1
|
Ben Moussa H, Pédron J, Hugouvieux-Cotte-Pattat N, Barny MA. Two species with a peculiar evolution within the genus Pectobacterium suggest adaptation to a new environmental niche. Environ Microbiol 2023; 25:2465-2480. [PMID: 37550252 DOI: 10.1111/1462-2920.16479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Historically, research on Soft Rot Pectobacteriacea (SRP) has focused on economically important crops and ornamentals and knowledge of these bacteria outside the plant context remains poorly investigated. Recently, two closely related species Pectobacterium aquaticum and Pectobacterium quasiaquaticum were isolated from water and have not been isolated from any plant yet. To identify the distinctive characteristics of these two species, we performed a comparative genomic analysis of 80 genomes representing 19 Pectobacterium species and performed an evolutionary reconstruction. Both water species underwent a reduction in genome size associated with a high pseudogene content. A high gene loss was predicted at the emergence of both species. Among the 199 gene families missing from both P. aquaticum and P. quasiaquaticum genomes but present in at least 80% of other Pectobacterium genomes, COG analysis identified many genes involved in nutrient transport systems. In addition, many type II secreted proteins were also missing in both species. Phenotypic analysis revealed that both species had reduced pectinolytic activity, a biofilm formation defect, were highly motile and had reduced virulence on several plants. These genomic and phenotypic data suggest that the ecological niche of P. aquaticum and P. quasiaquaticum may differ from that of other Pectobacterium species.
Collapse
Affiliation(s)
- Hajar Ben Moussa
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| | - Jacques Pédron
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| | | | - Marie-Anne Barny
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| |
Collapse
|
2
|
Ham H, Park DS. Novel approach toward the understanding of genetic diversity based on the two types of amino acid repeats in Erwinia amylovora. Sci Rep 2023; 13:17876. [PMID: 37857695 PMCID: PMC10587187 DOI: 10.1038/s41598-023-44558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Erwinia amylovora is a notorious plant pathogenic bacterium of global concern that has devastated the apple and pear production industry worldwide. Nevertheless, the approaches available currently to understand the genetic diversity of E. amylovora remain unsatisfactory because of the lack of a trustworthy index and data covering the globally occurring E. amylovora strains; thus, their origin and distribution pattern remains ambiguous. Therefore, there is a growing need for robust approaches for obtaining this information via the comparison of the genomic structure of Amygdaloideae-infecting strains to understand their genetic diversity and distribution. Here, the whole-genome sequences of 245 E. amylovora strains available from the NCBI database were compared to identify intraspecific genes for use as an improved index for the simple classification of E. amylovora strains regarding their distribution. Finally, we discovered two kinds of strain-typing protein-encoding genes, i.e., the SAM-dependent methyltransferase and electron transport complex subunit RsxC. Interestingly, both of these proteins carried an amino acid repeat in these strains: SAM-dependent methyltransferase comprised a single-amino-acid repeat (asparagine), whereas RsxC carried a 40-amino-acid repeat, which was differentially distributed among the strains. These noteworthy findings and approaches may enable the exploration of the genetic diversity of E. amylovora from a global perspective.
Collapse
Affiliation(s)
- Hyeonheui Ham
- Crop Protection Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Dong Suk Park
- Crop Protection Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea.
| |
Collapse
|
3
|
Ben Moussa H, Bertrand C, Rochelle-Newall E, Fiorini S, Pédron J, Barny MA. The Diversity and Abundance of Soft Rot Pectobacteriaceae Along the Durance River Stream in the Southeast of France Revealed by Multiple Seasonal Surveys. PHYTOPATHOLOGY 2022; 112:1676-1685. [PMID: 35224981 DOI: 10.1094/phyto-12-21-0515-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although irrigation water is frequently assessed for the presence of plant pathogens, large spatial and temporal surveys that provide clues on the diversity and circulation of pathogens are missing. We evaluate the diversity of soft rot Pectobacteriaceae (SRP) of the genera Dickeya and Pectobacterium over 2 years in a temperate, mixed-use watershed. The abundance of isolated strains correlates with the agricultural gradient along the watershed with a positive correlation found with temperature, nitrate, and dissolved organic carbon water concentration. We characterized 582 strains by amplification and sequencing of the gapA gene. Multilocus sequence analysis, performed with three housekeeping genes for 99 strains, and core genome analysis of 38 sequenced strains, confirmed for all the strains but one, the taxonomic assignation obtained with the sole gapA sequence. Pectobacterium spp. (549 isolates) were far more abundant than Dickeya spp. (33 isolates). Dickeya spp. were only observed in the lower part of the river when water temperature was >19°C, and we experimentally confirmed a decreased fitness of several Dickeya spp. at 8°C in river water. D. oryzae dominates the Dickeya spp. and P. versatile and P. aquaticum dominate the Pectobacterium spp., but their repartition along the watershed was different, with P. versatile being the only species regularly recovered all along the watershed. Excepting P. versatile, the Dickeya and Pectobacterium spp. responsible for disease outbreak on crops were less abundant or rarely detected. This work sheds light on the various ecological behaviors of different SRP types in stream water and indicates that SRP occupation is geographically structured.
Collapse
Affiliation(s)
- Hajar Ben Moussa
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de Paris, UMR 7618, F-75252 Paris, France
| | - Claire Bertrand
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de Paris, UMR 7618, F-75252 Paris, France
| | - Emma Rochelle-Newall
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de Paris, UMR 7618, F-75252 Paris, France
| | - Sarah Fiorini
- Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Centre de Recherche en Écologie Expérimentale et Prédictive, Paris Sciences & Lettres Research University, UMS 3194, 77140 Saint-Pierre-lès-Nemours, France
| | - Jacques Pédron
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de Paris, UMR 7618, F-75252 Paris, France
| | - Marie-Anne Barny
- Sorbonne Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de Paris, UMR 7618, F-75252 Paris, France
| |
Collapse
|
4
|
Eisfeld C, van der Wolf JM, van Breukelen BM, Medema G, Velstra J, Schijven JF. Die-off of plant pathogenic bacteria in tile drainage and anoxic water from a managed aquifer recharge site. PLoS One 2021; 16:e0250338. [PMID: 33951075 PMCID: PMC8099070 DOI: 10.1371/journal.pone.0250338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
Managed aquifer recharge (MAR) can provide irrigation water and overcome water scarcity in agriculture. Removal of potentially present plant pathogens during MAR is essential to prevent crop diseases. We studied the die-off of three plant pathogenic bacteria in water microcosms with natural or filtered tile drainage water (TDW) at 10 and 25°C and with natural anoxic aquifer water (AW) at 10°C from a MAR site. These bacteria were: Ralstonia solanacearum (bacterial wilt), and the soft rot Pectobacteriaceae (SRP) Dickeya solani and Pectobacterium carotovorum sp. carotovorum (soft rot, blackleg). They are present in surface waters and cause destructive crop diseases worldwide which have been linked to contaminated irrigation water. Nevertheless, little is known about the survival of the SRP in aqueous environments and no study has investigated the persistence of R. solanacearum under natural anoxic conditions. We found that all bacteria were undetectable in 0.1 mL samples within 19 days under oxic conditions in natural TDW at 10°C, using viable cell counting, corresponding to 3-log10 reduction by die-off. The SRP were no longer detected within 6 days at 25°C, whereas R. solanacearum was detectable for 25 days. Whereas in anoxic natural aquifer water at 10°C, the bacterial concentrations declined slower and the detection limit was reached within 56 days. Finally, we modelled the inactivation curves with a modified Weibull model that can simulate different curve shapes such as shoulder phenomena in the beginning and long tails reflecting persistent bacterial populations. The non-linear model was shown to be a reliable tool to predict the die-off of the analysed plant pathogenic bacteria, suggesting its further application to other pathogenic microorganisms in the context of microbial risk assessment.
Collapse
Affiliation(s)
- Carina Eisfeld
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Delft, The Netherlands
| | | | - Boris M. van Breukelen
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Delft, The Netherlands
| | - Gertjan Medema
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Delft, The Netherlands
- KWR Watercycle Research Institute, Nieuwegein, The Netherlands
| | | | - Jack F. Schijven
- Department of Earth Sciences, Environmental Hydrogeology Group, Utrecht University, Utrecht, The Netherlands
- Department of Statistics, Informatics and Modelling, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
5
|
Genome-Wide Analyses of the Temperature-Responsive Genetic Loci of the Pectinolytic Plant Pathogenic Pectobacterium atrosepticum. Int J Mol Sci 2021; 22:ijms22094839. [PMID: 34063632 PMCID: PMC8125463 DOI: 10.3390/ijms22094839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Temperature is one of the critical factors affecting gene expression in bacteria. Despite the general interest in the link between bacterial phenotypes and environmental temperature, little is known about temperature-dependent gene expression in plant pathogenic Pectobacterium atrosepticum, a causative agent of potato blackleg and tuber soft rot worldwide. In this study, twenty-nine P. atrosepticum SCRI1043 thermoregulated genes were identified using Tn5-based transposon mutagenesis coupled with an inducible promotorless gusA gene as a reporter. From the pool of 29 genes, 14 were up-regulated at 18 °C, whereas 15 other genes were up-regulated at 28 °C. Among the thermoregulated loci, genes involved in primary bacterial metabolism, membrane-related proteins, fitness-corresponding factors, and several hypothetical proteins were found. The Tn5 mutants were tested for their pathogenicity in planta and for features that are likely to remain important for the pathogen to succeed in the (plant) environment. Five Tn5 mutants expressed visible phenotypes differentiating these mutants from the phenotype of the SCRI1043 wild-type strain. The gene disruptions in the Tn5 transposon mutants caused alterations in bacterial generation time, ability to form a biofilm, production of lipopolysaccharides, and virulence on potato tuber slices. The consequences of environmental temperature on the ability of P. atrosepticum to cause disease symptoms in potato are discussed.
Collapse
|
6
|
Czajkowski R, Fikowicz-Krosko J, Maciag T, Rabalski L, Czaplewska P, Jafra S, Richert M, Krychowiak-Maśnicka M, Hugouvieux-Cotte-Pattat N. Genome-Wide Identification of Dickeya solani Transcriptional Units Up-Regulated in Response to Plant Tissues From a Crop-Host Solanum tuberosum and a Weed-Host Solanum dulcamara. FRONTIERS IN PLANT SCIENCE 2020; 11:580330. [PMID: 32983224 PMCID: PMC7492773 DOI: 10.3389/fpls.2020.580330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/18/2020] [Indexed: 05/25/2023]
Abstract
Dickeya solani is a Gram-negative bacterium able to cause disease symptoms on a variety of crop and ornamental plants worldwide. Weeds including Solanum dulcamara (bittersweet nightshade) growing near agricultural fields have been reported to support populations of soft rot bacteria in natural settings. However, little is known about the specific interaction of D. solani with such weed plants that may contribute to its success as an agricultural pathogen. The aim of this work was to assess the interaction of D. solani with its crop plant (Solanum tuberosum) and an alternative (S. dulcamara) host plant. From a collection of 10,000 Tn5 transposon mutants of D. solani IPO2222 carrying an inducible, promotorless gusA reporter gene, 210 were identified that exhibited plant tissue-dependent expression of the gene/operon into which the Tn5 insertion had occurred. Thirteen Tn5 mutants exhibiting the greatest plant tissue induction of such transcriptional units in S. tuberosum or S. dulcamara as measured by qRT-PCR were assessed for plant host colonization, virulence, and ability to macerate plant tissue, as well as phenotypes likely to contribute to the ecological fitness of D. solani, including growth rate, carbon and nitrogen source utilization, motility, chemotaxis toward plant extracts, biofilm formation, growth under anaerobic conditions and quorum sensing. These 13 transcriptional units encode proteins involved in bacterial interactions with plants, with functions linked to cell envelope structure, chemotaxis and carbon metabolism. The selected 13 genes/operons were differentially expressed in, and thus contributed preferentially to D. solani fitness in potato and/or S. dulcamara stem, leaf, and root tissues.
Collapse
Affiliation(s)
- Robert Czajkowski
- Division of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Jakub Fikowicz-Krosko
- Division of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Tomasz Maciag
- Division of Biological Plant Protection, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Lukasz Rabalski
- Division of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry - Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Sylwia Jafra
- Division of Biological Plant Protection, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Malwina Richert
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Marta Krychowiak-Maśnicka
- Division of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdansk, Poland
| | - Nicole Hugouvieux-Cotte-Pattat
- Microbiology Adaptation and Pathogenesis, CNRS UMR5240, University of Lyon, University Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France
| |
Collapse
|
7
|
Pérez-Bueno ML, Granum E, Pineda M, Flors V, Rodriguez-Palenzuela P, López-Solanilla E, Barón M. Temporal and Spatial Resolution of Activated Plant Defense Responses in Leaves of Nicotiana benthamiana Infected with Dickeya dadantii. FRONTIERS IN PLANT SCIENCE 2016; 6:1209. [PMID: 26779238 PMCID: PMC4705309 DOI: 10.3389/fpls.2015.01209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/15/2015] [Indexed: 05/04/2023]
Abstract
The necrotrophic bacteria Dickeya dadantii is the causal agent of soft-rot disease in a broad range of hosts. The model plant Nicotiana benthamiana, commonly used as experimental host for a very broad range of plant pathogens, is susceptible to infection by D. dadantii. The inoculation with D. dadantii at high dose seems to overcome the plant defense capacity, inducing maceration and death of the tissue, although restricted to the infiltrated area. By contrast, the output of the defense response to low dose inoculation is inhibition of maceration and limitation in the growth, or even eradication, of bacteria. Responses of tissue invaded by bacteria (neighboring the infiltrated areas after 2-3 days post-inoculation) included: (i) inhibition of photosynthesis in terms of photosystem II efficiency; (ii) activation of energy dissipation as non-photochemical quenching in photosystem II, which is related to the activation of plant defense mechanisms; and (iii) accumulation of secondary metabolites in cell walls of the epidermis (lignins) and the apoplast of the mesophyll (phytoalexins). Infiltrated tissues showed an increase in the content of the main hormones regulating stress responses, including abscisic acid, jasmonic acid, and salicylic acid. We propose a mechanism involving the three hormones by which N. benthamiana could activate an efficient defense response against D. dadantii.
Collapse
Affiliation(s)
- María L. Pérez-Bueno
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Spanish Council of Scientific Research (CSIC)Granada, Spain
| | - Espen Granum
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Spanish Council of Scientific Research (CSIC)Granada, Spain
| | - Mónica Pineda
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Spanish Council of Scientific Research (CSIC)Granada, Spain
| | - Víctor Flors
- Department of Agricultural and Environmental Sciences, Universitat Jaume ICastellón, Spain
| | - Pablo Rodriguez-Palenzuela
- Departamento de Biotecnología, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de MadridMadrid, Spain
| | - Emilia López-Solanilla
- Department of Agricultural and Environmental Sciences, Universitat Jaume ICastellón, Spain
| | - Matilde Barón
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Spanish Council of Scientific Research (CSIC)Granada, Spain
| |
Collapse
|
8
|
Czajkowski R, Pérombelon MCM, Jafra S, Lojkowska E, Potrykus M, van der Wolf JM, Sledz W. Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review. THE ANNALS OF APPLIED BIOLOGY 2015; 166:18-38. [PMID: 25684775 PMCID: PMC4320782 DOI: 10.1111/aab.12166] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/05/2014] [Indexed: 05/10/2023]
Abstract
The soft rot Enterobacteriaceae (SRE) Pectobacterium and Dickeya species (formerly classified as pectinolytic Erwinia spp.) cause important diseases on potato and other arable and horticultural crops. They may affect the growing potato plant causing blackleg and are responsible for tuber soft rot in storage thereby reducing yield and quality. Efficient and cost-effective detection and identification methods are essential to investigate the ecology and pathogenesis of the SRE as well as in seed certification programmes. The aim of this review was to collect all existing information on methods available for SRE detection. The review reports on the sampling and preparation of plant material for testing and on over thirty methods to detect, identify and differentiate the soft rot and blackleg causing bacteria to species and subspecies level. These include methods based on biochemical characters, serology, molecular techniques which rely on DNA sequence amplification as well as several less-investigated ones.
Collapse
Affiliation(s)
- R Czajkowski
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of GdanskGdansk, Poland
| | | | - S Jafra
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of GdanskGdansk, Poland
| | - E Lojkowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of GdanskGdansk, Poland
| | - M Potrykus
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of GdanskGdansk, Poland
| | | | - W Sledz
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of GdanskGdansk, Poland
| |
Collapse
|
9
|
Monteil CL, Lafolie F, Laurent J, Clement JC, Simler R, Travi Y, Morris CE. Soil water flow is a source of the plant pathogen Pseudomonas syringae in subalpine headwaters. Environ Microbiol 2013; 16:2038-52. [PMID: 24118699 DOI: 10.1111/1462-2920.12296] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/25/2013] [Indexed: 11/29/2022]
Abstract
The airborne plant pathogenic bacterium Pseudomonas syringae is ubiquitous in headwaters, snowpack and precipitation where its populations are genetically and phenotypically diverse. Here, we assessed its population dynamics during snowmelt in headwaters of the French Alps. We revealed a continuous and significant transport of P.syringae by these waters in which the population density is correlated with water chemistry. Via in situ observations and laboratory experiments, we validated that P.syringae is effectively transported with the snow melt and rain water infiltrating through the soil of subalpine grasslands, leading to the same range of concentrations as measured in headwaters (10(2) -10(5) CFU l(-1) ). A population structure analysis confirmed the relatedness between populations in percolated water and those above the ground (i.e. rain, leaf litter and snowpack). However, the transport study in porous media suggested that water percolation could have different efficiencies for different strains of P.syringae. Finally, leaching of soil cores incubated for up to 4 months at 8°C showed that indigenous populations of P.syringae were able to survive in subalpine soil under cold temperature. This study brings to light the underestimated role of hydrological processes involved in the long distance dissemination of P.syringae.
Collapse
Affiliation(s)
- Caroline L Monteil
- INRA, UR407 Pathologie Végétale, Domaine St Maurice, 84143, Montfavet cedex, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Morris CE, Monteil CL, Berge O. The life history of Pseudomonas syringae: linking agriculture to earth system processes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:85-104. [PMID: 23663005 DOI: 10.1146/annurev-phyto-082712-102402] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The description of the ecology of Pseudomonas syringae is moving away from that of a ubiquitous epiphytic plant pathogen to one of a multifaceted bacterium sans frontières in fresh water and other ecosystems linked to the water cycle. Discovery of the aquatic facet of its ecology has led to a vision of its life history that integrates spatial and temporal scales spanning billions of years and traversing catchment basins, continents, and the planet and that confronts the implication of roles that are potentially conflicting for agriculture (as a plant pathogen and as an actor in processes leading to rain and snowfall). This new ecological perspective has also yielded insight into epidemiological phenomena linked to disease emergence. Overall, it sets the stage for the integration of more comprehensive contexts of ecology and evolutionary history into comparative genomic analyses to elucidate how P. syringae subverts the attack and defense responses of the cohabitants of the diverse environments it occupies.
Collapse
Affiliation(s)
- Cindy E Morris
- INRA, UR0407 Pathologie Végétale, 84143 Montfavet Cedex, France.
| | | | | |
Collapse
|
11
|
Morris CE, Bardin M, Kinkel LL, Moury B, Nicot PC, Sands DC. Expanding the paradigms of plant pathogen life history and evolution of parasitic fitness beyond agricultural boundaries. PLoS Pathog 2009; 5:e1000693. [PMID: 20041212 PMCID: PMC2790610 DOI: 10.1371/journal.ppat.1000693] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Cindy E Morris
- INRA, Unité de Pathologie Végétale UR407, Montfavet, France.
| | | | | | | | | | | |
Collapse
|
12
|
Cother E, Bradley J, Gillings M, Fahy P. Characterization of Erwinia chrysanthemi biovars in alpine water sources by biochemical properties, GLC fatty acid analysis and genomic DNA fingerprinting. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1992.tb01694.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Morris CE, Sands DC, Vinatzer BA, Glaux C, Guilbaud C, Buffière A, Yan S, Dominguez H, Thompson BM. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. THE ISME JOURNAL 2008; 2:321-34. [PMID: 18185595 DOI: 10.1038/ismej.2007.113] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pseudomonas syringae is a plant pathogen well known for its capacity to grow epiphytically on diverse plants and for its ice-nucleation activity. The ensemble of its known biology and ecology led us to postulate that this bacterium is also present in non-agricultural habitats, particularly those associated with water. Here, we report the abundance of P. syringae in rain, snow, alpine streams and lakes and in wild plants, in addition to the previously reported abundance in epilithic biofilms. Each of these substrates harbored strains that corresponded to P. syringae in terms of biochemical traits, pathogenicity and pathogenicity-related factors and that were ice-nucleation active. Phylogenetic comparisons of sequences of four housekeeping genes of the non-agricultural strains with strains of P. syringae from disease epidemics confirmed their identity as P. syringae. Moreover, strains belonging to the same clonal lineage were isolated from snow, irrigation water and a diseased crop plant. Our data suggest that the different substrates harboring P. syringae modify the structure of the associated populations. Here, we propose a comprehensive life cycle for P. syringae--in agricultural and non-agricultural habitats--driven by the environmental cycle of water. This cycle opens the opportunity to evaluate the importance of non-agricultural habitats in the evolution of a plant pathogen and the emergence of virulence. The ice-nucleation activity of all strains from snow, unlike from other substrates, strongly suggests that P. syringae plays an active role in the water cycle as an ice nucleus in clouds.
Collapse
Affiliation(s)
- Cindy E Morris
- Unité de Pathologie Végétale UR407, INRA, Montfavet, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Morris CE, Kinkel LL, Xiao K, Prior P, Sands DC. Surprising niche for the plant pathogen Pseudomonas syringae. INFECTION GENETICS AND EVOLUTION 2007; 7:84-92. [PMID: 16807133 DOI: 10.1016/j.meegid.2006.05.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 05/10/2006] [Accepted: 05/12/2006] [Indexed: 11/29/2022]
Abstract
The biology and ecology of plant pathogenic bacteria have been studied almost exclusively in agricultural contexts. In contrast, for numerous human pathogens their biological activity in niches outside of medical contexts is well-known. Whereas there is increasing evidence that traits fostering survival in 'environmental' niches can be the basis for virulence factors of human pathogens, niches for plant pathogenic bacteria outside of plants or of agricultural settings have not been elucidated. Most phytopathogenic bacteria are not obligate parasites, some of them can be transported to altitudes of several kilometres, they are scrubbed from the atmosphere by rainfall, and thus they are presumably transported to and might survive in a wide range of habitats. We isolated Pseudomonas syringae from river epilithon (rock-attached biofilms composed of algae, diatoms, rotifers, bacteria and nematodes) at densities up to 6000 cells g(-1) in France and the USA, some in pristine settings where waters flowed directly from snow melt and had not passed through agricultural zones. These strains induced hypersensitivity in indicator plants (tobacco) suggesting the presence of functional pathogenicity systems, and many induced disease in 1-7 of the plant species tested and produced a syringomycin-like toxin. Strains also were resistant to some antibiotics used to control plant diseases but not to copper sulphate. Sequencing of the 16S rDNA of epilithon strains and of reference strains of P. syringae revealed that a genetic lineage containing the strains with the broadest host range was distributed across several continents. Is it likely that wide spread dissemination of P. syringae occurs via aerosols and precipitation. This work highlights our limited understanding of non-agricultural niches in the ecology and evolution of plant pathogenic bacteria, of their role in the development of agricultural epidemics both as sources of inoculum and as sources of novel traits that may enhance bacterial pathogenicity and fitness.
Collapse
Affiliation(s)
- Cindy E Morris
- INRA, Unité de Pathologie Végétale, BP 94, 84140 Montfavet, France.
| | | | | | | | | |
Collapse
|
15
|
Norman DJ, Yuen JMF, Resendiz R, Boswell J. Characterization of Erwinia Populations from Nursery Retention Ponds and Lakes Infecting Ornamental Plants in Florida. PLANT DISEASE 2003; 87:193-196. [PMID: 30812926 DOI: 10.1094/pdis.2003.87.2.193] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water shortages in Florida are occurring due to intense utilization of the aquifer system by municipalities and agriculture, and because of continued deficits in annual rainfall. Water districts therefore, are, recommending the use of recycled irrigation water, stormwater runoff, reclaimed municipal sewage water, and lakes for agricultural use. With recycled water, however, there is potential for both introducing and concentrating plant pathogens. In Florida, Erwinia soft-rot bacteria (synonym Pectobacterium) cause extensive crop losses in ornamental plant production. To determine Erwinia spp. population levels, samples were taken monthly for 1 year from four hypereutropic lakes and eight nursery retention ponds. Seventy-seven Erwinia strains were collected by both direct plating and by an enrichment process. With the direct plating method, 0 to 29 CFU/ml were detected on sodium polypectate medium. Significantly higher populations of Erwinia were detected in retention ponds of nurseries that were actively reutilizing their water. Erwinia strains were identified to species by fatty acid analysis and biochemical tests. Strains were further characterized by repetitive element-polymerase chain reaction (rep-PCR) and compared with 120 strains of Erwinia collected from ornamentals over a 17-year period in Florida. Using rep-PCR, most strains were clustered into two heterogeneous populations of E. chrysanthemi and E. carotovora subsp. carotovora in a 1:2 and a 1:4 ratio for isolates from ornamentals and from water, respectively. Within each population of E. chrysanthemi and E. carotovora, genetically different subpopulations could be identified that contained high percentages of Erwinia strains from water sources. Even though genetic differences exist, 99% of the strains from water sources were found to be pathogenic on dieffenbachia. Without water treatment of irrigation and stormwater runoff, there is a potential for both introducing and concentrating Erwinia populations within these water sources.
Collapse
Affiliation(s)
- D J Norman
- Department of Plant Pathology, University of Florida, IFAS, Mid-Florida Research and Education Center, Apopka 32703
| | - J M F Yuen
- Department of Plant Pathology, University of Florida, IFAS, Mid-Florida Research and Education Center, Apopka 32703
| | - R Resendiz
- Department of Plant Pathology, University of Florida, IFAS, Mid-Florida Research and Education Center, Apopka 32703
| | - J Boswell
- Department of Plant Pathology, University of Florida, IFAS, Mid-Florida Research and Education Center, Apopka 32703
| |
Collapse
|
16
|
Okinaka Y, Yang CH, Perna NT, Keen NT. Microarray profiling of Erwinia chrysanthemi 3937 genes that are regulated during plant infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:619-629. [PMID: 12118877 DOI: 10.1094/mpmi.2002.15.7.619] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Microarray technology was used to identify genes in Erwinia chrysanthemi 3937 that are specifically up- or down-regulated in a plant host compared with growth in laboratory culture medium. Several genes were plant down-regulated, and almost all of them were homologues of well-known housekeeping genes, such as those encoding metabolic functions, oxidative phosphorylation components, and transcription or translation processes. On the other hand, almost all of the plant up-regulated genes were involved with specialized functions, including already known or new putative virulence factors, anaerobiosis, iron uptake, transporters or permeases, xenobiotic resistance, chemotaxis, and stress responses to reactive oxygen species and heat. A substantial number of the plant up-regulated genes do not appear to be directly involved in damaging the host, but are probably important in adapting the pathogen to the host environment. We constructed insertion mutations in several of the plant up-regulated E. chrysanthemi 3937 genes. Among these, mutations of Bacillus subtilis pps1, Escherichia coli purU, and Pseudomonas aeruginosa pheC homologues reduced virulence on African violet leaves. Thus, new insights were obtained into genes important in bacterial virulence.
Collapse
Affiliation(s)
- Yasushi Okinaka
- Department of Plant Pathology and Center for Plant Cell Biology, University of California, Riverside 92521, USA.
| | | | | | | |
Collapse
|
17
|
Collmer A, Bauer DW. Erwinia chrysanthemi and Pseudomonas syringae: plant pathogens trafficking in extracellular virulence proteins. Curr Top Microbiol Immunol 1994; 192:43-78. [PMID: 7859513 DOI: 10.1007/978-3-642-78624-2_3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A Collmer
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853-4203
| | | |
Collapse
|
18
|
|