage (EC3a), possessing depolymerase activity, were tested against 24- and 48-h-old biofilms. Synergic and additive effects were perceived in some phage-honey experiments. Combined therapy prompted similar phenomena in biofilm cells, visualized by electron microscopy, as the individual treatments. Honey caused minor membrane perturbations to complete collapse and consequent discharge of cytoplasmic content, and phage completely destroyed cells leaving only vesicle-like structures and debris. Our experiments show that the addition of phage to low honey concentrations is advantageous, and that even fourfold diluted honey combined with phage, presents no loss of antibacterial activity toward E. coli. Portuguese honeys possess excellent antibiofilm activity and may be potential alternative therapeutic agents in biofilm-related wound infection. Furthermore, to our knowledge this is the first study that assessed the impacts of phage-honey combinations in bacterial cells. The synergistic effect obtained was shown to be promising, since the antiviral effect of honey limits the emergence of phage resistant phenotypes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sanna Sillankorva
- LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
33
|
Review of local wound management for scleroderma-associated digital ulcers. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2017; 3:66-70. [PMID: 32099902 DOI: 10.5301/jsrd.5000268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Digital ulcers (DU) are a common clinical problem in systemic sclerosis (SSc); however, there is no standardization of local wound care protocols for management of these lesions. There is a well-recognized need to develop and standardize non-pharmacological management of DU in patients with SSc, and to adopt these protocols in future clinical trials that focus on DU healing. The purpose of this review is to outline the types of DU that occur in SSc, and provide an update on the principles of wound management for these lesions based on the current literature and expert opinion.
Collapse
|
34
|
Dodd S, White IR, Williamson P. A framework for the design, conduct and interpretation of randomised controlled trials in the presence of treatment changes. Trials 2017; 18:498. [PMID: 29070048 PMCID: PMC5657109 DOI: 10.1186/s13063-017-2240-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/06/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND When a randomised trial is subject to deviations from randomised treatment, analysis according to intention-to-treat does not estimate two important quantities: relative treatment efficacy and effectiveness in a setting different from that in the trial. Even in trials of a predominantly pragmatic nature, there may be numerous reasons to consider the extent, and impact on analysis, of such deviations from protocol. Simple methods such as per-protocol or as-treated analyses, which exclude or censor patients on the basis of their adherence, usually introduce selection and confounding biases. However, there exist appropriate causal estimation methods which seek to overcome these inherent biases, but these methods remain relatively unfamiliar and are rarely implemented in trials. METHODS This paper demonstrates when it may be of interest to look beyond intention-to-treat analysis for answers to alternative causal research questions through illustrative case studies. We seek to guide trialists on how to handle treatment changes in the design, conduct and planning the analysis of a trial; these changes may be planned or unplanned, and may or may not be permitted in the protocol. We highlight issues that must be considered at the trial planning stage relating to: the definition of nonadherence and the causal research question of interest, trial design, data collection, monitoring, statistical analysis and sample size. RESULTS AND CONCLUSIONS During trial planning, trialists should define their causal research questions of interest, anticipate the likely extent of treatment changes and use these to inform trial design, including the extent of data collection and data monitoring. A series of concise recommendations is presented to guide trialists when considering undertaking causal analyses.
Collapse
Affiliation(s)
- Susanna Dodd
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GS UK
| | - Ian R. White
- MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge, CB2 0SR UK
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, Aviation House, 125 Kingsway, London, WC2B 6NH UK
| | - Paula Williamson
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GS UK
| |
Collapse
|
35
|
Ganesan P. Natural and bio polymer curative films for wound dressing medical applications. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.wndm.2017.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Effect of Manuka Honey on Eyelid Wound Healing: A Randomized Controlled Trial. Ophthalmic Plast Reconstr Surg 2017; 33:268-272. [DOI: 10.1097/iop.0000000000000743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Compositional analysis of Scottish honeys with antimicrobial activity against antibiotic-resistant bacteria reveals novel antimicrobial components. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
38
|
Guelpa A, Marini F, du Plessis A, Slabbert R, Manley M. Verification of authenticity and fraud detection in South African honey using NIR spectroscopy. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.11.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Schievano E, Finotello C, Uddin J, Mammi S, Piana L. Objective Definition of Monofloral and Polyfloral Honeys Based on NMR Metabolomic Profiling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3645-3652. [PMID: 27086991 DOI: 10.1021/acs.jafc.6b00619] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, a remarkably precise, simple, and objective definition of monofloral and polyfloral honey based on NMR metabolomics is proposed. The spectra of organic extracts of 983 samples of 16 botanical origins were used to derive one-versus-all OPLS-DA classification models. The predictive components of the statistical models reveal not only the principal but also the secondary floral origins present in a sample of honey, a novel feature with respect to the methods present in the literature that are able to confirm the authenticity of monofloral honeys but not to characterize a mixture of honey types. This result descends from the peculiar features of the chloroform spectra that show diagnostic resonances for almost each botanical origin, making these NMR spectra suitable fingerprints. The reliability of the method was tested with an additional 120 samples, and the class assignments were compared with those obtained by traditional analysis. The two approaches are in excellent agreement in identifying the floral species present in honeys and in the botanical classification. Therefore, this NMR method may prove to be a valid solution to the huge limitations of traditional classification, which is very demanding and complex.
Collapse
Affiliation(s)
- Elisabetta Schievano
- Department of Chemical Sciences, Università di Padova , via Marzolo 1, 35131 Padova, Italy
| | - Claudia Finotello
- Department of Chemical Sciences, Università di Padova , via Marzolo 1, 35131 Padova, Italy
| | - Jalal Uddin
- Department of Chemical Sciences, Università di Padova , via Marzolo 1, 35131 Padova, Italy
| | - Stefano Mammi
- Department of Chemical Sciences, Università di Padova , via Marzolo 1, 35131 Padova, Italy
| | - Lucia Piana
- Piana Ricerca e Consulenza s.r.l. a socio unico , Via dei Mille 39, 40024 Castel San Pietro Terme, Bologna, Italy
| |
Collapse
|
40
|
Oryan A, Alemzadeh E, Moshiri A. Biological properties and therapeutic activities of honey in wound healing: A narrative review and meta-analysis. J Tissue Viability 2016; 25:98-118. [PMID: 26852154 DOI: 10.1016/j.jtv.2015.12.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 10/01/2015] [Accepted: 12/09/2015] [Indexed: 01/10/2023]
Abstract
For thousands of years, honey has been used for medicinal applications. The beneficial effects of honey, particularly its anti-microbial activity represent it as a useful option for management of various wounds. Honey contains major amounts of carbohydrates, lipids, amino acids, proteins, vitamin and minerals that have important roles in wound healing with minimum trauma during redressing. Because bees have different nutritional behavior and collect the nourishments from different and various plants, the produced honeys have different compositions. Thus different types of honey have different medicinal value leading to different effects on wound healing. This review clarifies the mechanisms and therapeutic properties of honey on wound healing. The mechanisms of action of honey in wound healing are majorly due to its hydrogen peroxide, high osmolality, acidity, non-peroxide factors, nitric oxide and phenols. Laboratory studies and clinical trials have shown that honey promotes autolytic debridement, stimulates growth of wound tissues and stimulates anti-inflammatory activities thus accelerates the wound healing processes. Compared with topical agents such as hydrofiber silver or silver sulfadiazine, honey is more effective in elimination of microbial contamination, reduction of wound area, promotion of re-epithelialization. In addition, honey improves the outcome of the wound healing by reducing the incidence and excessive scar formation. Therefore, application of honey can be an effective and economical approach in managing large and complicated wounds.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Esmat Alemzadeh
- Department of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Moshiri
- RAZI Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Pereira RF, Bártolo PJ. Traditional Therapies for Skin Wound Healing. Adv Wound Care (New Rochelle) 2016; 5:208-229. [PMID: 27134765 DOI: 10.1089/wound.2013.0506] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Significance: The regeneration of healthy and functional skin remains a huge challenge due to its multilayer structure and the presence of different cell types within the extracellular matrix in an organized way. Despite recent advances in wound care products, traditional therapies based on natural origin compounds, such as plant extracts, honey, and larvae, are interesting alternatives. These therapies offer new possibilities for the treatment of skin diseases, enhancing the access to the healthcare, and allowing overcoming some limitations associated to the modern products and therapies, such as the high costs, the long manufacturing times, and the increase in the bacterial resistance. This article gives a general overview about the recent advances in traditional therapies for skin wound healing, focusing on the therapeutic activity, action mechanisms, and clinical trials of the most commonly used natural compounds. New insights in the combination of traditional products with modern treatments and future challenges in the field are also highlighted. Recent Advances: Natural compounds have been used in skin wound care for many years due to their therapeutic activities, including anti-inflammatory, antimicrobial, and cell-stimulating properties. The clinical efficacy of these compounds has been investigated through in vitro and in vivo trials using both animal models and humans. Besides the important progress regarding the development of novel extraction methods, purification procedures, quality control assessment, and treatment protocols, the exact mechanisms of action, side effects, and safety of these compounds need further research. Critical Issues: The repair of skin lesions is one of the most complex biological processes in humans, occurring throughout an orchestrated cascade of overlapping biochemical and cellular events. To stimulate the regeneration process and prevent the wound to fail the healing, traditional therapies and natural products have been used with promising results. Although these products are in general less expensive than the modern treatments, they can be sensitive to the geographic location and season, and exhibit batch-to-batch variation, which can lead to unexpected allergic reactions, side effects, and contradictory clinical results. Future Directions: The scientific evidence for the use of traditional therapies in wound healing indicates beneficial effects in the treatment of different lesions. However, specific challenges remain unsolved. To extend the efficacy and the usage of natural substances in wound care, multidisciplinary efforts are necessary to prove the safety of these products, investigate their side effects, and develop standard controlled trials. The development of good manufacturing practices and regulatory legislation also assume a pivotal role in order to improve the use of traditional therapies by the clinicians and to promote their integration into the national health system. Current trends move to the development of innovative wound care treatments, combining the use of traditional healing agents and modern products/practices, such as nanofibers containing silver nanoparticles, Aloe vera loaded into alginate hydrogels, propolis into dressing films, and hydrogel sheets containing honey.
Collapse
Affiliation(s)
- Rúben F. Pereira
- Centre for Rapid and Sustainable Product Development (CDRsp), Polytechnic Institute of Leiria, Marinha Grande, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Paulo J. Bártolo
- Centre for Rapid and Sustainable Product Development (CDRsp), Polytechnic Institute of Leiria, Marinha Grande, Portugal
| |
Collapse
|
42
|
Lindberg T, Andersson O, Palm M, Fagerström C. A systematic review and meta-analysis of dressings used for wound healing: the efficiency of honey compared to silver on burns. Contemp Nurse 2016; 51:121-34. [DOI: 10.1080/10376178.2016.1171727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
43
|
Goharshenasan P, Amini S, Atria A, Abtahi H, Khorasani G. Topical Application of Honey on Surgical Wounds: A Randomized Clinical Trial. Complement Med Res 2016; 23:12-5. [PMID: 26977860 DOI: 10.1159/000441994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The antimicrobial and anti-inflammatory activity of honey and its ability to accelerate wound healing make it an attractive option in surgical wound care. We performed a randomized clinical trial to compare the efficacy of honey dressing with conventional dressing regarding the aesthetic outcome. PATIENTS AND METHODS Bilateral symmetric incisions in randomly selected plastic surgical patients were randomly covered postoperatively with conventional dressing and honey dressing for five days. The aesthetic outcome of the two sides was rated on a Visual Analog Scale by the surgeon and the patient and compared at month three and six after surgery. RESULTS Seventy two symmetrical incisions in 52 patients were evaluated during the study. The mean width of the scar after the third and the sixth month was 3.64 +/- 0.83 mm and 3.49 +/- 0.87 mm on the side that received honey dressing and 5.43 +/- 0.05 mm and 5.30+/- 1.35 mm in the control group. Wilcoxon signed-rank test showed significant difference between honey and conventional dressing outcomes at third and sixth month (p < 0.001). CONCLUSION The healing process of the surgical wound and its final aesthetic result could be improved by using honey dressing.
Collapse
Affiliation(s)
- Peiman Goharshenasan
- Plastic and Reconstructive Surgery Division, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
44
|
Antimicrobial activity of organic honeys against food pathogenic bacterium Clostridium perfringens. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13165-015-0103-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Abstract
BACKGROUND Honey is a viscous, supersaturated sugar solution derived from nectar gathered and modified by the honeybee, Apis mellifera. Honey has been used since ancient times as a remedy in wound care. Evidence from animal studies and some trials has suggested that honey may accelerate wound healing. OBJECTIVES The objective of this review was to assess the effects of honey compared with alternative wound dressings and topical treatments on the of healing of acute (e.g. burns, lacerations) and/or chronic (e.g. venous ulcers) wounds. SEARCH METHODS For this update of the review we searched the Cochrane Wounds Group Specialised Register (searched 15 October 2014); The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2014, Issue 9); Ovid MEDLINE (1946 to October Week 1 2014); Ovid MEDLINE (In-Process & Other Non-Indexed Citations 13 October 2014); Ovid EMBASE (1974 to 13 October 2014); and EBSCO CINAHL (1982 to 15 October 2014). SELECTION CRITERIA Randomised and quasi-randomised trials that evaluated honey as a treatment for any sort of acute or chronic wound were sought. There was no restriction in terms of source, date of publication or language. Wound healing was the primary endpoint. DATA COLLECTION AND ANALYSIS Data from eligible trials were extracted and summarised by one review author, using a data extraction sheet, and independently verified by a second review author. All data have been subsequently checked by two more authors. MAIN RESULTS We identified 26 eligible trials (total of 3011 participants). Three trials evaluated the effects of honey in minor acute wounds, 11 trials evaluated honey in burns, 10 trials recruited people with different chronic wounds including two in people with venous leg ulcers, two trials in people with diabetic foot ulcers and single trials in infected post-operative wounds, pressure injuries, cutaneous Leishmaniasis and Fournier's gangrene. Two trials recruited a mixed population of people with acute and chronic wounds. The quality of the evidence varied between different comparisons and outcomes. We mainly downgraded the quality of evidence for risk of bias, imprecision and, in a few cases, inconsistency.There is high quality evidence (2 trials, n=992) that honey dressings heal partial thickness burns more quickly than conventional dressings (WMD -4.68 days, 95%CI -5.09 to -4.28) but it is unclear if there is a difference in rates of adverse events (very low quality evidence) or infection (low quality evidence).There is very low quality evidence (4 trials, n=332) that burns treated with honey heal more quickly than those treated with silver sulfadiazine (SSD) (WMD -5.12 days, 95%CI -9.51 to -0.73) and high quality evidence from 6 trials (n=462) that there is no difference in overall risk of healing within 6 weeks for honey compared with SSD (RR 1.00, 95% CI 0.98 to 1.02) but a reduction in the overall risk of adverse events with honey relative to SSD. There is low quality evidence (1 trial, n=50) that early excision and grafting heals partial and full thickness burns more quickly than honey followed by grafting as necessary (WMD 13.6 days, 95%CI 9.82 to 17.38).There is low quality evidence (2 trials, different comparators, n=140) that honey heals a mixed population of acute and chronic wounds more quickly than SSD or sugar dressings.Honey healed infected post-operative wounds more quickly than antiseptic washes followed by gauze and was associated with fewer adverse events (1 trial, n=50, moderate quality evidence, RR of healing 1.69, 95%CI 1.10 to 2.61); healed pressure ulcers more quickly than saline soaks (1 trial, n= 40, very low quality evidence, RR 1.41, 95%CI 1.05 to 1.90), and healed Fournier's gangrene more quickly than Eusol soaks (1 trial, n=30, very low quality evidence, WMD -8.00 days, 95%CI -6.08 to -9.92 days).The effects of honey relative to comparators are unclear for: venous leg ulcers (2 trials, n= 476, low quality evidence); minor acute wounds (3 trials, n=213, very low quality evidence); diabetic foot ulcers (2 trials, n=93, low quality evidence); Leishmaniasis (1 trial, n=100, low quality evidence); mixed chronic wounds (2 trials, n=150, low quality evidence). AUTHORS' CONCLUSIONS It is difficult to draw overall conclusions regarding the effects of honey as a topical treatment for wounds due to the heterogeneous nature of the patient populations and comparators studied and the mostly low quality of the evidence. The quality of the evidence was mainly downgraded for risk of bias and imprecision. Honey appears to heal partial thickness burns more quickly than conventional treatment (which included polyurethane film, paraffin gauze, soframycin-impregnated gauze, sterile linen and leaving the burns exposed) and infected post-operative wounds more quickly than antiseptics and gauze. Beyond these comparisons any evidence for differences in the effects of honey and comparators is of low or very low quality and does not form a robust basis for decision making.
Collapse
Affiliation(s)
- Andrew B Jull
- University of AucklandSchool of NursingPrivate Bag 92019AucklandNew Zealand
| | - Nicky Cullum
- University of ManchesterSchool of Nursing, Midwifery and Social WorkJean McFarlane BuildingOxford RoadManchesterUKM13 9PL
| | - Jo C Dumville
- University of ManchesterSchool of Nursing, Midwifery and Social WorkJean McFarlane BuildingOxford RoadManchesterUKM13 9PL
| | - Maggie J Westby
- University of ManchesterSchool of Nursing, Midwifery and Social WorkJean McFarlane BuildingOxford RoadManchesterUKM13 9PL
| | - Sohan Deshpande
- Kleijnen Systematic ReviewsUnit 6, Escrick Business ParkRiccall Road, EscrickYorkUKYO19 6FD
| | - Natalie Walker
- University of AucklandNational Institute for Health InnovationPrivate Bag 92019AucklandNew Zealand
| | | |
Collapse
|
46
|
Discrimination of honey of different floral origins by a combination of various chemical parameters. Food Chem 2015; 189:52-9. [PMID: 26190600 DOI: 10.1016/j.foodchem.2014.11.165] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 11/21/2022]
Abstract
Honey is a high value food commodity with recognized nutraceutical properties. A primary driver of the value of honey is its floral origin. The feasibility of applying multivariate data analysis to various chemical parameters for the discrimination of honeys was explored. This approach was applied to four authentic honeys with different floral origins (rata, kamahi, clover and manuka) obtained from producers in New Zealand. Results from elemental profiling, stable isotope analysis, metabolomics (UPLC-QToF MS), and NIR, FT-IR, and Raman spectroscopic fingerprinting were analyzed. Orthogonal partial least square discriminant analysis (OPLS-DA) was used to determine which technique or combination of techniques provided the best classification and prediction abilities. Good prediction values were achieved using metabolite data (for all four honeys, Q(2)=0.52; for manuka and clover, Q(2)=0.76) and the trace element/isotopic data (for manuka and clover, Q(2)=0.65), while the other chemical parameters showed promise when combined (for manuka and clover, Q(2)=0.43).
Collapse
|
47
|
Faucett EA, Reghunathan S, Jacob A. Medicinal honey as treatment for skin reactions associated with bone-anchored hearing implant surgery. Laryngoscope 2014; 125:1720-3. [PMID: 25476170 DOI: 10.1002/lary.25069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Erynne A Faucett
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona College of Medicine, Tucson, Arizona
| | - Saranya Reghunathan
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona College of Medicine, Tucson, Arizona
| | - Abraham Jacob
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona College of Medicine, Tucson, Arizona.,University of Arizona Ear Institute, Tucson, Arizona, U.S.A.,University of Arizona Cancer Center, Tucson, Arizona, U.S.A.,BIO5 Institute, University of Arizona, Tucson, Arizona, U.S.A
| |
Collapse
|
48
|
Burlando B, Cornara L. Honey in dermatology and skin care: a review. J Cosmet Dermatol 2014; 12:306-13. [PMID: 24305429 DOI: 10.1111/jocd.12058] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2013] [Indexed: 01/22/2023]
Abstract
Honey is a bee-derived, supersaturated solution composed mainly of fructose and glucose, and containing proteins and amino acids, vitamins, enzymes, minerals, and other minor components. Historical records of honey skin uses date back to the earliest civilizations, showing that honey has been frequently used as a binder or vehicle, but also for its therapeutic virtues. Antimicrobial properties are pivotal in dermatological applications, owing to enzymatic H2 O2 release or the presence of active components, like methylglyoxal in manuka, while medical-grade honey is also available. Honey is particularly suitable as a dressing for wounds and burns and has also been included in treatments against pityriasis, tinea, seborrhea, dandruff, diaper dermatitis, psoriasis, hemorrhoids, and anal fissure. In cosmetic formulations, it exerts emollient, humectant, soothing, and hair conditioning effects, keeps the skin juvenile and retards wrinkle formation, regulates pH and prevents pathogen infections. Honey-based cosmetic products include lip ointments, cleansing milks, hydrating creams, after sun, tonic lotions, shampoos, and conditioners. The used amounts range between 1 and 10%, but concentrations up to 70% can be reached by mixing with oils, gel, and emulsifiers, or polymer entrapment. Intermediate-moisture, dried, and chemically modified honeys are also used. Mechanisms of action on skin cells are deeply conditioned by the botanical sources and include antioxidant activity, the induction of cytokines and matrix metalloproteinase expression, as well as epithelial-mesenchymal transition in wounded epidermis. Future achievements, throwing light on honey chemistry and pharmacological traits, will open the way to new therapeutic approaches and add considerable market value to the product.
Collapse
Affiliation(s)
- Bruno Burlando
- Dipartimento di Scienze e Innovazione Tecnologica, DiSIT, Università del Piemonte Orientale "Amedeo Avogadro", Alessandria, Italy
| | | |
Collapse
|
49
|
Affiliation(s)
- Kimberley Oropeza
- Kimberley Oropeza is a staff community health nurse at Unity Health System in Rochester, N.Y
| |
Collapse
|
50
|
Weissenstein A, Luchter E, Bittmann S. Medical honey and its role in paediatric patients. ACTA ACUST UNITED AC 2014; 23:S30, S32-4. [PMID: 24690749 DOI: 10.12968/bjon.2014.23.sup6.s30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The use of complementary medical treatment in wound management has continued to grow throughout the world. There is a large body of evidence that supports the use of honey as a wound dressing for a wide range of wound types. The authors present an update of present knowledge about honey as a form of complementary medicine in paediatric wound management. METHODS The literature cited was found by searching the PubMed, BIOSIS and ISI Web of Science databases for the phrase 'honey and wound'. Papers where honey was used in a mixture with other therapeutic substances were excluded. Randomised controlled trials as well as case studies were taken into consideration. RESULTS This paper reviews data on the effectiveness of honey in wound healing; 80 citations or references were found that matched the criteria. Furthermore, the wound-healing properties of honey are described and the mechanism of action discussed. The authors' data show that honey induced enhanced epithelialisation, minimised scar formations and had an anti-microbiotic effect. CONCLUSION These results should encourage the use of medical honey in the field of paediatrics. It is a safe and natural substance that induces wound healing at a greater rate than conventional methods.
Collapse
|