1
|
Korkmaz R, Rajabi H, Eshghi S, Gorb SN, Büscher TH. The frequency of wing damage in a migrating butterfly. INSECT SCIENCE 2023; 30:1507-1517. [PMID: 36434816 DOI: 10.1111/1744-7917.13153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The ability to fly is crucial for migratory insects. Consequently, the accumulation of damage on the wings over time can affect survival, especially for species that travel long distances. We examined the frequency of irreversible wing damage in the migratory butterfly Vanessa cardui to explore the effect of wing structure on wing damage frequency, as well as the mechanisms that might mitigate wing damage. An exceptionally high migration rate driven by high precipitation levels in their larval habitats in the winter of 2018-2019 provided us with an excellent opportunity to collect data on the frequency of naturally occurring wing damage associated with long-distance flights. Digital images of 135 individuals of V. cardui were collected and analyzed in Germany. The results show that the hindwings experienced a greater frequency of damage than the forewings. Moreover, forewings experienced more severe damage on the lateral margin, whereas hindwings experienced more damage on the trailing margin. The frequency of wing margin damage was higher in the painted lady butterfly than in the migrating monarch butterfly and in the butterfly Pontia occidentalis following artificially induced wing collisions. The results of this study could be used in future comparative studies of patterns of wing damage in butterflies and other insects. Additional studies are needed to clarify whether the strategies for coping with wing damage differ between migratory and nonmigratory species.
Collapse
Affiliation(s)
- Rabiya Korkmaz
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Hamed Rajabi
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
- Division of Mechanical Engineering and Design, School of Engineering, London South Bank University, London, UK
| | - Shahab Eshghi
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Thies H Büscher
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
2
|
Wang J, Huang Y, Huang L, Dong Y, Huang W, Ma H, Zhang H, Zhang X, Chen X, Xu Y. Migration risk of fall armyworm ( Spodoptera frugiperda) from North Africa to Southern Europe. FRONTIERS IN PLANT SCIENCE 2023; 14:1141470. [PMID: 37077648 PMCID: PMC10106561 DOI: 10.3389/fpls.2023.1141470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
With the development of globalization and agriculture trade, as well as its own strong migratory capacity, fall armyworm (FAW) (Spodoptera frugiperda) (J.E. Smith) has invaded more than 70 countries, posing a serious threat to the production of major crops in these areas. FAW has now also been detected in Egypt in North Africa, putting Europe, which is separated from it only by the Mediterranean Sea, at high risk of invasion. Therefore, this study integrated multiple factors of insect source, host plant, and environment to provide a risk analysis of the potential trajectories and time periods of migration of FAW into Europe in 2016~2022. First, the CLIMEX model was used to predict the annual and seasonal suitable distribution of FAW. The HYSPLIT numerical trajectory model was then used to simulate the possibility of the FAW invasion of Europe through wind-driven dispersal. The results showed that the risk of FAW invasion between years was highly consistent (P<0.001). Coastal areas were most suitable for the expansion of the FAW, and Spain and Italy had the highest risk of invasion, with 39.08% and 32.20% of effective landing points respectively. Dynamic migration prediction based on spatio-temporal data can enable early warning of FAW, which is important for joint multinational pest management and crop protection.
Collapse
Affiliation(s)
- Jing Wang
- National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei, China
| | - Yanru Huang
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- International Research Center of Big Data for Sustainable Development Goals, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linsheng Huang
- National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei, China
| | - Yingying Dong
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- International Research Center of Big Data for Sustainable Development Goals, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenjiang Huang
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- International Research Center of Big Data for Sustainable Development Goals, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiqin Ma
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Hansu Zhang
- National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei, China
| | - Xueyan Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Chen
- National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei, China
| | - Yunlei Xu
- National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei, China
| |
Collapse
|
3
|
Saldivar JA, Romero AN, Wilson Rankin EE. Community Science Reveals High Diversity of Nectaring Plants Visited by Painted Lady Butterflies (Lepidoptera: Nymphalidae) in California Sage Scrub. ENVIRONMENTAL ENTOMOLOGY 2022; 51:1141-1149. [PMID: 36178323 DOI: 10.1093/ee/nvac073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 06/16/2023]
Abstract
California's sage scrub habitats support a diversity of nectar and host plants for migrating and resident populations of painted lady butterflies (Vanessa cardui) throughout all seasons. North America experiences spring V. cardui migrations involving butterflies totaling in the millions in some years. These irruptive years are thought to be driven by winter weather patterns at breeding grounds near the US-Mexico border and due to their irregularity, it is difficult to study floral resource use along the migration route. Here we used the community science platform iNaturalist to quantify patterns in V. cardui nectar resource use in sage scrub over time and space during irruptive and nonirruptive years. We identified over 329 different nectaring plant species of varying functional types (72% native to California) visited by adult V. cardui, 195 of which had not been previously identified as known nectar plants for V. cardui. Vanessa cardui butterflies were observed in similar locations regardless of whether an irruptive migration occurred, indicating the presence of either sparse migrants or resident populations across California. Moreover, irruptive years were positively correlated with warmer and wetter local conditions at observation locations. Our results provide new insights into patterns of floral resource use by North American V. cardui by harnessing the power of community science data and while highlighting the factors associated with its North American migration.
Collapse
Affiliation(s)
- Jo'lene A Saldivar
- Department of Botany & Plant Sciences, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Andrea N Romero
- Department of Botany & Plant Sciences, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Erin E Wilson Rankin
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Yaro AS, Linton YM, Dao A, Diallo M, Sanogo ZL, Samake D, Ousmane Y, Kouam C, Krajacich BJ, Faiman R, Bamou R, Woo J, Chapman JW, Reynolds DR, Lehmann T. Diversity, composition, altitude, and seasonality of high-altitude windborne migrating mosquitoes in the Sahel: Implications for disease transmission. FRONTIERS IN EPIDEMIOLOGY 2022; 2:1001782. [PMID: 38455321 PMCID: PMC10910920 DOI: 10.3389/fepid.2022.1001782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/16/2022] [Indexed: 03/09/2024]
Abstract
Recent studies have reported Anopheles mosquitoes captured at high-altitude (40-290 m above ground) in the Sahel. Here, we describe this migration modality across genera and species of African Culicidae and examine its implications for disease transmission and control. As well as Anopheles, six other genera-Culex, Aedes, Mansonia, Mimomyia, Lutzia, and Eretmapodites comprised 90% of the 2,340 mosquitoes captured at altitude. Of the 50 molecularly confirmed species (N = 2,107), 33 species represented by multiple specimens were conservatively considered high-altitude windborne migrants, suggesting it is a common migration modality in mosquitoes (31-47% of the known species in Mali), and especially in Culex (45-59%). Overall species abundance varied between 2 and 710 specimens/species (in Ae. vittatus and Cx. perexiguus, respectively). At altitude, females outnumbered males 6:1, and 93% of the females have taken at least one blood meal on a vertebrate host prior to their departure. Most taxa were more common at higher sampling altitudes, indicating that total abundance and diversity are underestimated. High-altitude flight activity was concentrated between June and November coinciding with availability of surface waters and peak disease transmission by mosquitoes. These hallmarks of windborne mosquito migration bolster their role as carriers of mosquito-borne pathogens (MBPs). Screening 921 mosquitoes using pan-Plasmodium assays revealed that thoracic infection rate in these high-altitude migrants was 2.4%, providing a proof of concept that vertebrate pathogens are transported by windborne mosquitoes at altitude. Fourteen of the 33 windborne mosquito species had been reported as vectors to 25 MBPs in West Africa, which represent 32% of the MBPs known in that region and include those that inflict the heaviest burden on human and animal health, such as malaria, yellow fever, dengue, and Rift Valley fever. We highlight five arboviruses that are most likely affected by windborne mosquitoes in West Africa: Rift Valley fever, O'nyong'nyong, Ngari, Pangola, and Ndumu. We conclude that the study of windborne spread of diseases by migrating insects and the development of surveillance to map the sources, routes, and destinations of vectors and pathogens is key to understand, predict, and mitigate existing and new threats of public health.
Collapse
Affiliation(s)
- Alpha Seydou Yaro
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-Stomatology, Bamako, Mali
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Suitland, MD, United States
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, United States
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Adama Dao
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-Stomatology, Bamako, Mali
| | - Moussa Diallo
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-Stomatology, Bamako, Mali
| | - Zana L. Sanogo
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-Stomatology, Bamako, Mali
| | - Djibril Samake
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-Stomatology, Bamako, Mali
| | - Yossi Ousmane
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-Stomatology, Bamako, Mali
| | - Cedric Kouam
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, United States
| | | | - Roy Faiman
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, United States
| | - Roland Bamou
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, United States
| | - Joshua Woo
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Jason W. Chapman
- Centre for Ecology and Conservation, and Environment and Sustainability Institute, University of Exeter, Penryn, United Kingdom
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Don R. Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, United Kingdom
- Rothamsted Research, Harpenden, United Kingdom
| | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, United States
| |
Collapse
|
5
|
Hemstrom WB, Freedman MG, Zalucki MP, Ramírez SR, Miller MR. Population genetics of a recent range expansion and subsequent loss of migration in monarch butterflies. Mol Ecol 2022; 31:4544-4557. [PMID: 35779004 PMCID: PMC9546011 DOI: 10.1111/mec.16592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
Range expansions-whether permanent or transient-strongly influence the distribution of genetic variation in space. Monarch butterflies are best known for long-distance seasonal migration within North America but are also established as nonmigratory populations around the world, including on Pacific Islands. Previous research has highlighted stepwise expansion across the Pacific, though questions remain about expansion timing and the population genetic consequences of migration loss. Here, we present reduced-representation sequencing data for 275 monarchs from North America (n = 85), 12 Pacific Islands (n = 136) and three locations in Australia (n = 54), with the goal of understanding (i) how the monarch's Pacific expansion has shaped patterns of population genetic variation and (ii) how loss of migration has influenced spatial patterns of differentiation. We find support for previously described stepwise dispersal across the Pacific and document an additional expansion from Hawaii into the Mariana Islands. Nonmigratory monarchs within the Mariana Islands show strong patterns of differentiation, despite their proximity; by contrast, migratory North American samples form a single genetically panmictic population across the continent. Estimates of Pacific establishment timing are highly uncertain (~100-1,000,000 years ago) but overlap with historical records that indicate a recent expansion. Our data support (i) a recent expansion across the Pacific whose timing overlaps with available historical records of establishment and (ii) a strong role for seasonal migration in determining patterns of spatial genetic variation. Our results are noteworthy because they demonstrate how the evolution of partial migration can drive population differentiation over contemporary timescales.
Collapse
Affiliation(s)
| | - Micah G. Freedman
- Department of Evolution and EcologyUniversity of CaliforniaDavisCaliforniaUSA
- Center for Population BiologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Myron P. Zalucki
- School of Biological SciencesThe University of QueenslandBrisbaneAustralia
| | - Santiago R. Ramírez
- Department of Evolution and EcologyUniversity of CaliforniaDavisCaliforniaUSA
- Center for Population BiologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Michael R. Miller
- Department of Animal ScienceUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
6
|
Parlin AF, Stratton SM, Guerra PA. Oriented migratory flight at night: Consequences of nighttime light pollution for monarch butterflies. iScience 2022; 25:104310. [PMID: 35573206 PMCID: PMC9097705 DOI: 10.1016/j.isci.2022.104310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022] Open
Abstract
We show that light trespass—a form of nighttime light pollution (NLP)—elicits normal daytime clock-mediated migratory behavior in fall monarch butterflies during their night-cycle. In controlled indoor flight simulator studies isolating the role of NLP on the expression of oriented migratory flight using a time-compensated sun compass,a full-spectrum light source consistent with lights used outdoors at night by the public,triggered proper fall directional flight at night in monarchs. Monarchs remained quiescent when initially placed in the flight simulator in the dark, but flight was immediately triggered when our light source was turned on. This nighttime behavior was identical to that seen in outdoor free-flying fall conspecifics during the day. The light source provided directional cues equivalent to those provided by the sun and could either phase-advance or phase-delay monarchs. Our study highlights the negative consequences of NLP on diurnal animals, especially those that rely on clock-mediated behavior. Nighttime light pollution can disturb diurnal migratory monarch butterflies Exposure to this pollution induces abnormal activity in normally quiescent monarchs This pollution acts as sensory noise that perturbs the circadian clock of monarchs Conservation should consider susceptibility of habitat to nighttime light pollution
Collapse
Affiliation(s)
- Adam F. Parlin
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA
| | - Samuel M. Stratton
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 N University Avenue, Ann Arbor, MI 48109, USA
| | - Patrick A. Guerra
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA
- Corresponding author
| |
Collapse
|
7
|
Miler K, Scharf I. Wind impairs pit trap construction and hunting success in a pit‐building predator. J Zool (1987) 2022. [DOI: 10.1111/jzo.12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K. Miler
- Institute of Systematics and Evolution of Animals Polish Academy of Sciences Kraków Poland
- School of Zoology The George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - I. Scharf
- School of Zoology The George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| |
Collapse
|
8
|
Jia H, Liu Y, Li X, Li H, Pan Y, Hu C, Zhou X, Wyckhuys KAG, Wu K. Windborne migration amplifies insect-mediated pollination services. eLife 2022; 11:76230. [PMID: 35416148 PMCID: PMC9042232 DOI: 10.7554/elife.76230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Worldwide, hoverflies (Syrphidae: Diptera) provide crucial ecosystem services such as pollination and biological pest control. Although many hoverfly species exhibit migratory behavior, the spatiotemporal facets of these movement dynamics, and their ecosystem services implications are poorly understood. In this study, we use long-term (16-year) trapping records, trajectory analysis, and intrinsic (i.e., isotope, genetic, pollen) markers to describe migration patterns of the hoverfly Episyrphus balteatus in northern China. Our work reveals how E. balteatus migrate northward during spring–summer and exhibits return (long-range) migration during autumn. The extensive genetic mixing and high genetic diversity of E. balteatus populations underscore its adaptive capacity to environmental disturbances, for example, climate change. Pollen markers and molecular gut analysis further illuminate how E. balteatus visits min. 1012 flowering plant species (39 orders) over space and time. By thus delineating E. balteatus transregional movements and pollination networks, we advance our understanding of its migration ecology and facilitate the design of targeted strategies to conserve and enhance its ecosystem services.
Collapse
Affiliation(s)
- Huiru Jia
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongqiang Liu
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xaiokang Li
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Li
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunfei Pan
- Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Xainyong Zhou
- Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Kongming Wu
- Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Concurrent Butterfly, Bat and Small Mammal Monitoring Programmes Using Citizen Science in Catalonia (NE Spain): A Historical Review and Future Directions. DIVERSITY 2021. [DOI: 10.3390/d13090454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Biodiversity and Bioindicators research group (BiBIO), based at the Natural Sciences Museum of Granollers, has coordinated four long-term faunal monitoring programmes based on citizen science over more than two decades in Catalonia (NE Spain). We summarize the historical progress of these programmes, describing their main conservation outputs, the challenges overcome, and future directions. The Catalan Butterfly Monitoring Scheme (CBMS) consists of a network of nearly 200 recording sites where butterfly populations have been monitored through visual censuses along transects for nearly three decades. This programme provides accurate temporal and spatial changes in the abundance of butterflies and relates them to different environmental factors (e.g., habitat and weather conditions). The Bat Monitoring Programme has progressively evolved to include passive acoustic monitoring protocols, as well as bat box-, underground- and river-bat surveys, and community ecological indices have been developed to monitor bat responses at assemblage level to both landscape and climatic changes. The Monitoring of common small mammals in Spain (SEMICE), a common small mammal monitoring programme with almost 80 active live-trapping stations, provides information to estimate population trends and has underlined the relevance of small mammals as both prey (of several predators) and predators (of insect forest pests). The Dormouse Monitoring Programme represents the first monitoring programme in Europe using specific nest boxes for the edible dormouse, providing information about biological and demographic data of the species at the southern limit of its distribution range. The combination and complementarity of these monitoring programmes provide crucial data to land managers to improve the understanding of conservation needs and develop efficient protection laws.
Collapse
|
10
|
Zhang L, Steward RA, Wheat CW, Reed RD. High-Quality Genome Assembly and Comprehensive Transcriptome of the Painted Lady Butterfly Vanessa cardui. Genome Biol Evol 2021; 13:evab145. [PMID: 34282459 PMCID: PMC8290113 DOI: 10.1093/gbe/evab145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The painted lady butterfly, Vanessa cardui, has the longest migration routes, the widest hostplant diversity, and one of the most complex wing patterns of any insect. Due to minimal culturing requirements, easily characterized wing pattern elements, and technical feasibility of CRISPR/Cas9 genome editing, V. cardui is emerging as a functional genomics model for diverse research programs. Here, we report a high-quality, annotated genome assembly of the V. cardui genome, generated using 84× coverage of PacBio long-read data, which we assembled into 205 contigs with a total length of 425.4 Mb (N50 = 10.3 Mb). The genome was very complete (single-copy complete Benchmarking Universal Single-Copy Orthologs [BUSCO] 97%), with contigs assembled into presumptive chromosomes using synteny analyses. Our annotation used embryonic, larval, and pupal transcriptomes, and 20 transcriptomes across five different wing developmental stages. Gene annotations showed a high level of accuracy and completeness, with 14,437 predicted protein-coding genes. This annotated genome assembly constitutes an important resource for diverse functional genomic studies ranging from the developmental genetic basis of butterfly color pattern, to coevolution with diverse hostplants.
Collapse
Affiliation(s)
- Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
11
|
Environmental drivers of annual population fluctuations in a trans-Saharan insect migrant. Proc Natl Acad Sci U S A 2021; 118:2102762118. [PMID: 34155114 PMCID: PMC8256005 DOI: 10.1073/pnas.2102762118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The painted lady butterfly is an annual migrant to northern regions, but the size of the immigration varies by more than 100-fold in successive years. Unlike the monarch, the painted lady breeds year round, and it has long been suspected that plant-growing conditions in winter-breeding locations drive this high annual variability. However, the regions where caterpillars develop over winter remained unclear. Here, we show for the European summer population that winter plant greenness in the savanna of sub-Saharan Africa is the key driver of the size of the spring immigration. Our results show that painted ladies regularly cross the Sahara Desert and elucidate the climatic drivers of the annual population dynamics. Many latitudinal insect migrants including agricultural pests, disease vectors, and beneficial species show huge fluctuations in the year-to-year abundance of spring immigrants reaching temperate zones. It is widely believed that this variation is driven by climatic conditions in the winter-breeding regions, but evidence is lacking. We identified the environmental drivers of the annual population dynamics of a cosmopolitan migrant butterfly (the painted lady Vanessa cardui) using a combination of long-term monitoring and climate and atmospheric data within the western part of its Afro-Palearctic migratory range. Our population models show that a combination of high winter NDVI (normalized difference vegetation index) in the Savanna/Sahel of sub-Saharan Africa, high spring NDVI in the Maghreb of North Africa, and frequent favorably directed tailwinds during migration periods are the three most important drivers of the size of the immigration to western Europe, while our atmospheric trajectory simulations demonstrate regular opportunities for wind-borne trans-Saharan movements. The effects of sub-Saharan vegetative productivity and wind conditions confirm that painted lady populations on either side of the Sahara are linked by regular mass migrations, making this the longest annual insect migration circuit so far known. Our results provide a quantification of the environmental drivers of large annual population fluctuations of an insect migrant and hold much promise for predicting invasions of migrant insect pests, disease vectors, and beneficial species.
Collapse
|
12
|
Juhász E, Gór Á, Bali D, Kerékgyártó F, Katona G, Végvári Z. Long-term temporal patterns in flight activities of a migrant diurnal butterfly. INSECT SCIENCE 2021; 28:839-849. [PMID: 32431074 DOI: 10.1111/1744-7917.12815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/08/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Recent studies demonstrated that the Painted Lady (Vanessa cardui), a cosmopolitan diurnal butterfly performs long-range migration between subtropical Africa and north-western Europe, covered by individuals belonging to up to six generations. Here we analyze temporal patterns of complete annual migratory activity of the Painted Lady in Hungary, located in its Central European migratory route, almost completely unstudied before. To do so, we used field occurrence data collected between 2000 and 2019 and estimated temporal patterns in migratory activity by fitting kernel density functions on the daily mean number of individuals and observation frequency. The temporal distributions of kernel density estimates were analyzed as a function of time and key climatic predictors of the study area. We found that (i) the timing of spring arrivals has been advancing; (ii) the relative intensity of the first and last migratory peaks of the Painted Lady significantly increased during the past decades; and (iii) intensity of the last migratory peak is related to the mean temperature of the previous month, inferring that the migration is shifting to earlier dates and their volume of the migration has substantially intensified, evoking mutually nonexclusive, competing hypotheses. Our study indicates the strengthening migration activities of a southerly distributed, long-distance migrant diurnal butterfly, most probably linked to the northward shift of wintering areas induced by warming trends of the southern parts of Europe. However, the complexity of the likely processes leading to changing migratory strategies calls up for further research in both breeding and wintering areas.
Collapse
Affiliation(s)
- Edit Juhász
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Ádám Gór
- Department of Ecology, University of Veterinary Medicine, Budapest, Hungary
| | - Daniella Bali
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Fanni Kerékgyártó
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Gergely Katona
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Zsolt Végvári
- Centre for Ecological Research, Danube Research Institute, Budapest, Hungary
- SDEI Entomology Information Centre, Senckenberg Deutsches Entomologisches Institut, Müncheberg, Germany
| |
Collapse
|
13
|
Chowdhury S, Fuller RA, Dingle H, Chapman JW, Zalucki MP. Migration in butterflies: a global overview. Biol Rev Camb Philos Soc 2021; 96:1462-1483. [PMID: 33783119 DOI: 10.1111/brv.12714] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/13/2023]
Abstract
Insect populations including butterflies are declining worldwide, and they are becoming an urgent conservation priority in many regions. Understanding which butterfly species migrate is critical to planning for their conservation, because management actions for migrants need to be coordinated across time and space. Yet, while migration appears to be widespread among butterflies, its prevalence, as well as its taxonomic and geographic distribution are poorly understood. The study of insect migration is hampered by their small size and the difficulty of tracking individuals over long distances. Here we review the literature on migration in butterflies, one of the best-known insect groups. We find that nearly 600 butterfly species show evidence of migratory movements. Indeed, the rate of 'discovery' of migratory movements in butterflies suggests that many more species might in fact be migratory. Butterfly migration occurs across all families, in tropical as well as temperate taxa; Nymphalidae has more migratory species than any other family (275 species), and Pieridae has the highest proportion of migrants (13%; 133 species). Some 13 lines of evidence have been used to ascribe migration status in the literature, but only a single line of evidence is available for 92% of the migratory species identified, with four or more lines of evidence available for only 10 species - all from the Pieridae and Nymphalidae. Migratory butterflies occur worldwide, although the geographic distribution of migration in butterflies is poorly resolved, with most data so far coming from Europe, USA, and Australia. Migration is much more widespread in butterflies than previously realised - extending far beyond the well-known examples of the monarch Danaus plexippus and the painted lady Vanessa cardui - and actions to conserve butterflies and insects in general must account for the spatial dependencies introduced by migratory movements.
Collapse
Affiliation(s)
- Shawan Chowdhury
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Richard A Fuller
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Hugh Dingle
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Jason W Chapman
- Biosciences, Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK.,College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
14
|
Stefanescu C, Ubach A, Wiklund C. Timing of mating, reproductive status and resource availability in relation to migration in the painted lady butterfly. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Nagloo N, Kinoshita M, Arikawa K. Spectral organization of the compound eye of a migrating nymphalid, the chestnut tiger butterfly Parantica sita. J Exp Biol 2020; 223:jeb217703. [PMID: 31900350 DOI: 10.1242/jeb.217703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/30/2019] [Indexed: 11/20/2022]
Abstract
Several butterflies of family Nymphalidae perform long-distance migration. Extensive studies of migration in the iconic monarch butterfly Danaus plexippus have revealed that vision plays a crucial role in migratory orientation. Differences in the migratory patterns of butterflies suggest that not all species are exposed to the same visual conditions and yet, little is known about how the visual system varies across migratory species. Here, we used intracellular electrophysiology, dye injection and electron microscopy to assess the spectral and polarization properties of the photoreceptors of a migrating nymphalid, Parantica sita Our findings reveal three spectral classes of photoreceptors including ultraviolet, blue and green receptors. The green receptor class contains three subclasses, which are broad, narrow and double-peaking green receptors. Ultraviolet and blue receptors are sensitive to polarized light parallel to the dorso-ventral axis of the animal, while the variety of green receptors are sensitive to light polarized at 45 deg, 90 deg and 135 deg away from the dorso-ventral axis. The polarization sensitivity ratio is constant across spectral receptor classes at around 1.8. Although P. sita has a typical nymphalid eye with three classes of spectral receptors, subtle differences exist among the eyes of migratory nymphalids, which may be genus specific.
Collapse
Affiliation(s)
- Nicolas Nagloo
- Laboratory of Neuroethology, SOKENDAI (The Graduate University for Advanced studies), Hayama 240-0193, Japan
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, SOKENDAI (The Graduate University for Advanced studies), Hayama 240-0193, Japan
| | - Kentaro Arikawa
- Laboratory of Neuroethology, SOKENDAI (The Graduate University for Advanced studies), Hayama 240-0193, Japan
| |
Collapse
|
16
|
Huestis DL, Dao A, Diallo M, Sanogo ZL, Samake D, Yaro AS, Ousman Y, Linton YM, Krishna A, Veru L, Krajacich BJ, Faiman R, Florio J, Chapman JW, Reynolds DR, Weetman D, Mitchell R, Donnelly MJ, Talamas E, Chamorro L, Strobach E, Lehmann T. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature 2019; 574:404-408. [PMID: 31578527 PMCID: PMC11095661 DOI: 10.1038/s41586-019-1622-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/06/2019] [Indexed: 11/09/2022]
Abstract
Over the past two decades efforts to control malaria have halved the number of cases globally, yet burdens remain high in much of Africa and the elimination of malaria has not been achieved even in areas where extreme reductions have been sustained, such as South Africa1,2. Studies seeking to understand the paradoxical persistence of malaria in areas in which surface water is absent for 3-8 months of the year have suggested that some species of Anopheles mosquito use long-distance migration3. Here we confirm this hypothesis through aerial sampling of mosquitoes at 40-290 m above ground level and provide-to our knowledge-the first evidence of windborne migration of African malaria vectors, and consequently of the pathogens that they transmit. Ten species, including the primary malaria vector Anopheles coluzzii, were identified among 235 anopheline mosquitoes that were captured during 617 nocturnal aerial collections in the Sahel of Mali. Notably, females accounted for more than 80% of all of the mosquitoes that we collected. Of these, 90% had taken a blood meal before their migration, which implies that pathogens are probably transported over long distances by migrating females. The likelihood of capturing Anopheles species increased with altitude (the height of the sampling panel above ground level) and during the wet seasons, but variation between years and localities was minimal. Simulated trajectories of mosquito flights indicated that there would be mean nightly displacements of up to 300 km for 9-h flight durations. Annually, the estimated numbers of mosquitoes at altitude that cross a 100-km line perpendicular to the prevailing wind direction included 81,000 Anopheles gambiae sensu stricto, 6 million A. coluzzii and 44 million Anopheles squamosus. These results provide compelling evidence that millions of malaria vectors that have previously fed on blood frequently migrate over hundreds of kilometres, and thus almost certainly spread malaria over these distances. The successful elimination of malaria may therefore depend on whether the sources of migrant vectors can be identified and controlled.
Collapse
Affiliation(s)
- Diana L Huestis
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Adama Dao
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Bamako, Bamako, Mali
| | - Moussa Diallo
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Bamako, Bamako, Mali
| | - Zana L Sanogo
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Bamako, Bamako, Mali
| | - Djibril Samake
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Bamako, Bamako, Mali
| | - Alpha S Yaro
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Bamako, Bamako, Mali
- Faculte des Sciences et Techniques, Universite des Sciences des Techniques et des Technologies de Bamako (FSTUSTTB), Bamako, Mali
| | - Yossi Ousman
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Bamako, Bamako, Mali
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Suitland, MD, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Asha Krishna
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Laura Veru
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | | | - Roy Faiman
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Jenna Florio
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Jason W Chapman
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Don R Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, UK
- Rothamsted Research, Harpenden, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Reed Mitchell
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Suitland, MD, USA
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elijah Talamas
- Systematic Entomology Laboratory - ARS, USDA, Smithsonian Institution National Museum of Natural History, Washington, DC, USA
- Florida Department of Agriculture and Consumer Services, Department of Plant Industry, Gainesville, FL, USA
| | - Lourdes Chamorro
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
- Systematic Entomology Laboratory - ARS, USDA, Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - Ehud Strobach
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
- Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, MD, USA
| | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA.
| |
Collapse
|
17
|
Suchan T, Talavera G, Sáez L, Ronikier M, Vila R. Pollen metabarcoding as a tool for tracking long-distance insect migrations. Mol Ecol Resour 2018; 19:149-162. [PMID: 30267472 DOI: 10.1111/1755-0998.12948] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/11/2018] [Accepted: 07/19/2018] [Indexed: 11/30/2022]
Abstract
Insects account for a large portion of Earth's biodiversity and are key players for ecosystems, notably as pollinators. While insect migration is suspected to represent a natural phenomenon of major importance, remarkably little is known about it, except for a few flagship species. The reason for this situation is mainly due to technical limitations in the study of insect movement. Here, we propose using metabarcoding of pollen carried by insects as a method for tracking their migrations. We developed a flexible and simple protocol allowing efficient multiplexing and not requiring DNA extraction, one of the most time-consuming part of metabarcoding protocols, and apply this method to the study of the long-distance migration of the butterfly Vanessa cardui, an emerging model for insect migration. We collected 47 butterfly samples along the Mediterranean coast of Spain in spring and performed metabarcoding of pollen collected from their bodies to test for potential arrivals from the African continent. In total, we detected 157 plant species from 23 orders, most of which (82.8%) were insect-pollinated. Taxa present in Africa-Arabia represented 73.2% of our data set, and 19.1% were endemic to this region, strongly supporting the hypothesis that migratory butterflies colonize southern Europe from Africa in spring. Moreover, our data suggest that a northwards trans-Saharan migration in spring is plausible for early arrivals (February) into Europe, as shown by the presence of Saharan floristic elements. Our results demonstrate the possibility of regular insect-mediated transcontinental pollination, with potential implications for ecosystem functioning, agriculture and plant phylogeography.
Collapse
Affiliation(s)
- Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Gerard Talavera
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts
| | - Llorenç Sáez
- Systematics and Evolution of Vascular Plants, Associated Unit to CSIC, Unitat de Botànica, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Michał Ronikier
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
18
|
Jeger M, Bragard C, Caffier D, Candresse T, Chatzivassiliou E, Dehnen-Schmutz K, Gilioli G, Grégoire JC, Jaques Miret JA, Navarro MN, Niere B, Parnell S, Potting R, Rafoss T, Rossi V, Urek G, Van Bruggen A, Van der Werf W, West J, Winter S, Day R, Early R, Hruska A, Nagoshi R, Gardi C, Mosbach-Schultz O, MacLeod A. Pest risk assessment of Spodoptera frugiperda for the European Union. EFSA J 2018; 16:e05351. [PMID: 32626012 PMCID: PMC7009509 DOI: 10.2903/j.efsa.2018.5351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
EFSA was asked for a partial risk assessment of Spodoptera frugiperda for the territory of the EU focussing on the main pathways for entry, factors affecting establishment, risk reduction options and pest management. As a polyphagous pest, five commodity pathways were examined in detail. Aggregating across these and other pathways, we estimate that tens of thousands to over a million individual larvae could enter the EU annually on host commodities. Instigating risk reduction options on sweetcorn, a principal host, reduces entry on that pathway 100-fold. However, sweetcorn imports are a small proportion of all S. frugiperda host imports, several of which are already regulated and further regulation is estimated to reduce the median number entering over all pathways by approximately 10%. Low temperatures limit the area for establishment but small areas of Spain, Italy and Greece can provide climatic conditions suitable for establishment. If infested imported commodities are distributed across the EU in proportion to consumer population, a few hundreds to a few thousands of individuals would reach NUTS 2 regions within which suitable conditions for establishment exist. Although S. frugiperda is a known migrant, entry directly into the EU from extant populations in sub-Saharan Africa is judged not feasible. However, if S. frugiperda were to establish in North Africa, in the range of thousands to over two million adults could seasonally migrate into the southern EU. Entry into suitable NUTS2 areas via migration will be greater than via commercial trade but is contingent on the establishment of S. frugiperda in North Africa. The likelihood of entry of the pest via natural dispersal could only be mitigated via control of the pest in Africa. If S. frugiperda were to arrive and become a pest of maize in the EU, Integrated Pest Management (IPM) or broad spectrum insecticides currently used against existing pests could be applied.
Collapse
|
19
|
Habel JC, Seibold S, Ulrich W, Schmitt T. Seasonality overrides differences in butterfly species composition between natural and anthropogenic forest habitats. Anim Conserv 2018. [DOI: 10.1111/acv.12408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. C. Habel
- Terrestrial Ecology Research Group; Department of Ecology and Ecosystem Management; School of Life Science Weihenstephan; Technische Universität München; Freising Germany
| | - S. Seibold
- Terrestrial Ecology Research Group; Department of Ecology and Ecosystem Management; School of Life Science Weihenstephan; Technische Universität München; Freising Germany
| | - W. Ulrich
- Chair of Ecology and Biogeography; Nicolaus Copernicus University Toruń; Toruń Poland
| | - T. Schmitt
- Senckenberg Deutsches Entomologisches Institut; Müncheberg Germany
- Department of Zoology; Faculty of Natural Sciences I; Institute of Biology; Martin-Luther-University Halle-Wittenberg; Halle Germany
| |
Collapse
|
20
|
Talavera G, Vila R. Discovery of mass migration and breeding of the painted lady butterflyVanessa carduiin the Sub-Sahara: the Europe-Africa migration revisited. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gerard Talavera
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology; Harvard University; Cambridge MA 02138 USA
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
| |
Collapse
|
21
|
Audusseau H, de la Paz Celorio-Mancera M, Janz N, Nylin S. Why stay in a bad relationship? The effect of local host phenology on a generalist butterfly feeding on a low-ranked host. BMC Evol Biol 2016; 16:144. [PMID: 27356867 PMCID: PMC4928354 DOI: 10.1186/s12862-016-0709-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In plant-feeding insects, the evolutionary retention of polyphagy remains puzzling. A better understanding of the relationship between these organisms and changes in the metabolome of their host plants is likely to suggest functional links between them, and may provide insights into how polyphagy is maintained. RESULTS We investigated the phenological change of Cynoglossum officinale, and how a generalist butterfly species, Vanessa cardui, responded to this change. We used untargeted metabolite profiling to map plant seasonal changes in both primary and secondary metabolites. We compared these data to differences in larval performance on vegetative plants early and late in the season. We also performed two oviposition preference experiments to test females' ability to choose between plant developmental stages (vegetative and reproductive) early and late in the season. We found clear seasonal changes in plant primary and secondary metabolites that correlated with larval performance. The seasonal change in plant metabolome reflected changes in both nutrition and toxicity and resulted in zero survival in the late period. However, large differences among families in larval ability to feed on C. officinale suggest that there is genetic variation for performance on this host. Moreover, females accepted all plants for oviposition, and were not able to discriminate between plant developmental stages, in spite of the observed overall differences in metabolite profile potentially associated with differences in suitability as larval food. CONCLUSIONS In V. cardui, migratory behavior, and thus larval feeding times, are not synchronized with plant phenology at the reproductive site. This lack of synchronization, coupled with the observed lack of discriminatory oviposition, obviously has potential fitness costs. However, this "opportunistic" behavior may as well function as a source of potential host plant evolution, promoting for example the acceptance of new plants.
Collapse
Affiliation(s)
- Hélène Audusseau
- UMR Institute of Ecology and Environmental Sciences-Paris, Paris-Est Créteil University, Créteil, France. .,Department of Zoology, Stockholm University, Stockholm, Sweden.
| | | | - Niklas Janz
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
22
|
Affiliation(s)
- Hugh D. Loxdale
- School of Biosciences; Cardiff University; The Sir Martin Evans Building Museum Avenue Cardiff CF10 3AX UK
| | - Belinda J. Davis
- School of Plant Biology; University of Western Australia; Crawley Western Australia 6009 Australia
- Botanic Gardens and Parks Authority; Fraser Avenue West Perth Western Australia 6005 Australia
| | - Robert A. Davis
- School of Natural Sciences; Edith Cowan University; 270 Joondalup Drive Joondalup Western Australia 6027 Australia
- School of Animal Biology; University of Western Australia; Crawley Western Australia 6009 Australia
| |
Collapse
|
23
|
Take-off time of the first generation of the overwintering small brown planthopper, Laodelphax striatellus in the temperate zone in East Asia. PLoS One 2015; 10:e0120271. [PMID: 25780936 PMCID: PMC4363372 DOI: 10.1371/journal.pone.0120271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/03/2015] [Indexed: 11/26/2022] Open
Abstract
Overseas migration of the small brown planthopper, Laodelphax striatellus (Fallén), occurs during the winter wheat harvest season in East Asia. Knowing the take-off time of emigrating L. striatellus is crucial for predicting such migrations with a simulation technique because winds, carriers of migratory insects, change continuously. Several methods were used in China and Japan from late May to early June 2012 and again in 2013 to identify the precise timing of take-off. These methods included: a tow net trap mounted to a pole at 10 m above the ground, a helicopter-towed net trap, and a canopy trap (which also had video monitoring) set over wheat plants. Laodelphax striatellus emigrated from wheat fields mainly in the early evening, before dusk. The insects also emigrated during the daytime but rarely emigrated at dawn, showing a pattern that is unlike the bimodal emigration at dusk and dawn of two other rice planthoppers, the brown planthopper, Nilaparvata lugens (Stål), and the white-backed planthopper, Sogatella furcifera (Horváth). There was no significant difference in the temporal pattern of take-off behavior between females and males of Japanese L. striatellus populations.
Collapse
|
24
|
Chapman JW, Reynolds DR, Wilson K. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol Lett 2015; 18:287-302. [PMID: 25611117 DOI: 10.1111/ele.12407] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/28/2014] [Accepted: 12/10/2014] [Indexed: 01/05/2023]
Abstract
Myriad tiny insect species take to the air to engage in windborne migration, but entomology also has its 'charismatic megafauna' of butterflies, large moths, dragonflies and locusts. The spectacular migrations of large day-flying insects have long fascinated humankind, and since the advent of radar entomology much has been revealed about high-altitude night-time insect migrations. Over the last decade, there have been significant advances in insect migration research, which we review here. In particular, we highlight: (1) notable improvements in our understanding of lepidopteran navigation strategies, including the hitherto unsuspected capabilities of high-altitude migrants to select favourable winds and orientate adaptively, (2) progress in unravelling the neuronal mechanisms underlying sun compass orientation and in identifying the genetic complex underpinning key traits associated with migration behaviour and performance in the monarch butterfly, and (3) improvements in our knowledge of the multifaceted interactions between disease agents and insect migrants, in terms of direct effects on migration success and pathogen spread, and indirect effects on the evolution of migratory systems. We conclude by highlighting the progress that can be made through inter-phyla comparisons, and identify future research areas that will enhance our understanding of insect migration strategies within an eco-evolutionary perspective.
Collapse
Affiliation(s)
- Jason W Chapman
- AgroEcology Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK; Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, UK
| | | | | |
Collapse
|
25
|
Climate conditions and resource availability drive return elevational migrations in a single-brooded insect. Oecologia 2014; 175:861-73. [PMID: 24817198 DOI: 10.1007/s00442-014-2952-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
Seasonal elevational migrations have important implications for life-history evolution and ecological responses to environmental change. However, for most species, particularly invertebrates, evidence is still scarce for the existence of such migrations, as well as for the potential causes. We tested the extent to which seasonal abundance patterns in central Spain for overwintering (breeding) and summer (non-breeding) individuals of the butterfly Gonepteryx rhamni were consistent with three hypotheses explaining elevational migration: resource limitation (host plant and flower availability), physiological constraints of weather (maximum temperatures) and habitat limitation (forest cover for overwintering). For overwintering adults, abundance was positively associated with host plant density during two intensive survey seasons (2007-2008), and the elevational distribution was relatively stable over a 7-year period (2006-2012). The elevational distribution of summer adults was highly variable, apparently related both to temperature and habitat type. Sites occupied by adults in the summer were on average 3 °C cooler than their breeding sites, and abundance showed negative associations with summer temperature, and positive associations with forest cover and host plant density in 2007 and 2008. The results suggest that the extent of uphill migration in summer could be driven by different factors, depending on the year, and are mostly consistent with the physiological constraint and habitat limitation hypotheses. In contrast, the patterns for overwintering adults suggest that downhill migration can be explained by resource availability. Climate change could generate bottlenecks in the populations of elevational migrant species by constraining the area of specific seasonal habitat networks or by reducing the proximity of environments used at different times of year.
Collapse
|
26
|
Dokter AM, Shamoun-Baranes J, Kemp MU, Tijm S, Holleman I. High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance. PLoS One 2013; 8:e52300. [PMID: 23300969 PMCID: PMC3536796 DOI: 10.1371/journal.pone.0052300] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/12/2012] [Indexed: 11/18/2022] Open
Abstract
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.
Collapse
Affiliation(s)
- Adriaan M Dokter
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Sinclair BJ, Williams CM, Terblanche JS. Variation in Thermal Performance among Insect Populations. Physiol Biochem Zool 2012; 85:594-606. [DOI: 10.1086/665388] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Hobson KA, Soto DX, Paulson DR, Wassenaar LI, Matthews JH. A dragonfly (δ
2
H) isoscape for North America: a new tool for determining natal origins of migratory aquatic emergent insects. Methods Ecol Evol 2012. [DOI: 10.1111/j.2041-210x.2012.00202.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
DENNIS ROGERLH, DAPPORTO LEONARDO, FATTORINI SIMONE, COOK LAURENCEM. The generalism-specialism debate: the role of generalists in the life and death of species. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01789.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Sapir N, Horvitz N, Wikelski M, Avissar R, Mahrer Y, Nathan R. Migration by soaring or flapping: numerical atmospheric simulations reveal that turbulence kinetic energy dictates bee-eater flight mode. Proc Biol Sci 2011; 278:3380-6. [PMID: 21471116 DOI: 10.1098/rspb.2011.0358] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aerial migrants commonly face atmospheric dynamics that may affect their movement and behaviour. Specifically, bird flight mode has been suggested to depend on convective updraught availability and tailwind assistance. However, this has not been tested thus far since both bird tracks and meteorological conditions are difficult to measure in detail throughout extended migratory flyways. Here, we applied, to our knowledge, the first comprehensive numerical atmospheric simulations by mean of the Regional Atmospheric Modeling System (RAMS) to study how meteorological processes affect the flight behaviour of migrating birds. We followed European bee-eaters (Merops apiaster) over southern Israel using radio telemetry and contrasted bird flight mode (flapping, soaring-gliding or mixed flight) against explanatory meteorological variables estimated by RAMS simulations at a spatial grid resolution of 250 × 250 m(2). We found that temperature and especially turbulence kinetic energy (TKE) determine bee-eater flight mode, whereas, unexpectedly, no effect of tailwind assistance was found. TKE during soaring-gliding was significantly higher and distinct from TKE during flapping. We propose that applying detailed atmospheric simulations over extended migratory flyways can elucidate the highly dynamic behaviour of air-borne organisms, help predict the abundance and distribution of migrating birds, and aid in mitigating hazardous implications of bird migration.
Collapse
Affiliation(s)
- Nir Sapir
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Giv'at Ram, Jerusalem 91904, Israel.
| | | | | | | | | | | |
Collapse
|
31
|
WIKLUND CHRISTER, FRIBERG MAGNE. Seasonal development and variation in abundance among four annual flight periods in a butterfly: a 20-year study of the speckled wood (Pararge aegeria). Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2010.01581.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Chapman JW, Drake VA, Reynolds DR. Recent insights from radar studies of insect flight. ANNUAL REVIEW OF ENTOMOLOGY 2011; 56:337-56. [PMID: 21133761 DOI: 10.1146/annurev-ento-120709-144820] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Radar has been used to study insects in flight for over 40 years and has helped to establish the ubiquity of several migration phenomena: dawn, morning, and dusk takeoffs; approximate downwind transport; concentration at wind convergences; layers in stable nighttime atmospheres; and nocturnal common orientation. Two novel radar designs introduced in the late 1990s have significantly enhanced observing capabilities. Radar-based research now encompasses foraging as well as migration and is increasingly focused on flight behavior and the environmental cues influencing it. Migrant moths have been shown to employ sophisticated orientation and height-selection strategies that maximize displacements in seasonally appropriate directions; they appear to have an internal compass and to respond to turbulence features in the airflow. Tracks of foraging insects demonstrate compensation for wind drift and use of optimal search paths to locate resources. Further improvements to observing capabilities, and employment in operational as well as research roles, appear feasible.
Collapse
Affiliation(s)
- Jason W Chapman
- Plant and Invertebrate Ecology Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom.
| | | | | |
Collapse
|
33
|
Asymmetric life-history decision-making in butterfly larvae. Oecologia 2010; 165:301-10. [PMID: 20953962 PMCID: PMC3021710 DOI: 10.1007/s00442-010-1804-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 09/23/2010] [Indexed: 11/23/2022]
Abstract
In temperate environments, insects appearing in several generations in the growth season typically have to decide during the larval period whether to develop into adulthood, or to postpone adult emergence until next season by entering a species-specific diapause stage. This decision is typically guided by environmental cues experienced during development. An early decision makes it possible to adjust growth rate, which would allow the growing larva to respond to time stress involved in direct development, whereas a last-minute decision would instead allow the larva to use up-to-date information about which developmental pathway is the most favourable under the current circumstances. We study the timing of the larval pathway decision-making between entering pupal winter diapause and direct development in three distantly related butterflies (Pieris napi, Araschnia levana and Pararge aegeria). We pinpoint the timing of the larval diapause decision by transferring larvae from first to last instars from long daylength (inducing direct development) to short daylength conditions (inducing diapause), and vice versa. Results show that the pathway decision is typically made in the late instars in all three species, and that the ability to switch developmental pathway late in juvenile life is conditional; larvae more freely switched from diapause to direct development than in the opposite direction. We contend that this asymmetry is influenced by the additional physiological preparations needed to survive the long and cold winter period, and that the reluctance to make a late decision to enter diapause has the potential to be a general trait among temperate insects.
Collapse
|
34
|
Abstract
Atmospheric dynamics strongly influence the migration of flying organisms. They affect, among others, the onset, duration and cost of migration, migratory routes, stop-over decisions, and flight speeds en-route. Animals move through a heterogeneous environment and have to react to atmospheric dynamics at different spatial and temporal scales. Integrating meteorology into research on migration is not only challenging but it is also important, especially when trying to understand the variability of the various aspects of migratory behavior observed in nature. In this article, we give an overview of some different modeling approaches and we show how these have been incorporated into migration research. We provide a more detailed description of the development and application of two dynamic, individual-based models, one for waders and one for soaring migrants, as examples of how and why to integrate meteorology into research on migration. We use these models to help understand underlying mechanisms of individual response to atmospheric conditions en-route and to explain emergent patterns. This type of models can be used to study the impact of variability in atmospheric dynamics on migration along a migratory trajectory, between seasons and between years. We conclude by providing some basic guidelines to help researchers towards finding the right modeling approach and the meteorological data needed to integrate meteorology into their own research.
Collapse
Affiliation(s)
- Judy Shamoun-Baranes
- Computational Geo-Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands.
| | | | | |
Collapse
|
35
|
Bowlin MS, Bisson IA, Shamoun-Baranes J, Reichard JD, Sapir N, Marra PP, Kunz TH, Wilcove DS, Hedenström A, Guglielmo CG, Åkesson S, Ramenofsky M, Wikelski M. Grand challenges in migration biology. Integr Comp Biol 2010; 50:261-79. [PMID: 21558203 PMCID: PMC7108598 DOI: 10.1093/icb/icq013] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Billions of animals migrate each year. To successfully reach their destination, migrants must have evolved an appropriate genetic program and suitable developmental, morphological, physiological, biomechanical, behavioral, and life-history traits. Moreover, they must interact successfully with biotic and abiotic factors in their environment. Migration therefore provides an excellent model system in which to address several of the "grand challenges" in organismal biology. Previous research on migration, however, has often focused on a single aspect of the phenomenon, largely due to methodological, geographical, or financial constraints. Integrative migration biology asks 'big questions' such as how, when, where, and why animals migrate, which can be answered by examining the process from multiple ecological and evolutionary perspectives, incorporating multifaceted knowledge from various other scientific disciplines, and using new technologies and modeling approaches, all within the context of an annual cycle. Adopting an integrative research strategy will provide a better understanding of the interactions between biological levels of organization, of what role migrants play in disease transmission, and of how to conserve migrants and the habitats upon which they depend.
Collapse
Affiliation(s)
- Melissa S Bowlin
- Department of Biology, Theoretical Ecology, Ecology Building, Lund University, Lund, Sweden 22362.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chapman JW, Nesbit RL, Burgin LE, Reynolds DR, Smith AD, Middleton DR, Hill JK. Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science 2010; 327:682-5. [PMID: 20133570 DOI: 10.1126/science.1182990] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many insects undertake long-range seasonal migrations to exploit temporary breeding sites hundreds or thousands of kilometers apart, but the behavioral adaptations that facilitate these movements remain largely unknown. Using entomological radar, we showed that the ability to select seasonally favorable, high-altitude winds is widespread in large day- and night-flying migrants and that insects adopt optimal flight headings that partially correct for crosswind drift, thus maximizing distances traveled. Trajectory analyses show that these behaviors increase migration distances by 40% and decrease the degree of drift from seasonally optimal directions. These flight behaviors match the sophistication of those seen in migrant birds and help explain how high-flying insects migrate successfully between seasonal habitats.
Collapse
Affiliation(s)
- Jason W Chapman
- Plant and Invertebrate Ecology Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | | | | | | | | | | | |
Collapse
|
37
|
Nesbit R, Hill J, Woiwod I, Sivell D, Bensusan K, Chapman J. Seasonally adaptive migratory headings mediated by a sun compass in the painted lady butterfly, Vanessa cardui. Anim Behav 2009. [DOI: 10.1016/j.anbehav.2009.07.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Brattström O, Kjellén N, Alerstam T, Åkesson S. Effects of wind and weather on red admiral, Vanessa atalanta, migration at a coastal site in southern Sweden. Anim Behav 2008. [DOI: 10.1016/j.anbehav.2008.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|