1
|
Caminero-Saldaña C, Correa-Cuadros JP, Baños-Herrero A, Riquelme C, Pallavicini Y, Fernández-Villán M, Plaza J, Pérez-Sánchez R, Sánchez N, Mougeot F, Luque-Larena JJ, Jaksic FM, García-Ariza MC. Exploring the influence of density-dependence and weather on the spatial and temporal variation in common vole (Microtus arvalis) abundance in Castilla y León, NW Spain. PEST MANAGEMENT SCIENCE 2024; 80:5527-5536. [PMID: 38153883 DOI: 10.1002/ps.7954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND The common vole has invaded the agroecosystems of northwestern Spain, where outbreaks cause important crop damage and management costs. Little is yet known about the factors causing or modulating vole fluctuations. Here, we used 11 years of vole abundance monitoring data in 40 sites to study density-dependence and weather influence on vole dynamics. Our objective was to identify the population dynamics structure and determine whether there is direct or delayed density-dependence. An evaluation of climatic variables followed, to determine whether they influenced vole population peaks. RESULTS First- and second-order outbreak dynamics were detected at 7 and 33 study sites, respectively, together with second-order variability in periodicity (2-3 to 4-5-year cycles). Vole population growth was explained by previous year abundance (mainly numbers in summer and spring) at 21 of the sites (52.5%), by weather variables at 11 sites (27.5%; precipitation or temperature in six and five sites, respectively), and by a combination of previous abundance and weather variables in eight sites (20%). CONCLUSIONS We detected variability in vole spatiotemporal abundance dynamics, which differs in cyclicity and period. We also found regional variation in the relative importance of previous abundances and weather as factors modulating vole fluctuations. Most vole populations were cyclical, with variable periodicity across the region. Our study is a first step towards the development of predictive modeling, by disclosing relevant factors that might trigger vole outbreaks. It improves decision-making processes within integrated management dealing with mitigation of the agricultural impacts caused by voles. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Constantino Caminero-Saldaña
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Observatorio de Plagas y Enfermedades Agrícolas, Valladolid, Spain
| | - Jennifer Paola Correa-Cuadros
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Ana Baños-Herrero
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Observatorio de Plagas y Enfermedades Agrícolas, Valladolid, Spain
| | - Carlos Riquelme
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Yesica Pallavicini
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Observatorio de Plagas y Enfermedades Agrícolas, Valladolid, Spain
| | - Mercedes Fernández-Villán
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Observatorio de Plagas y Enfermedades Agrícolas, Valladolid, Spain
| | - Javier Plaza
- Facultad de Ciencias Agrarias y Ambientales, Universidad de Salamanca, Salamanca, Spain
| | - Rodrigo Pérez-Sánchez
- Facultad de Ciencias Agrarias y Ambientales, Universidad de Salamanca, Salamanca, Spain
| | - Nilda Sánchez
- Facultad de Ciencias Agrarias y Ambientales, Universidad de Salamanca, Salamanca, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Juan José Luque-Larena
- Departamento de Ciencias Agroforestales (Zoología), ETSIIAA, Universidad de Valladolid, Palencia, Spain
- Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), Palencia, Spain
| | - Fabián M Jaksic
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - María Carmen García-Ariza
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), Observatorio de Plagas y Enfermedades Agrícolas, Valladolid, Spain
| |
Collapse
|
2
|
Bühler R, Riecke TV, Schalcher K, Roulin A, Almasi B. Individual quality and environmental factors interact to shape reproduction and survival in a resident bird of prey. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231934. [PMID: 39263448 PMCID: PMC11387063 DOI: 10.1098/rsos.231934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/12/2024] [Accepted: 07/17/2024] [Indexed: 09/13/2024]
Abstract
Investigating among-individual differences in reproductive success and survival is essential for understanding eco-evolutionary processes. We used 5 years of demographic data from 556 breeding barn owls (Tyto alba) to estimate associations between intrinsic and extrinsic covariates on survival and reproduction throughout the annual cycle. As males and females have distinct roles in reproduction, environmental conditions and individual quality may be differentially linked to their fitness at different time points. Males breeding early and inhabiting prey-rich areas experienced higher reproductive success but faced greater reproductive costs. Indeed, the number of offspring a male cared for was negatively associated with his body condition and survival. However, our results indicate that these influences can be mitigated in males experiencing favourable post-breeding environmental conditions. For female owls, early breeding and high food availability during the breeding period were linked with increased reproductive success. Prey availability during incubation and higher reproductive output were associated with higher survival into the next breeding period in females. Unlike males, females did not exhibit obvious trade-offs between reproductive success and survival. Our research demonstrates trade-offs between fecundity and survival, and that females paired with males able to provide sufficient food experience higher survival and reproduction.
Collapse
Affiliation(s)
- Roman Bühler
- Swiss Ornithological Institute, Seerose 1, Sempach CH-6204, Switzerland
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, Lausanne CH-1015, Switzerland
| | - Thomas V Riecke
- Swiss Ornithological Institute, Seerose 1, Sempach CH-6204, Switzerland
- Wildlife Biology Program, University of Montana, Missoula MT 59812, USA
| | - Kim Schalcher
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, Lausanne CH-1015, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, Lausanne CH-1015, Switzerland
| | - Bettina Almasi
- Swiss Ornithological Institute, Seerose 1, Sempach CH-6204, Switzerland
| |
Collapse
|
3
|
Samia NI, Stramer O, Saitoh T, Stenseth NC. Climate-driven context-dependent structure of population cycles. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240047. [PMID: 39205994 PMCID: PMC11349440 DOI: 10.1098/rsos.240047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/27/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Multiannual population cycles of small mammals are of interest within population biology. We propose an approach for multidimensional autoregressive (AR) time series and analyse monitoring data on grey-sided voles (Myodes rufocanus) in Japan to investigate one or possibly multiple multiannual cycles that drive population dynamics. Temperature, through modifying rodent communities, is found to be a key factor shaping population dynamics. Warmer areas are the main habitat for other rodent species resulting in low vole abundance/dominance, as opposed to higher vole dominance in colder areas-a pattern associated with the AR structure and population cycle. Vole populations in simple rodent communities exhibit an AR(2) cycle of 2-3 years. In areas with complex rodent communities, vole dynamics follows an AR(4) process and a combination of two cycles with different lengths. The AR structure varies in relatively small spatial scales, thus widening the scope of AR analyses needed. Historically, vole abundance increased in the late 1970s and decreased from the 1980s, with warm winters shown to be associated with the decline of vole abundance in the AR(4) populations. This significant association between the AR order, population dynamics, temperature and rodent community provides insights into the declining trends observed in rodent populations of the Northern Hemisphere.
Collapse
Affiliation(s)
- Noelle I Samia
- Department of Statistics and Data Science, Northwestern University, 2006 Sheridan Road, Evanston, IL 60208, USA
| | - Osnat Stramer
- Department of Statistics and Actuarial Science, University of Iowa, 241 Schaeffer Hall, Iowa City, IA 52242, USA
| | - Takashi Saitoh
- Field Science Center, Hokkaido University, North 11, West 10, Sapporo 060-0811, Japan
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
| |
Collapse
|
4
|
Olea PP, de Diego N, García JT, Viñuela J. Habitat type modulates sharp body mass oscillations in cyclic common vole populations. Sci Rep 2024; 14:12013. [PMID: 38797736 PMCID: PMC11128438 DOI: 10.1038/s41598-024-62687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Cyclic rodent populations exhibit pronounced changes in body mass associated with the population cycle phase, long-known as Chitty effect. Although Chitty effect is a common epiphenomenon in both America and Europe, there is still incomplete evidence about the generality of these patterns across the entire range of most species. Moreover, despite decades of research, the underlying factors driving Chitty effect remains poorly understood. Here, we examined the influence of intrinsic and extrinsic factors that may underlie observed patterns in vole size variation in the Iberian common vole Microtus arvalis asturianus. We weighed and measured 2816 adult voles that were captured during 6 trapping periods. Vole numbers and body mass showed strong period- and phase-related variation both in females and males, demonstrating marked Chitty effect in the studied population. Body mass of adult males correlated with body length, evidencing that heavier males are also structurally larger. Statistical models showed that probability of occurrence of large-sized vole (> 37 g) was significantly more likely in reproductive males, during increase and peak phases, and it was modulated by habitat, with crop fields and field margins between crops showing an increased likelihood. We suggest an effect of the habitat on vole body mass mediated by predation.
Collapse
Affiliation(s)
- Pedro P Olea
- Terrestrial Ecology Group (TEG), Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Noelia de Diego
- Game and Wildlife Management Group, Institute for Game and Wildlife Research (IREC, UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Jesús T García
- Game and Wildlife Management Group, Institute for Game and Wildlife Research (IREC, UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Javier Viñuela
- Game and Wildlife Management Group, Institute for Game and Wildlife Research (IREC, UCLM-CSIC-JCCM), Ciudad Real, Spain
| |
Collapse
|
5
|
Soininen EM, Neby M. Small rodent population cycles and plants - after 70 years, where do we go? Biol Rev Camb Philos Soc 2024; 99:265-294. [PMID: 37827522 DOI: 10.1111/brv.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Small rodent population cycles characterise northern ecosystems, and the cause of these cycles has been a long-lasting central topic in ecology, with trophic interactions currently considered the most plausible cause. While some researchers have rejected plant-herbivore interactions as a cause of rodent cycles, others have continued to research their potential roles. Here, we present an overview of whether plants can cause rodent population cycles, dividing this idea into four different hypotheses with different pathways of plant impacts and related assumptions. Our systematic review of the existing literature identified 238 studies from 150 publications. This evidence base covered studies from the temperate biome to the tundra, but the studies were scattered across study systems and only a few specific topics were addressed in a replicated manner. Quantitative effects of rodents on vegetation was the best studied topic, and our evidence base suggests such that such effects may be most pronounced in winter. However, the regrowth of vegetation appears to take place too rapidly to maintain low rodent population densities over several years. The lack of studies prevented assessment of time lags in the qualitative responses of vegetation to rodent herbivory. We conclude that the literature is currently insufficient to discard with confidence any of the four potential hypotheses for plant-rodent cycles discussed herein. While new methods allow analyses of plant quality across more herbivore-relevant spatial scales than previously possible, we argue that the best way forward to rejecting any of the rodent-plant hypotheses is testing specific predictions of dietary variation. Indeed, all identified hypotheses make explicit assumptions on how rodent diet taxonomic composition and quality will change across the cycle. Passing this bottleneck could help pinpoint where, when, and how plant-herbivore interactions have - or do not have - plausible effects on rodent population dynamics.
Collapse
Affiliation(s)
- Eeva M Soininen
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Postboks 6050 Langnes, Tromsø, 9037, Norway
| | - Magne Neby
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Høyvangvegen 40, Ridabu, 2322, Norway
| |
Collapse
|
6
|
Viscardi A, Bertolino S, Venturino E. A model for voles interference in cultivated orchards. Math Biosci 2023; 366:109107. [PMID: 37944796 DOI: 10.1016/j.mbs.2023.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
We consider a dynamical system involving seven populations to model the presence of voles in a cultivated orchard. The plant population is stratified by age (three groups) and by health status (being damaged or not). The last equation models the voles with a modified logistic equation with Allee effect, where the modification takes into account the disturbance provided by the human activity on the orchard. Both an analytical investigation and numerical simulations on a case study are presented. The latter support the observed differences in the literature, in terms of number of voles, between cultivated and uncultivated fields.
Collapse
Affiliation(s)
- Alberto Viscardi
- Dipartimento di Matematica "Giuseppe Peano", Università degli studi di Torino, Italy.
| | - Sandro Bertolino
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli studi di Torino, Italy.
| | - Ezio Venturino
- Dipartimento di Matematica "Giuseppe Peano", Università degli studi di Torino, Italy.
| |
Collapse
|
7
|
Wang X, Peischl S, Heckel G. Demographic history and genomic consequences of 10,000 generations of isolation in a wild mammal. Curr Biol 2023; 33:2051-2062.e4. [PMID: 37178689 DOI: 10.1016/j.cub.2023.04.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Increased human activities caused the isolation of populations in many species-often associated with genetic depletion and negative fitness effects. The effects of isolation are predicted by theory, but long-term data from natural populations are scarce. We show, with full genome sequences, that common voles (Microtus arvalis) in the Orkney archipelago have remained genetically isolated from conspecifics in continental Europe since their introduction by humans over 5,000 years ago. Modern Orkney vole populations are genetically highly differentiated from continental conspecifics as a result of genetic drift processes. Colonization likely started on the biggest Orkney island and vole populations on smaller islands were gradually split off, without signs of secondary admixture. Despite having large modern population sizes, Orkney voles are genetically depauperate and successive introductions to smaller islands resulted in further reduction of genetic diversity. We detected high levels of fixation of predicted deleterious variation compared with continental populations, particularly on smaller islands, yet the fitness effects realized in nature are unknown. Simulations showed that predominantly mildly deleterious mutations were fixed in populations, while highly deleterious mutations were purged early in the history of the Orkney population. Relaxation of selection overall due to benign environmental conditions on the islands and the effects of soft selection may have contributed to the repeated, successful establishment of Orkney voles despite potential fitness loss. Furthermore, the specific life history of these small mammals, resulting in relatively large population sizes, has probably been important for their long-term persistence in full isolation.
Collapse
Affiliation(s)
- Xuejing Wang
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Stephan Peischl
- Interfaculty Bioinformatics Unit, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Swiss Institute of Bioinformatics, Amphipôle, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Swiss Institute of Bioinformatics, Amphipôle, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland.
| |
Collapse
|
8
|
Numerical Response of Owls to the Dampening of Small Mammal Population Cycles in Latvia. Life (Basel) 2023; 13:life13020572. [PMID: 36836929 PMCID: PMC9965252 DOI: 10.3390/life13020572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Strong numerical and functional responses of owls to voles in cyclic environments are well known. However, there is insufficient knowledge from the boreonemoral region in particular, with depleted populations of small mammals. In this study, we describe the dynamics of the small mammal population in Latvia from 1991 to 2016 and link them to owl population characteristics. We used food niche breadth, number of fledglings, and population trends to lay out the numerical response of six owl species to dampened small mammal population cycles. We found temporarily increasing food niche breadth in tawny and Ural owls. There were no other responses in the tawny owl, whereas the breeding performance of three forest specialist species-pygmy, Tengmalm's, and Ural owls-corresponded to the vole crash years in Fennoscandia. Moreover, the populations of forest specialist owls decreased, and the change in the Ural owl population can be attributed to the depletion of small mammal populations. We found evidence of a carry-over effect in the eagle owl arising from a strong correlation of declining breeding performance with the small mammal abundance indices in the previous autumn. We conclude that dampening of the small mammal population cycles is an important covariate of the likely effects of habitat destruction that needs to be investigated further, with stronger responses in more specialized (to prey or habitat) species.
Collapse
|
9
|
Distribution of Four Vole Species through the Barn Owl Tyto alba Diet Spectrum: Pattern Responses to Environmental Gradients in Intensive Agroecosystems of Central Greece. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010105. [PMID: 36676056 PMCID: PMC9865515 DOI: 10.3390/life13010105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Voles are the most common vertebrate pests in European agriculture. Identifying their distribution and abundance patterns provides valuable information for future management. Barn Owl diet analysis is one of the optimum methods used to record small mammal distribution patterns on large spatial scales. From 2003 to 2005, a total of 10,065 Barn Owl pellets were collected and analyzed from 31 breeding sites in the largest agroecosystem in Greece, the Thessaly plains. A total of 29,061 prey items were identified, offering deep insight into small mammal distribution, specifically voles. Four discrete vole species (Harting's vole Microtus hartingi, East European vole Microtus levis, Thomas's pine vole Microtus thomasi, and Grey dwarf hamster Cricetulus migratorius) comprised 40.5% (11,770 vole prey items) of the total Barn Owl prey intake. The presence and abundance of the voles varied according to underlying environmental gradients, with soil texture and type playing a major role. M. levis showed no significant attachments to gradients, other than a mild increase in Mollisol soils. It was syntopic in all sites with M. hartingi, which was the dominant and most abundant small mammal species, preferring non-arable cultivated land, natural grasslands, set-aside fields, and fallow land. M. thomasi was strictly present in western Thessaly and strongly associated with a sandy-clay soil texture and Alfisol soils. C. migratorius was the least represented vole (162 items), exclusively present in eastern Thessaly and demonstrating a stronger association with cereals, Mollisol soils, and an argillaceous-clay soil texture. This is the first study in Greece at such a large spatial scale, offering insights for pest rodents' distribution in intensive agroecosystems and their response to environmental gradients including soil parameters.
Collapse
|
10
|
Sørensen OJ, Moa PF, Hagen BR, Selås V. Possible impact of winter conditions and summer temperature on bank vole ( Myodes glareolus) population fluctuations in Central Norway. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ole J. Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Pål F. Moa
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Bjørn-Roar Hagen
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Vidar Selås
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
11
|
Roos D, Caminero-Saldaña C, Elston D, Mougeot F, García-Ariza MC, Arroyo B, Luque-Larena JJ, Revilla FJR, Lambin X. From pattern to process? Dual travelling waves, with contrasting propagation speeds, best describe a self-organised spatio-temporal pattern in population growth of a cyclic rodent. Ecol Lett 2022; 25:1986-1998. [PMID: 35908289 PMCID: PMC9543711 DOI: 10.1111/ele.14074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/19/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
The dynamics of cyclic populations distributed in space result from the relative strength of synchronising influences and the limited dispersal of destabilising factors (activators and inhibitors), known to cause multi‐annual population cycles. However, while each of these have been well studied in isolation, there is limited empirical evidence of how the processes of synchronisation and activation–inhibition act together, largely owing to the scarcity of datasets with sufficient spatial and temporal scale and resolution. We assessed a variety of models that could be underlying the spatio‐temporal pattern, designed to capture both theoretical and empirical understandings of travelling waves using large‐scale (>35,000 km2), multi‐year (2011–2017) field monitoring data on abundances of common vole (Microtus arvalis), a cyclic agricultural rodent pest. We found most support for a pattern formed from the summation of two radial travelling waves with contrasting speeds that together describe population growth rates across the region.
Collapse
Affiliation(s)
- Deon Roos
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK.,Área de Plagas, Instituto Tecnológico Agrario de Castilla-y-León (ITACyL), Valladolid, Spain
| | | | - David Elston
- Biomathematics & Statistics Scotland, Aberdeen, UK
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | | | - Beatriz Arroyo
- Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Juan José Luque-Larena
- Dpto. Ciencias Agroforestales, ETSIIAA, Universidad de Valladolid, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Palencia, Spain
| | | | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
12
|
Sheftel BI, Yakushov VD. Impacts of Climate Warming on Terrestrial Species in the Middle Yenisei Taiga. CONTEMP PROBL ECOL+ 2022. [DOI: 10.1134/s1995425522010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Climate variability and density-dependent population dynamics: Lessons from a simple High Arctic ecosystem. Proc Natl Acad Sci U S A 2021; 118:2106635118. [PMID: 34504000 PMCID: PMC8449336 DOI: 10.1073/pnas.2106635118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
Whether the renowned population cycles of small mammals in northern food webs are driven by bottom-up (plant–herbivore) or top-down (predator–prey) interactions is still a debated question but crucial to our understanding of their ecological functions and response to climate change. A long-term study of a graminivorous vole population in an exceptionally simple High Arctic food web allowed us to identify which population dynamics features are present without top-down regulation. Unique features were high-amplitude, noncyclic population fluctuations driven by a combination of stochastic weather events and season-specific density dependence likely arising from plant–herbivore interactions. That such features are not present in more complex food webs points to the importance of top-down regulation in small mammal populations. Ecologists are still puzzled by the diverse population dynamics of herbivorous small mammals that range from high-amplitude, multiannual cycles to stable dynamics. Theory predicts that this diversity results from combinations of climatic seasonality, weather stochasticity, and density-dependent food web interactions. The almost ubiquitous 3- to 5-y cycles in boreal and arctic climates may theoretically result from bottom-up (plant–herbivore) and top-down (predator–prey) interactions. Assessing, empirically, the roles of such interactions and how they are influenced by environmental stochasticity has been hampered by food web complexity. Here, we take advantage of a uniquely simple High Arctic food web, which allowed us to analyze the dynamics of a graminivorous vole population not subjected to top-down regulation. This population exhibited high-amplitude, noncyclic fluctuations—partly driven by weather stochasticity. However, the predominant driver of the dynamics was overcompensatory density dependence in winter that caused the population to frequently crash. Model simulations showed that the seasonal pattern of density dependence would yield regular 2-y cycles in the absence of stochasticity. While such short cycles have not yet been observed in mammals, they are theoretically plausible if graminivorous vole populations are deterministically bottom-up regulated. When incorporating weather stochasticity in the model simulations, cyclicity became disrupted and the amplitude was increased—akin to the observed dynamics. Our findings contrast with the 3- to 5-y population cycles that are typical of graminivorous small mammals in more complex food webs, suggesting that top-down regulation is normally an important component of such dynamics.
Collapse
|
14
|
Kareva I, Luddy KA, O’Farrelly C, Gatenby RA, Brown JS. Predator-Prey in Tumor-Immune Interactions: A Wrong Model or Just an Incomplete One? Front Immunol 2021; 12:668221. [PMID: 34531851 PMCID: PMC8438324 DOI: 10.3389/fimmu.2021.668221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/05/2021] [Indexed: 01/05/2023] Open
Abstract
Tumor-immune interactions are often framed as predator-prey. This imperfect analogy describes how immune cells (the predators) hunt and kill immunogenic tumor cells (the prey). It allows for evaluation of tumor cell populations that change over time during immunoediting and it also considers how the immune system changes in response to these alterations. However, two aspects of predator-prey type models are not typically observed in immuno-oncology. The first concerns the conversion of prey killed into predator biomass. In standard predator-prey models, the predator relies on the prey for nutrients, while in the tumor microenvironment the predator and prey compete for resources (e.g. glucose). The second concerns oscillatory dynamics. Standard predator-prey models can show a perpetual cycling in both prey and predator population sizes, while in oncology we see increases in tumor volume and decreases in infiltrating immune cell populations. Here we discuss the applicability of predator-prey models in the context of cancer immunology and evaluate possible causes for discrepancies. Key processes include "safety in numbers", resource availability, time delays, interference competition, and immunoediting. Finally, we propose a way forward to reconcile differences between model predictions and empirical observations. The immune system is not just predator-prey. Like natural food webs, the immune-tumor community of cell types forms an immune-web of different and identifiable interactions.
Collapse
Affiliation(s)
- Irina Kareva
- EMD Serono, Merck KGaA, Billerica, MA, United States
| | - Kimberly A. Luddy
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Robert A. Gatenby
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Joel S. Brown
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
15
|
McManus A, Holland CV, Henttonen H, Stuart P. The Invasive Bank Vole ( Myodes glareolus): A Model System for Studying Parasites and Ecoimmunology during a Biological Invasion. Animals (Basel) 2021; 11:2529. [PMID: 34573495 PMCID: PMC8464959 DOI: 10.3390/ani11092529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
The primary driver of the observed increase in emerging infectious diseases (EIDs) has been identified as human interaction with wildlife and this increase has emphasized knowledge gaps in wildlife pathogens dynamics. Wild rodent models have proven excellent for studying changes in parasite communities and have been a particular focus of eco-immunological research. Helminth species have been shown to be one of the factors regulating rodent abundance and indirectly affect disease burden through trade-offs between immune pathways. The Myodes glareolus invasion in Ireland is a unique model system to explore the invasion dynamics of helminth species. Studies of the invasive population of M. glareolus in Ireland have revealed a verifiable introduction point and its steady spread. Helminths studies of this invasion have identified enemy release, spillover, spillback and dilution taking place. Longitudinal studies have the potential to demonstrate the interplay between helminth parasite dynamics and both immune adaptation and coinfecting microparasites as M. glareolus become established across Ireland. Using the M. glareolus invasion as a model system and other similar wildlife systems, we can begin to fill the large gap in our knowledge surrounding the area of wildlife pathogen dynamics.
Collapse
Affiliation(s)
- Andrew McManus
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Clash, V92 CX88 Tralee, Ireland;
| | - Celia V. Holland
- Department of Zoology, Trinity College Dublin, the University of Dublin, College Green, D02 PN40 Dublin, Ireland;
| | - Heikki Henttonen
- Wildlife Ecology, Natural Resources Institute Finland (Luke), FI 00790 Helsinki, Finland;
| | - Peter Stuart
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Clash, V92 CX88 Tralee, Ireland;
| |
Collapse
|
16
|
Dominguez JC, Calero-Riestra M, Olea PP, Malo JE, Burridge CP, Proft K, Illanas S, Viñuela J, García JT. Lack of detectable genetic isolation in the cyclic rodent Microtus arvalis despite large landscape fragmentation owing to transportation infrastructures. Sci Rep 2021; 11:12534. [PMID: 34131199 PMCID: PMC8206325 DOI: 10.1038/s41598-021-91824-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Although roads are widely seen as dispersal barriers, their genetic consequences for animals that experience large fluctuations in population density are poorly documented. We developed a spatially paired experimental design to assess the genetic impacts of roads on cyclic voles (Microtus arvalis) during a high-density phase in North-Western Spain. We compared genetic patterns from 15 paired plots bisected by three different barrier types, using linear mixed models and computing effect sizes to assess the importance of each type, and the influence of road features like width or the age of the infrastructure. Evidence of effects by roads on genetic diversity and differentiation were lacking. We speculate that the recurrent (each 3-5 generations) episodes of massive dispersal associated with population density peaks can homogenize populations and mitigate the possible genetic impact of landscape fragmentation by roads. This study highlights the importance of developing spatially replicated experimental designs that allow us to consider the large natural spatial variation in genetic parameters. More generally, these results contribute to our understanding of the not well explored effects of habitat fragmentation on dispersal in species showing "boom-bust" dynamics.
Collapse
Affiliation(s)
- Julio C Dominguez
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain.
| | - María Calero-Riestra
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| | - Pedro P Olea
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C. Darwin 2, 28049, Madrid, Spain
| | - Juan E Malo
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C. Darwin 2, 28049, Madrid, Spain
| | - Christopher P Burridge
- Discipline of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Kirstin Proft
- Discipline of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Sonia Illanas
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| | - Javier Viñuela
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| | - Jesús T García
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| |
Collapse
|
17
|
Urbánková G, Riegert J, Mladěnková N, Kolářová P, Eliáš Z, Sedláček F. Behavioural plasticity of motor personality traits in the common vole under three-day continual observation in a test box. Behav Processes 2021; 188:104418. [PMID: 33971250 DOI: 10.1016/j.beproc.2021.104418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
In animals, behavioural personality traits have been well-documented in a wide array of species. However, these traits, different between individuals, are not completely stable in individuals. They show behavioural plasticity like many other phenotypic traits. This plasticity is able to overcome some weak aspects of personality trait behavioural strategy. In the present study, we examined the relationship between motor personality traits and behavioural plasticity in the common vole (Microtus arvalis) using a PhenoTyper (PT) box (Noldus). During a three-day test, four behavioural motor activity parameters were monitored in 47 voles: distance moved, (loco)motion duration, motion change frequency, sprint duration. Consistency repeatability (RC) of the parameters from the PT test was very high, with all values ≥ 0.91. To select the best linear mixed-effect models (LMMs), several predictors (test day, sex, body weight) were tested. Only test day had a significant effect on the dependent variables and other predictors did not improve the LMMs. Further, we found significant effects of random intercepts (motor personality traits) and slopes (behavioural plasticity), as well as significant negative correlations between them for all behavioural parameters. Our results indicate that motor personality traits were connected with behavioural plasticity. Moreover, we revealed a significant positive correlation between the random slopes of (loco)motion duration and motion change frequency. This relationship could indicate some central plasticity of motor personality traits. In conclusion, negative correlations between the motor personality traits and the behavioural plasticity demonstrate expression of convergent tendency from both opposite trait values. This corresponds with different ideas on ability to compensate personality effects or to prepare for potential future conditions. In the laboratory, plasticity of personality traits take place whenever an animal is placed e. g. in a breeding box for the first time or is left for a long time in an experimental apparatus.
Collapse
Affiliation(s)
| | - Jan Riegert
- University of South Bohemia in České Budějovice, Czech Republic
| | | | - Petra Kolářová
- University of South Bohemia in České Budějovice, Czech Republic
| | - Zdeněk Eliáš
- University of South Bohemia in České Budějovice, Czech Republic
| | | |
Collapse
|
18
|
Andreassen HP, Sundell J, Ecke F, Halle S, Haapakoski M, Henttonen H, Huitu O, Jacob J, Johnsen K, Koskela E, Luque-Larena JJ, Lecomte N, Leirs H, Mariën J, Neby M, Rätti O, Sievert T, Singleton GR, van Cann J, Vanden Broecke B, Ylönen H. Population cycles and outbreaks of small rodents: ten essential questions we still need to solve. Oecologia 2021; 195:601-622. [PMID: 33369695 PMCID: PMC7940343 DOI: 10.1007/s00442-020-04810-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022]
Abstract
Most small rodent populations in the world have fascinating population dynamics. In the northern hemisphere, voles and lemmings tend to show population cycles with regular fluctuations in numbers. In the southern hemisphere, small rodents tend to have large amplitude outbreaks with less regular intervals. In the light of vast research and debate over almost a century, we here discuss the driving forces of these different rodent population dynamics. We highlight ten questions directly related to the various characteristics of relevant populations and ecosystems that still need to be answered. This overview is not intended as a complete list of questions but rather focuses on the most important issues that are essential for understanding the generality of small rodent population dynamics.
Collapse
Affiliation(s)
- Harry P Andreassen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Janne Sundell
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900, Lammi, Finland
| | - Fraucke Ecke
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, 90183, Umeå, Sweden
| | - Stefan Halle
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Marko Haapakoski
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Heikki Henttonen
- Terrestrial Population Dynamics, Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Otso Huitu
- Terrestrial Population Dynamics, Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Jens Jacob
- Federal Research Centre for Cultivated Plants, Vertebrate Research, Julius Kühn-Institut, Toppheideweg 88, 48161, Münster, Germany
| | - Kaja Johnsen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Esa Koskela
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Juan Jose Luque-Larena
- Departamento de Ciencias Agroforestales, Escuela Tecnica Superior de Ingenierıas Agrarias, Universidad de Valladolid, Campus La Yutera, Avenida de Madrid 44, 34004, Palencia, Spain
| | - Nicolas Lecomte
- Canada Research Chair in Polar and Boreal Ecology and Centre D'Études Nordiques, Department of Biology, Université de Moncton, 18 Avenue Antonine-Maillet, Moncton, NB, E1A 3E9, Canada
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitslain 1, 2610, Wilrijk, Belgium
| | - Joachim Mariën
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitslain 1, 2610, Wilrijk, Belgium
| | - Magne Neby
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Campus Evenstad, 2480, Koppang, Norway
| | - Osmo Rätti
- Arctic Centre, University of Lapland, P.O. Box 122, 96101, Rovaniemi, Finland
| | - Thorbjörn Sievert
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Grant R Singleton
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Natural Resources Institute, University of Greenwich, Chatham Marine, Kent, ME4 4TB, UK
| | - Joannes van Cann
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Bram Vanden Broecke
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitslain 1, 2610, Wilrijk, Belgium
| | - Hannu Ylönen
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| |
Collapse
|
19
|
|
20
|
Selås V, Framstad E, Rolstad J, Sonerud GA, Spidsø TK, Wegge P. Bilberry seed production explains spatiotemporal synchronicity in bank vole population fluctuations in Norway. Ecol Res 2021. [DOI: 10.1111/1440-1703.12204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Vidar Selås
- Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway
| | - Erik Framstad
- The Norwegian Institute for Nature Research Oslo Norway
| | - Jørund Rolstad
- Department of Forest Genetics and Biodiversity Norwegian Institute of Bioeconomy Research Ås Norway
| | - Geir A. Sonerud
- Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway
| | | | - Per Wegge
- Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway
| |
Collapse
|
21
|
Giraudoux P, Levret A, Afonso E, Coeurdassier M, Couval G. Numerical response of predators to large variations of grassland vole abundance and long-term community changes. Ecol Evol 2020; 10:14221-14246. [PMID: 33391712 PMCID: PMC7771176 DOI: 10.1002/ece3.7020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/23/2020] [Accepted: 10/22/2020] [Indexed: 11/11/2022] Open
Abstract
Voles can reach high densities with multiannual population fluctuations of large amplitude, and they are at the base of predator communities in Northern Eurasia and Northern America. This status places them at the heart of management conflicts wherein crop protection and health concerns are often raised against conservation issues. Here, a 20-year survey describes the effects of large variations in grassland vole populations on the densities and the daily theoretical food intakes (TFI) of vole predators based on roadside counts. Our results show how the predator community responded to prey variations of large amplitude and how it reorganized with the increase in a dominant predator, here the red fox, which likely negatively impacted hare, European wildcat, and domestic cat populations. This population increase did not lead to an increase in the average number of predators present in the study area, suggesting compensations among resident species due to intraguild predation or competition. Large variations in vole predator number could be clearly attributed to the temporary increase in the populations of mobile birds of prey in response to grassland vole outbreaks. Our study provides empirical support for more timely and better focused actions in wildlife management and vole population control, and it supports an evidence-based and constructive dialogue about management targets and options between all stakeholders of such socio-ecosystems.
Collapse
Affiliation(s)
- Patrick Giraudoux
- Chrono‐EnvironnementUniversité de Bourgogne Franche‐Comté/CNRS usc INRABesançon CedexFrance
| | | | - Eve Afonso
- Chrono‐EnvironnementUniversité de Bourgogne Franche‐Comté/CNRS usc INRABesançon CedexFrance
| | - Michael Coeurdassier
- Chrono‐EnvironnementUniversité de Bourgogne Franche‐Comté/CNRS usc INRABesançon CedexFrance
| | - Geoffroy Couval
- Chrono‐EnvironnementUniversité de Bourgogne Franche‐Comté/CNRS usc INRABesançon CedexFrance
- FREDON Bourgogne Franche‐ComtéEcole‐ValentinFrance
| |
Collapse
|
22
|
Urbánková G, Šíchová K, Riegert J, Horsley R, Mladěnková N, Starck‐Lantová P, Sedláček F. Lifetime low behavioural plasticity of personality traits in the common vole (
Microtus arvalis
) under laboratory conditions. Ethology 2020. [DOI: 10.1111/eth.13039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gabriela Urbánková
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Klára Šíchová
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
- National Institute of Mental Health Klecany near Prague Czech Republic
| | - Jan Riegert
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Rachel Horsley
- National Institute of Mental Health Klecany near Prague Czech Republic
| | - Nella Mladěnková
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | | | - František Sedláček
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| |
Collapse
|
23
|
Ludwig SC, Roos S, Baines D. Fluctuations in field vole abundance indirectly influence red grouse productivity via a shared predator guild. WILDLIFE BIOLOGY 2020. [DOI: 10.2981/wlb.00642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Sonja C. Ludwig
- S. C. Ludwig (https://orcid.org/0000-0003-3209-0568) ✉ and D. Baines (https://orcid.org/0000-0002-3598-8325), Game & Wildlife Conservation Trust, The Coach House, Eggleston Hall, Barnard Castle, DL12 0AG, UK. SCL also at: Langho
| | - Staffan Roos
- S. Roos (https://orcid.org/0000-0002-4088-2875), RSPB Centre for Conservation Science, RSPB Scotland, Edinburgh, UK
| | - David Baines
- S. C. Ludwig (https://orcid.org/0000-0003-3209-0568) ✉ and D. Baines (https://orcid.org/0000-0002-3598-8325), Game & Wildlife Conservation Trust, The Coach House, Eggleston Hall, Barnard Castle, DL12 0AG, UK. SCL also at: Langho
| |
Collapse
|
24
|
Fay R, Michler S, Laesser J, Jeanmonod J, Schaub M. Large-Scale Vole Population Synchrony in Central Europe Revealed by Kestrel Breeding Performance. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Andreassen HP, Johnsen K, Joncour B, Neby M, Odden M. Seasonality shapes the amplitude of vole population dynamics rather than generalist predators. OIKOS 2019. [DOI: 10.1111/oik.06351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Harry P. Andreassen
- Inland Norway Univ. of Applied Sciences, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad NO‐2480 Koppang Norway
| | - Kaja Johnsen
- Inland Norway Univ. of Applied Sciences, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad NO‐2480 Koppang Norway
| | | | - Magne Neby
- Inland Norway Univ. of Applied Sciences, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad NO‐2480 Koppang Norway
| | - Morten Odden
- Inland Norway Univ. of Applied Sciences, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Evenstad NO‐2480 Koppang Norway
| |
Collapse
|
26
|
Weather influences M. arvalis reproduction but not population dynamics in a 17-year time series. Sci Rep 2019; 9:13942. [PMID: 31558762 PMCID: PMC6763496 DOI: 10.1038/s41598-019-50438-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 09/12/2019] [Indexed: 01/14/2023] Open
Abstract
Rodent outbreaks have plagued European agriculture for centuries, but continue to elude comprehensive explanation. Modelling and empirical work in some cyclic rodent systems suggests that changes in reproductive parameters are partly responsible for observed population dynamics. Using a 17-year time series of Microtus arvalis population abundance and demographic data, we explored the relationship between meteorological conditions (temperature and rainfall), female reproductive activity, and population growth rates in a non-cyclic population of this grassland vole species. We found strong but complex relationships between female reproduction and climate variables, with spring female reproduction depressed after cold winters. Population growth rates were, however, uncorrelated with either weather conditions (current and up to three months prior) or with female reproduction (number of foetuses per female and/or proportion of females reproductively active in the population). These results, coupled with age-structure data, suggest that mortality, via predation, disease, or a combination of the two, are responsible for the large multi-annual but non-cyclic population dynamics observed in this population of the common vole.
Collapse
|
27
|
Mougeot F, Lambin X, Rodríguez-Pastor R, Romairone J, Luque-Larena JJ. Numerical response of a mammalian specialist predator to multiple prey dynamics in Mediterranean farmlands. Ecology 2019; 100:e02776. [PMID: 31172505 DOI: 10.1002/ecy.2776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/19/2019] [Accepted: 05/03/2019] [Indexed: 11/05/2022]
Abstract
The study of rodent population cycles has greatly contributed, both theoretically and empirically, to our understanding of the circumstances under which predator-prey interactions destabilize populations. According to the specialist predator hypothesis, reciprocal interactions between voles and small predators that specialize on voles, such as weasels, can cause multiannual cycles. A fundamental feature of classical weasel-vole models is a long time-lag in the numerical response of the predator to variations in prey abundance: weasel abundance increases with that of voles and peaks approximately 1 yr later. We investigated the numerical response of the common weasel (Mustela nivalis) to fluctuating abundances of common voles (Microtus arvalis) in recently colonized agrosteppes of Castilla-y-Léon, northwestern Spain, at the southern limit of the species' range. Populations of both weasels and voles exhibited multiannual cycles with a 3-yr period. Weasels responded quickly and numerically to changes in common-vole abundance, with a time lag between prey and weasel abundance that did not exceed 4 months and occurred during the breeding season, reflecting the quick conversion of prey into predator offspring and/or immigration to sites with high vole populations. We found no evidence of a sustained, high weasel abundance following vole abundance peaks. Weasel population growth rates showed spatial synchrony across study sites approximately 60 km apart. Weasel dynamics were more synchronized with that of common voles than with other prey species (mice or shrews). However, asynchrony within, as well as among sites, in the abundance of voles and alternative prey suggests that weasel mobility could allow them to avoid starvation during low-vole phases, precluding the emergence of prolonged time lag in the numerical response to voles. Our observations are inconsistent with the specialist predator hypothesis as currently formulated, and suggest that weasels might follow rather than cause the vole cycles in northwestern Spain. The reliance of a specialized predator on a functional group of prey such as small rodents does not necessarily lead to a long delay in the numerical response by the predator, depending on the spatial and interspecific synchrony in prey dynamics.
Collapse
Affiliation(s)
- François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Tillydrone Ave, Aberdeen, AB24 2TZ, United Kingdom
| | - Ruth Rodríguez-Pastor
- Departamento de Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías Agrarias, Universidad de Valladolid, Campus La Yutera, Avenida de Madrid 44, E-34004, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Campus La Yutera, Avenida de Madrid 44, E-34004, Palencia, Spain
| | - Juan Romairone
- Departamento de Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías Agrarias, Universidad de Valladolid, Campus La Yutera, Avenida de Madrid 44, E-34004, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Campus La Yutera, Avenida de Madrid 44, E-34004, Palencia, Spain
| | - Juan-José Luque-Larena
- Departamento de Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías Agrarias, Universidad de Valladolid, Campus La Yutera, Avenida de Madrid 44, E-34004, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Campus La Yutera, Avenida de Madrid 44, E-34004, Palencia, Spain
| |
Collapse
|
28
|
Kelt DA, Heske EJ, Lambin X, Oli MK, Orrock JL, Ozgul A, Pauli JN, Prugh LR, Sollmann R, Sommer S. Advances in population ecology and species interactions in mammals. J Mammal 2019. [DOI: 10.1093/jmammal/gyz017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AbstractThe study of mammals has promoted the development and testing of many ideas in contemporary ecology. Here we address recent developments in foraging and habitat selection, source–sink dynamics, competition (both within and between species), population cycles, predation (including apparent competition), mutualism, and biological invasions. Because mammals are appealing to the public, ecological insight gleaned from the study of mammals has disproportionate potential in educating the public about ecological principles and their application to wise management. Mammals have been central to many computational and statistical developments in recent years, including refinements to traditional approaches and metrics (e.g., capture-recapture) as well as advancements of novel and developing fields (e.g., spatial capture-recapture, occupancy modeling, integrated population models). The study of mammals also poses challenges in terms of fully characterizing dynamics in natural conditions. Ongoing climate change threatens to affect global ecosystems, and mammals provide visible and charismatic subjects for research on local and regional effects of such change as well as predictive modeling of the long-term effects on ecosystem function and stability. Although much remains to be done, the population ecology of mammals continues to be a vibrant and rapidly developing field. We anticipate that the next quarter century will prove as exciting and productive for the study of mammals as has the recent one.
Collapse
Affiliation(s)
- Douglas A Kelt
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA
| | - Edward J Heske
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Madan K Oli
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, USA
| | - Laura R Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Rahel Sollmann
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, CA, USA
| | - Stefan Sommer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Hein S, Jacob J. Population recovery of a common vole population (Microtus arvalis) after population collapse. PEST MANAGEMENT SCIENCE 2019; 75:908-914. [PMID: 30230169 DOI: 10.1002/ps.5211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Population collapses in small mammals occur naturally after natural disasters and during multi-annual population fluctuations as well as after man-made intervention such as rodent management action. Although there has been extensive previous work on patterns and mechanisms of population fluctuations and cyclicity, little is known about population recovery after collapse. In Europe, the common vole (Microtus arvalis) is the major pest species in agriculture, damaging crops, competing with livestock and potentially posing a health risk to people. In this study, we investigated population recovery, recovery mechanism and recovery time of common vole populations after artificially inducing a collapse through rodenticide application. RESULTS The rodenticide treatment reduced abundance in spring (by about 90%) but not in summer. Demographic data (age, sex-ratio, breeding activity) suggest that it was mostly immigration and not reproduction that led to population recovery after collapse. CONCLUSIONS The findings indicate that rodenticide treatment should be conducted in spring before the main reproductive season starts. The treatment effect was transient and lasted for about 3 months before immigration offset the initial reduction in population abundance. This indicates that immigration patterns should be considered by managing vole populations at an appropriate spatial scale and frequency to prevent rapid repopulation. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Susanne Hein
- Julius Kuehn Institute-Federal Research Center for Cultivated Plants, Institute for Plant Protection in Horticulture and Forest, Vertebrate Research, Muenster, Germany
- University Muenster, Faculty of Geosciences. Institute for Landscape Ecology, Muenster, Germany
| | - Jens Jacob
- Julius Kuehn Institute-Federal Research Center for Cultivated Plants, Institute for Plant Protection in Horticulture and Forest, Vertebrate Research, Muenster, Germany
| |
Collapse
|
30
|
Seasonal activity of common vole (Microtus arvalis) in alfalfa fields in southern Hungary. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0149-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Zoonotic pathogens in fluctuating common vole (Microtus arvalis) populations: occurrence and dynamics. Parasitology 2018; 146:389-398. [PMID: 30246665 DOI: 10.1017/s0031182018001543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Diseases and host dynamics are linked, but their associations may vary in strength, be time-lagged, and depend on environmental influences. Where a vector is involved in disease transmission, its dynamics are an additional influence, and we often lack a general understanding on how diseases, hosts and vectors interact. We report on the occurrence of six zoonotic arthropod-borne pathogens (Anaplasma, Bartonella, Borrelia, Coxiella, Francisella and Rickettsia) in common voles (Microtus arvalis) throughout a population fluctuation and how their prevalence varies according to host density, seasonality and vector prevalence. We detected Francisella tularensis and four species of Bartonella, but not Anaplasma, Borrelia, Coxiella or Rickettsia. Bartonella taylorii and B. grahamii prevalence increased and decreased with current host (vole and mice) density, respectively, and increased with flea prevalence. Bartonella doshiae prevalence decreased with mice density. These three Bartonella species were also more prevalent during winter. Bartonella rochalimae prevalence varied with current and previous vole density (delayed-density dependence), but not with season. Coinfection with F. tularensis and Bartonella occurred as expected from the respective prevalence of each disease in voles. Our results highlight that simultaneously considering pathogen, vector and host dynamics provide a better understanding of the epidemiological dynamics of zoonoses in farmland rodents.
Collapse
|
32
|
Romairone J, Jiménez J, Luque-Larena JJ, Mougeot F. Spatial capture-recapture design and modelling for the study of small mammals. PLoS One 2018; 13:e0198766. [PMID: 29879211 PMCID: PMC5991742 DOI: 10.1371/journal.pone.0198766] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/24/2018] [Indexed: 11/18/2022] Open
Abstract
Spatial capture-recapture modelling (SCR) is a powerful analytical tool to estimate density and derive information on space use and behaviour of elusive animals. Yet, SCR has been seldom applied to the study of ecologically keystone small mammals. Here we highlight its potential and requirements with a case study on common voles (Microtus arvalis). First, we address mortality associated with live-trapping, which can be high in small mammals, and must be kept minimal. We designed and tested a nest box coupled with a classic Sherman trap and show that it allows a 5-fold reduction of mortality in traps. Second, we address the need to adjust the trapping grid to the individual home range to maximize spatial recaptures. In May-June 2016, we captured and tagged with transponders 227 voles in a 1.2-ha area during two monthly sessions. Using a Bayesian SCR with a multinomial approach, we estimated: (1) the baseline detection rate and investigated variation according to sex, time or behaviour (aversion/attraction after a previous capture); (2) the parameter sigma that describes how detection probability declines as a function of the distance to an individual´s activity centre, and investigated variation according to sex; and (3) density and population sex-ratio. We show that reducing the maximum distance between traps from 12 to 9.6m doubled spatial recaptures and improved model predictions. Baseline detection rate increased over time (after overcoming a likely aversion to entering new odourless traps) and was greater for females than males in June. The sigma parameter of males was twice that of females, indicating larger home ranges. Density estimates were of 142.92±38.50 and 168.25±15.79 voles/ha in May and June, respectively, with 2–3 times more females than males. We highlight the potential and broad applicability that SCR offers and provide specific recommendations for using it to study small mammals like voles.
Collapse
Affiliation(s)
- Juan Romairone
- Dpto. Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías, Universidad de Valladolid, Avda. De Madrid, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), Avda. De Madrid, Palencia, Spain
| | - José Jiménez
- Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo, Ciudad Real, Spain
| | - Juan José Luque-Larena
- Dpto. Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías, Universidad de Valladolid, Avda. De Madrid, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), Avda. De Madrid, Palencia, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo, Ciudad Real, Spain
| |
Collapse
|
33
|
Dell'Agnello F, Barfknecht R, Bertolino S, Capizzi D, Martini M, Mazza V, Riga F, Zaccaroni M. Consistent demographic trends in Savi's pine vole between two distant areas in central Italy. FOLIA ZOOLOGICA 2018. [DOI: 10.25225/fozo.v67.i1.a3.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Filippo Dell'Agnello
- University of Florence, Department of Biology, Via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| | - Ralf Barfknecht
- Bayer CropScience, Alfred-Nobel Str. 50, D-40789 Monheim, Germany
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Dario Capizzi
- Latium Region - Regional Parks Agency, Biodiversity and Geodiversity Area, Via del Pescaccio 96, 00166 Rome, Italy
| | - Matilde Martini
- University of Pisa, Department of Biology, Via Alessandro Volta 6, 56126 Pisa, Italy
| | - Valeria Mazza
- University of Potsdam, Department of Biochemistry and Biology, Maulbeerallee 2, D-14469 Potsdam, Germany
| | - Francesco Riga
- ISPRA, Institute for Environmental Protection and Research, Via V. Brancati 48, 00144 Rome, Italy
| | - Marco Zaccaroni
- University of Florence, Department of Biology, Via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
34
|
Drewes S, Straková P, Drexler JF, Jacob J, Ulrich RG. Assessing the Diversity of Rodent-Borne Viruses: Exploring of High-Throughput Sequencing and Classical Amplification/Sequencing Approaches. Adv Virus Res 2017; 99:61-108. [PMID: 29029730 DOI: 10.1016/bs.aivir.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rodents are distributed throughout the world and interact with humans in many ways. They provide vital ecosystem services, some species are useful models in biomedical research and some are held as pet animals. However, many rodent species can have adverse effects such as damage to crops and stored produce, and they are of health concern because of the transmission of pathogens to humans and livestock. The first rodent viruses were discovered by isolation approaches and resulted in break-through knowledge in immunology, molecular and cell biology, and cancer research. In addition to rodent-specific viruses, rodent-borne viruses are causing a large number of zoonotic diseases. Most prominent examples are reemerging outbreaks of human hemorrhagic fever disease cases caused by arena- and hantaviruses. In addition, rodents are reservoirs for vector-borne pathogens, such as tick-borne encephalitis virus and Borrelia spp., and may carry human pathogenic agents, but likely are not involved in their transmission to human. In our days, next-generation sequencing or high-throughput sequencing (HTS) is revolutionizing the speed of the discovery of novel viruses, but other molecular approaches, such as generic RT-PCR/PCR and rolling circle amplification techniques, contribute significantly to the rapidly ongoing process. However, the current knowledge still represents only the tip of the iceberg, when comparing the known human viruses to those known for rodents, the mammalian taxon with the largest species number. The diagnostic potential of HTS-based metagenomic approaches is illustrated by their use in the discovery and complete genome determination of novel borna- and adenoviruses as causative disease agents in squirrels. In conclusion, HTS, in combination with conventional RT-PCR/PCR-based approaches, resulted in a drastically increased knowledge of the diversity of rodent viruses. Future improvements of the used workflows, including bioinformatics analysis, will further enhance our knowledge and preparedness in case of the emergence of novel viruses. Classical virological and additional molecular approaches are needed for genome annotation and functional characterization of novel viruses, discovered by these technologies, and evaluation of their zoonotic potential.
Collapse
Affiliation(s)
- Stephan Drewes
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Petra Straková
- Institute of Vertebrate Biology v.v.i., Academy of Sciences, Brno, Czech Republic
| | - Jan F Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany; German Center for Infection Research (DZIF), Germany
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany; German Center for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Insel Riems, Greifswald-Insel Riems, Germany.
| |
Collapse
|
35
|
Perez G, Bastian S, Chastagner A, Agoulon A, Plantard O, Vourc'h G, Butet A. Ecological factors influencing small mammal infection byAnaplasma phagocytophilumandBorrelia burgdorferis.l. in agricultural and forest landscapes. Environ Microbiol 2017; 19:4205-4219. [DOI: 10.1111/1462-2920.13885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Grégoire Perez
- ECOBIO; UMR CNRS 6553-Université de Rennes 1, 263 avenue du général Leclerc; Rennes 35042 France
- INRA, Oniris; BIOEPAR; Nantes 44307 France
| | | | - Amélie Chastagner
- INRA, VetAgro Sup; UR INRA 0346 EPIA; Saint-Genès-Champanelle 63122 France
- Evolutionary Ecology Group; University of Antwerp, Campus Drie Eiken, Universiteitsplein 1; Wilrijk 2610 Belgium
| | | | | | - Gwenaël Vourc'h
- INRA, VetAgro Sup; UR INRA 0346 EPIA; Saint-Genès-Champanelle 63122 France
| | - Alain Butet
- ECOBIO; UMR CNRS 6553-Université de Rennes 1, 263 avenue du général Leclerc; Rennes 35042 France
| |
Collapse
|
36
|
Amori G, De Silvestro V, Ciucci P, Luiselli L. Quantifying whether different demographic models produce incongruent results on population dynamics of two long-term studied rodent species. EUROPEAN JOURNAL OF ECOLOGY 2017. [DOI: 10.1515/eje-2017-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract1. Population density (ind/ha) of long-term (>15 years) series of CMR populations, using distinct demographic models designed for both open and closed populations, were analysed for two sympatric species of rodents (Myodes glareolus and Apodemus flavicollis) from a mountain area in central Italy, in order to test the relative performance of various employed demographic models. In particular, the hypothesis that enumeration models systematically underestimate the population size of a given population was tested.2. Overall, we compared the performance of 7 distinct demographic models, including both closed and open models, for each study species. Although the two species revealed remarkable intrinsic differences in demography traits (for instance, a lower propensity for being recaptured in Apodemus flavicollis), the Robust Design appeared to be the best fitting model, showing that it is the most suitable model for long-term studies.3. Among the various analysed demographic models, Jolly-Seber returned the lower estimates of population density for both species. Thus, this demographic model could not be suggested for being applied for long-term studies of small mammal populations because it tends to remarkably underestimate the effective population size. Nonetheless, yearly estimates of population density by Jolly-Seber correlated positively with yearly estimates of population density by closed population models, thus showing that interannual trends in population dynamics were uncovered by both types of demographic models, although with different values in terms of true population size.
Collapse
|
37
|
Veselovský T, Bacsa K, Tulis F. Barn Owl (Tyto alba) Diet Composition on Intensively Used Agricultural Land in the Danube Lowland. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2017. [DOI: 10.11118/actaun201765010225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Baudrot V, Perasso A, Fritsch C, Giraudoux P, Raoul F. The adaptation of generalist predators’ diet in a multi-prey context: insights from new functional responses. Ecology 2016; 97:1832-1841. [DOI: 10.1890/15-0427.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 01/11/2016] [Accepted: 02/11/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Virgile Baudrot
- Université Bourgogne Franche-Comté - UMR CNRS 6249 Chrono-environnement; Besançon 25030 France
| | - Antoine Perasso
- Université Bourgogne Franche-Comté - UMR CNRS 6249 Chrono-environnement; Besançon 25030 France
| | - Clémentine Fritsch
- Université Bourgogne Franche-Comté - UMR CNRS 6249 Chrono-environnement; Besançon 25030 France
| | - Patrick Giraudoux
- Université Bourgogne Franche-Comté - UMR CNRS 6249 Chrono-environnement; Besançon 25030 France
- Institut Universitaire de France; Paris 75000 France
| | - Francis Raoul
- Université Bourgogne Franche-Comté - UMR CNRS 6249 Chrono-environnement; Besançon 25030 France
| |
Collapse
|
39
|
Pinot A, Barraquand F, Tedesco E, Lecoustre V, Bretagnolle V, Gauffre B. Density-dependent reproduction causes winter crashes in a common vole population. POPUL ECOL 2016. [DOI: 10.1007/s10144-016-0552-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Tulis F, Baláž M, Obuch J, Šotnár K. Responses of the long-eared owl Asio otus diet and the numbers of wintering individuals to changing abundance of the common vole Microtus arvalis. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
The diet of Danish red foxes (Vulpes vulpes) in relation to a changing agricultural ecosystem. A historical perspective. MAMMAL RES 2015. [DOI: 10.1007/s13364-015-0244-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Long-term pattern of population dynamics in the field vole from central Europe: cyclic pattern with amplitude dampening. POPUL ECOL 2015. [DOI: 10.1007/s10144-015-0504-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Kallio ER, Helle H, Koskela E, Mappes T, Vapalahti O. Age-related effects of chronic hantavirus infection on female host fecundity. J Anim Ecol 2015; 84:1264-72. [PMID: 25965086 DOI: 10.1111/1365-2656.12387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/05/2015] [Indexed: 12/24/2022]
Abstract
1. Pathogens often cause detrimental effects to their hosts and, consequently, may influence host population dynamics that may, in turn, feed back to pathogen transmission dynamics. Understanding fitness effects of pathogens upon animal host populations can help to predict the risks that zoonotic pathogens pose to humans. 2. Here we determine whether chronic infection by Puumala hantavirus (PUUV) affects important fitness-related traits, namely the probability of breeding, reproductive effort and mother and offspring condition, in the bank vole (Myodes glareolus). Using 9 years empirical data in a PUUV endemic area in Central Finland, we found differences between reproductive characteristics of PUUV-infected and uninfected female bank voles. 3. Young infected females had a significantly higher, and old individuals lower, likelihood of reproducing than uninfected animals during the middle of the breeding season. The implication is that PUUV infection may have long-term deleterious effects that are observed at old age, while in young individuals, the infection may enhance breeding probability by directing resources towards current breeding. 4. Moreover, PUUV infection was related with the mother's body condition. Infected mothers were in poorer condition than uninfected mothers in the early breeding season, but were in better condition than uninfected mothers during the middle of the breeding season. Offspring body condition was positively associated with mother's body condition, which, in turn, was related to the PUUV infection status of the mother. 5. Our findings indicate that chronic infection may affect the reproduction of female hosts, but the effect is dependent on the host age. The effect of chronic hantavirus infection was small and density-independent and hence unlikely to contribute to the cyclic population dynamics of the host. However, the effects on a female's reproductive output might affect the abundance of young susceptible individuals in the population and hence influence the transmission and persistence of the pathogen. Although experimental and long-term capture-mark-recapture studies are required to further clarify the fitness effects of hantavirus infection and their consequences for pathogen dynamics, this study shows that the infection may have complex effects that are dependent on the age of the individual and the time of the breeding season.
Collapse
Affiliation(s)
- Eva R Kallio
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland.,Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Heikki Helle
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland
| | - Esa Koskela
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland
| | - Olli Vapalahti
- Department of Virology, Haartman Institute, University of Helsinki, P.O. Box 21, FI-00014, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66, FI-00014, Helsinki, Finland.,HUSLAB, Department of Virology and Immunology, Hospital District of Helsinki and Uusimaa, FI-00029, Helsinki, Finland
| |
Collapse
|
44
|
Hein S, Jacob J. Recovery of small rodent populations after population collapse. WILDLIFE RESEARCH 2015. [DOI: 10.1071/wr14165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this review we summarise published knowledge regarding small mammal population recovery following sudden population collapse, regardless as to whether the collapse is caused by natural or man-made events. We determine recovery mechanisms, recovery time and recovery rate, and suggest how to adapt and optimise current methods to regulate small mammal population size, for pest management and/or conservation. It is vital that the principles underlying the recovery mechanisms are known for both pest control and conservation to align management methods to either maintain animal numbers at a permanent minimum level or increase population size. Collapses can be caused naturally, as in the declining phase of multi-annual fluctuations and after natural disasters, or by man-made events, such as pesticide application. In general, there are three ways population recovery can occur: (1) in situ survival and multiplication of a small remaining fraction of the population; (2) immigration; or (3) a combination of the two. The recovery mechanism strongly depends on life history strategy, social behaviour and density-dependent processes in population dynamics of the species in question. In addition, the kind of disturbance, its intensity and spatial scale, as well as environmental circumstances (e.g. the presence and distance of refuge areas) have to be taken into account. Recovery time can vary from a couple of days to several years depending on the reproductive potential of the species and the type of disturbances, regardless of whether the collapse is man made or natural. Ultimately, most populations rebound to levels equal to numbers before the collapse. Based on current knowledge, case-by-case decisions seem appropriate for small-scale conservation. For pest control, a large-scale approach seems necessary. Further investigations are required to make sound, species-specific recommendations.
Collapse
|
45
|
Gauffre B, Berthier K, Inchausti P, Chaval Y, Bretagnolle V, Cosson JF. Short-term variations in gene flow related to cyclic density fluctuations in the common vole. Mol Ecol 2014; 23:3214-25. [PMID: 24888708 DOI: 10.1111/mec.12818] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 11/29/2022]
Abstract
In highly fluctuating populations with complex social systems, genetic patterns are likely to vary in space and time due to demographic and behavioural processes. Cyclic rodents are extreme examples of demographically instable populations that often exhibit strong social organization. In such populations, kin structure and spacing behaviour may vary with density fluctuations and impact both the composition and spatial structure of genetic diversity. In this study, we analysed the multiannual genetic structure of a cyclic rodent, Microtus arvalis, using a sample of 875 individuals trapped over three complete cycles (from 1999 to 2007) and genotyped at 10 microsatellite loci. We tested the predictions that genetic diversity and gene flow intensity vary with density fluctuations. We found evidences for both spatial scale-dependant variations in genetic diversity and higher gene flow during high density. Moreover, investigation of sex-specific relatedness patterns revealed that, although dispersal is biased toward males in this species, distances moved by both sexes were lengthened during high density. Altogether, these results suggest that an increase in migration with density allows to restore the local loss of genetic diversity occurring during low density. We then postulate that this change in migration results from local competition, which enhances female colonization of empty spaces and male dispersal among colonies.
Collapse
Affiliation(s)
- Bertrand Gauffre
- INRA, USC 1339 (CEBC-CNRS), F-79360, Beauvoir sur Niort, France; CEBC-CNRS (UMR 7372), F-79360, Beauvoir sur Niort, France
| | | | | | | | | | | |
Collapse
|
46
|
Barraquand F, Pinot A, Yoccoz NG, Bretagnolle V. Overcompensation and phase effects in a cyclic common vole population: between first and second-order cycles. J Anim Ecol 2014; 83:1367-78. [PMID: 24905436 DOI: 10.1111/1365-2656.12257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 05/29/2014] [Indexed: 11/29/2022]
Abstract
Population cycles in voles are often thought to be generated by one-year delayed density dependence on the annual population growth rate. In common voles, however, it has been suggested by Turchin (2003) that some populations exhibit first-order cycles, resulting from strong overcompensation (i.e. carrying capacity overshoots in peak years, with only an effect of the current year abundance on annual growth rates). We focus on a common vole (Microtus arvalis) population from western France that exhibits 3-year cycles. Several overcompensating nonlinear models for populations dynamics are fitted to the data, notably those of Hassell, and Maynard-Smith and Slatkin. Overcompensating direct density dependence (DD) provides a satisfactory description of winter crashes, and one-year delayed density dependence is not responsible for the crashes, thus these are not classical second-order cycles. A phase-driven modulation of direct density dependence maintains a low-phase, explaining why the cycles last three years instead of two. Our analyses suggest that some of this phase dependence can be expressed as one-year delayed DD, but phase dependence provides a better description. Hence, modelling suggests that cycles in this population are first-order cycles with a low phase after peaks, rather than fully second-order cycles. However, based on the popular log-linear second-order autoregressive model, we would conclude only that negative delayed density dependence exists. The additive structure of this model cannot show when delayed DD occurs (here, during lows rather than peaks). Our analyses thus call into question the automated use of second-order log-linear models, and suggests that more attention should be given to non-(log)linear models when studying cyclic populations. From a biological viewpoint, the fast crashes through overcompensation that we found suggest they might be caused by parasites or food rather than predators, though predators might have a role in maintaining the low phase and spatial synchrony.
Collapse
Affiliation(s)
- Frédéric Barraquand
- Centre d'Etudes Biologiques de Chizé, CNRS, Beauvoir-sur-Niort, France.,Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway
| | - Adrien Pinot
- Centre d'Etudes Biologiques de Chizé, CNRS, Beauvoir-sur-Niort, France.,VetAgro Sup, Campus agronomique de Clermont, Clermont-Ferrand, France
| | - Nigel G Yoccoz
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway
| | | |
Collapse
|
47
|
Jacob J, Manson P, Barfknecht R, Fredricks T. Common vole (Microtus arvalis) ecology and management: implications for risk assessment of plant protection products. PEST MANAGEMENT SCIENCE 2014; 70:869-78. [PMID: 24293354 DOI: 10.1002/ps.3695] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/25/2013] [Accepted: 11/29/2013] [Indexed: 05/25/2023]
Abstract
Common voles (Microtus arvalis) are common small mammals in some European landscapes. They can be a major rodent pest in European agriculture and they are also a representative generic focal small herbivorous mammal species used in risk assessment for plant protection products. In this paper, common vole population dynamics, habitat and food preferences, pest potential and use of the common vole as a model small wild mammal species in the risk assessment process are reviewed. Common voles are a component of agroecosystems in many parts of Europe, inhabiting agricultural areas (secondary habitats) when the carrying capacity of primary grassland habitats is exceeded. Colonisation of secondary habitats occurs during multiannual outbreaks, when population sizes can exceed 1000 individuals ha(-1) . In such cases, in-crop common vole population control management has been practised to avoid significant crop damage. The species' status as a crop pest, high fecundity, resilience to disturbance and intermittent colonisation of crop habitats are important characteristics that should be reflected in risk assessment. Based on the information provided in the scientific literature, it seems justified to modify elements of the current risk assessment scheme for plant protection products, including the use of realistic food intake rates, reduced assessment factors or the use of alternativee focal rodent species in particular European regions. Some of these adjustments are already being applied in some EU member states. Therefore, it seems reasonable consistently to apply such pragmatic and realistic approaches in risk assessments for plant protection products across the EU.
Collapse
Affiliation(s)
- Jens Jacob
- Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | | | | | | |
Collapse
|
48
|
Pinot A, Gauffre B, Bretagnolle V. The interplay between seasonality and density: consequences for female breeding decisions in a small cyclic herbivore. BMC Ecol 2014; 14:17. [PMID: 24886481 PMCID: PMC4049426 DOI: 10.1186/1472-6785-14-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyclic rodent population dynamics are subjected to both intrinsic regulatory processes such as density-dependence and extrinsic environmental forcing. Among extrinsic factors, seasonal environmental variation is understood to facilitate cycles. In rodents, these processes have been studied mostly independently and their relative importance for population dynamics is poorly known. RESULTS We performed a detailed analysis of common vole (Microtus arvalis) reproduction in a cyclic population using a spatially extensive data set over 17 years in central-western France. Environmental seasonality was the main source of explained variation in common vole reproduction. Additionally, inter-annual variation in the environment explained a smaller part of the variance in reproduction in spring and summer than in winter, whereas the effect of density was only found in autumn and winter. In particular, we detected a strong impact of plant productivity on fecundity during the breeding season, with low vegetation productivity being able to bring vole reproduction nearly to a halt. In contrast, vole reproduction during autumn and winter was mainly shaped by intrinsic factors, with only the longer and heavier females being able to reproduce. The effect of population density on reproduction was negative, mediated by direct negative effects on the proportion of breeders in autumn and winter during outbreak years and by a delayed negative effect on litter size the following year. CONCLUSIONS During the main breeding season, variability of female vole reproduction is predominantly shaped by food resources, suggesting that only highly productive environment may induce vole outbreaks. During fall and winter, variability of female vole reproduction is mainly controlled by intrinsic factors, with high population density suppressing reproduction. This suggests, in this cyclic population, that negative direct density dependence on reproduction could explain winter declines after outbreaks.
Collapse
Affiliation(s)
- Adrien Pinot
- Centre d’Etudes Biologiques de Chizé (CEBC-CNRS), Beauvoir sur Niort 79360, France
- Clermont Université, VetAgro Sup, BP 10448, Clermont-Ferrand F-63000, France
| | - Bertrand Gauffre
- Centre d’Etudes Biologiques de Chizé (CEBC-CNRS), Beauvoir sur Niort 79360, France
- INRA, USC1339 (CEBC-CNRS), Beauvoir sur Niort F-79360, France
| | - Vincent Bretagnolle
- Centre d’Etudes Biologiques de Chizé (CEBC-CNRS), Beauvoir sur Niort 79360, France
| |
Collapse
|
49
|
Soininen EM, Ehrich D, Lecomte N, Yoccoz NG, Tarroux A, Berteaux D, Gauthier G, Gielly L, Brochmann C, Gussarova G, Ims RA. Sources of variation in small rodent trophic niche: new insights from DNA metabarcoding and stable isotope analysis. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2014; 50:361-381. [PMID: 24830842 DOI: 10.1080/10256016.2014.915824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Intraspecific competition for food is expected to increase the trophic niche width of consumers, defined here as their diet diversity, but this process has been little studied in herbivores. Population densities of small rodents fluctuate greatly, providing a good study model to evaluate effects of competition on trophic niche. We studied resource use in five arctic small rodent populations of four species combining DNA metabarcoding of stomach contents and stable isotope analysis (SIA). Our results suggest that for small rodents, the most pronounced effect of competition on trophic niche is due to increased use of secondary habitats and to habitat-specific diets, rather than an expansion of trophic niche in primary habitat. DNA metabarcoding and SIA provided complementary information about the composition and temporal variation of herbivore diets. Combing these two approaches requires caution, as the underlying processes causing observed patterns may differ between methodologies due to different spatiotemporal scales.
Collapse
Affiliation(s)
- Eeva M Soininen
- a Department of Arctic and Marine Biology , UiT The Arctic University of Norway , Tromsø , Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Forbes KM, Stuart P, Mappes T, Hoset KS, Henttonen H, Huitu O. Diet quality limits summer growth of field vole populations. PLoS One 2014; 9:e91113. [PMID: 24621513 PMCID: PMC3951337 DOI: 10.1371/journal.pone.0091113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/07/2014] [Indexed: 11/18/2022] Open
Abstract
Marked variation occurs in both seasonal and multiannual population density peaks of northern European small mammal species, including voles. The availability of dietary proteins is a key factor limiting the population growth of herbivore species. The objective of this study is to investigate the degree to which protein availability influences the growth of increasing vole populations. We hypothesise that the summer growth of folivorous vole populations is positively associated with dietary protein availability. A field experiment was conducted over a summer reproductive period in 18 vegetated enclosures. Populations of field voles (Microtus agrestis) were randomised amongst three treatment groups: 1) food supplementation with ad libitum high protein (30% dry weight) pellets, 2) food supplementation with ad libitum low protein (1% dry weight; both supplemented foods had equivalent energy content) pellets, and 3) control (no food supplementation), n = 6 per treatment. Vole density, survival, demographic attributes and condition indicators were monitored with live-trapping and blood sampling. Highest final vole densities were attained in populations that received high protein supplementation and lowest in low protein populations. Control populations displayed intermediate densities. The survival rate of voles was similar in all treatment groups. The proportion of females, and of those that were pregnant or lactating, was highest in the high protein supplemented populations. This suggests that variation in reproductive, rather than survival rates of voles, accounted for density differences between the treatment groups. We found no clear association between population demography and individual physiological condition. Our results demonstrate that dietary protein availability limits vole population growth during the summer growing season. This suggests that the nutritional quality of forage may be an underestimated source of interannual variation in the density and growth rates of widely fluctuating populations of herbivorous small mammals.
Collapse
Affiliation(s)
- Kristian M. Forbes
- Suonenjoki Research Unit, Finnish Forest Research Institute, Suonenjoki, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Peter Stuart
- Suonenjoki Research Unit, Finnish Forest Research Institute, Suonenjoki, Finland
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Katrine S. Hoset
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| | - Heikki Henttonen
- Vantaa Research Unit, Finnish Forest Research Institute, Vantaa, Finland
| | - Otso Huitu
- Suonenjoki Research Unit, Finnish Forest Research Institute, Suonenjoki, Finland
- * E-mail:
| |
Collapse
|