1
|
Genetic diversity of native and cultivated Ugandan Robusta coffee (Coffea canephora Pierre ex A. Froehner): Climate influences, breeding potential and diversity conservation. PLoS One 2021; 16:e0245965. [PMID: 33556074 PMCID: PMC7870046 DOI: 10.1371/journal.pone.0245965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 01/12/2021] [Indexed: 11/22/2022] Open
Abstract
Wild genetic resources and their ability to adapt to environmental change are critically important in light of the projected climate change, while constituting the foundation of agricultural sustainability. To address the expected negative effects of climate change on Robusta coffee trees (Coffea canephora), collecting missions were conducted to explore its current native distribution in Uganda over a broad climatic range. Wild material from seven forests could thus be collected. We used 19 microsatellite (SSR) markers to assess genetic diversity and structure of this material as well as material from two ex-situ collections and a feral population. The Ugandan C. canephora diversity was then positioned relative to the species’ global diversity structure. Twenty-two climatic variables were used to explore variations in climatic zones across the sampled forests. Overall, Uganda’s native C. canephora diversity differs from other known genetic groups of this species. In northwestern (NW) Uganda, four distinct genetic clusters were distinguished being from Zoka, Budongo, Itwara and Kibale forests A large southern-central (SC) cluster included Malabigambo, Mabira, and Kalangala forest accessions, as well as feral and cultivated accessions, suggesting similarity in genetic origin and strong gene flow between wild and cultivated compartments. We also confirmed the introduction of Congolese varieties into the SC region where most Robusta coffee production takes place. Identified populations occurred in divergent environmental conditions and 12 environmental variables significantly explained 16.3% of the total allelic variation across populations. The substantial genetic variation within and between Ugandan populations with different climatic envelopes might contain adaptive diversity to cope with climate change. The accessions that we collected have substantially enriched the diversity hosted in the Ugandan collections and thus contribute to ex situ conservation of this vital genetic resource. However, there is an urgent need to develop strategies to enhance complementary in-situ conservation of Coffea canephora in native forests in northwestern Uganda.
Collapse
|
2
|
Charr JC, Garavito A, Guyeux C, Crouzillat D, Descombes P, Fournier C, Ly SN, Raharimalala EN, Rakotomalala JJ, Stoffelen P, Janssens S, Hamon P, Guyot R. Complex evolutionary history of coffees revealed by full plastid genomes and 28,800 nuclear SNP analyses, with particular emphasis on Coffea canephora (Robusta coffee). Mol Phylogenet Evol 2020; 151:106906. [PMID: 32653553 DOI: 10.1016/j.ympev.2020.106906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022]
Abstract
For decades coffees were associated with the genus Coffea. In 2011, the closely related genus Psilanthus was subsumed into Coffea. However, results obtained in 2017-based on 28,800 nuclear SNPs-indicated that there is not substantial phylogenetic support for this incorporation. In addition, a recent study of 16 plastid full-genome sequences highlighted an incongruous placement of Coffea canephora (Robusta coffee) between maternal and nuclear trees. In this study, similar global features of the plastid genomes of Psilanthus and Coffea are observed. In agreement with morphological and physiological traits, the nuclear phylogenetic tree clearly separates Psilanthus from Coffea (with exception to C. rhamnifolia, closer to Psilanthus than to Coffea). In contrast, the maternal molecular tree was incongruent with both morphological and nuclear differentiation, with four main clades observed, two of which include both Psilanthus and Coffea species, and two with either Psilanthus or Coffea species. Interestingly, Coffea and Psilanthus taxa sampled in West and Central Africa are members of the same group. Several mechanisms such as the retention of ancestral polymorphisms due to incomplete lineage sorting, hybridization leading to homoploidy (without chromosome doubling) and alloploidy (for C. arabica) are involved in the evolutionary history of the coffee species. While sharing similar morphological characteristics, the genetic relationships within C. canephora have shown that some populations are well differentiated and genetically isolated. Given the position of its closely-related species, we may also consider C. canephora to be undergoing a long process of speciation with an intermediate step of (sub-)speciation.
Collapse
Affiliation(s)
- Jean-Claude Charr
- Femto-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, France.
| | - Andrea Garavito
- Departamento de Ciencias biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales, Colombia
| | - Christophe Guyeux
- Femto-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, France.
| | | | | | | | - Serigne N Ly
- Institut de Recherche pour le Développement, UMR DIADE, CIRAD, Université de Montpellier, France.
| | | | | | - Piet Stoffelen
- Meise Botanic Garden, Nieuwelaan 38, BE-1860 Meise, Belgium.
| | - Steven Janssens
- Meise Botanic Garden, Nieuwelaan 38, BE-1860 Meise, Belgium.
| | - Perla Hamon
- Institut de Recherche pour le Développement, UMR DIADE, CIRAD, Université de Montpellier, France.
| | - Romain Guyot
- Institut de Recherche pour le Développement, UMR DIADE, CIRAD, Université de Montpellier, France; Department of Electronics and Automatization, Universidad Autónoma de Manizales, Manizales, Colombia.
| |
Collapse
|
3
|
Gomez C, Despinoy M, Hamon S, Hamon P, Salmon D, Akaffou DS, Legnate H, de Kochko A, Mangeas M, Poncet V. Shift in precipitation regime promotes interspecific hybridization of introduced Coffea species. Ecol Evol 2016; 6:3240-55. [PMID: 27096083 PMCID: PMC4829533 DOI: 10.1002/ece3.2055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 11/06/2022] Open
Abstract
The frequency of plant species introductions has increased in a highly connected world, modifying species distribution patterns to include areas outside their natural ranges. These introductions provide the opportunity to gain new insight into the importance of flowering phenology as a component of adaptation to a new environment. Three Coffea species, C. arabica, C. canephora (Robusta), and C. liberica, native to intertropical Africa have been introduced to New Caledonia. On this archipelago, a secondary contact zone has been characterized where these species coexist, persist, and hybridize spontaneously. We investigated the impact of environmental changes undergone by each species following its introduction in New Caledonia on flowering phenology and overcoming reproductive barriers between sister species. We developed species distribution models and compared both environmental envelopes and climatic niches between native and introduced hybrid zones. Flowering phenology was monitored in a population in the hybrid zone along with temperature and precipitation sequences recorded at a nearby weather station. The extent and nature of hybridization events were characterized using chloroplast and nuclear microsatellite markers. The three Coffea species encountered weak environmental suitability compared to their native ranges when introduced to New Caledonia, especially C. arabica and C. canephora. The niche of the New Caledonia hybrid zone was significantly different from all three species' native niches based on identity tests (I Similarity and D Schoener's Similarity Indexes). This area appeared to exhibit intermediate conditions between the native conditions of the three species for temperature-related variables and divergent conditions for precipitation-related ones. Flowering pattern in these Coffea species was shown to have a strong genetic component that determined the time between the triggering rain and anthesis (flower opening), specific to each species. However, a precipitation regime different from those in Africa was directly involved in generating partial flowering overlap between species and thus in allowing hybridization and interspecific gene flow. Interspecific hybrids accounted for 4% of the mature individuals in the sympatric population and occurred between each pair of species with various level of introgression. Adaptation to new environmental conditions following introduction of Coffea species to New Caledonia has resulted in a secondary contact between three related species, which would not have happened in their native ranges, leading to hybridization and gene flow.
Collapse
Affiliation(s)
- Céline Gomez
- IRDUMR DIADEBP 6450134394Montpellier Cedex 5France
| | - Marc Despinoy
- IRDUMR ESPACE DEV (S140)BP A598848Cedex NouméaNouvelle Calédonie
| | - Serge Hamon
- IRDUMR DIADEBP 6450134394Montpellier Cedex 5France
| | - Perla Hamon
- IRDUMR DIADEBP 6450134394Montpellier Cedex 5France
| | | | | | | | | | - Morgan Mangeas
- IRDUMR ESPACE DEV (S140)BP A598848Cedex NouméaNouvelle Calédonie
| | | |
Collapse
|
4
|
Dubreuil-Tranchant C, Guyot R, Guellim A, Duret C, de la Mare M, Razafinarivo N, Poncet V, Hamon S, Hamon P, de Kochko A. Site-Specific Insertion Polymorphism of the MITE Alex-1 in the Genus Coffea Suggests Interspecific Gene Flow. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:358412. [PMID: 21961075 PMCID: PMC3180848 DOI: 10.4061/2011/358412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/16/2011] [Indexed: 11/25/2022]
Abstract
Miniature Inverted-repeat Transposable Elements (MITEs) are small nonautonomous class-II transposable elements distributed throughout eukaryotic genomes. We identified a novel family of MITEs (named Alex) in the Coffea canephora genome often associated with expressed sequences. The Alex-1 element is inserted in an intron of a gene at the CcEIN4 locus. Its mobility was demonstrated by sequencing the insertion site in C. canephora accessions and Coffea species. Analysis of the insertion polymorphism of Alex-1 at this locus in Coffea species and in C. canephora showed that there was no relationship between the geographical distribution of the species, their phylogenetic relationships, and insertion polymorphism. The intraspecific distribution of C. canephora revealed an original situation within the E diversity group. These results suggest possibly greater gene flow between species than previously thought. This MITE family will enable the study of the C. canephora genome evolution, phylogenetic relationships, and possible gene flows within the Coffea genus.
Collapse
|