1
|
Aoudi Y, Agake SI, Habibi S, Stacey G, Yasuda M, Ohkama-Ohtsu N. Effect of Bacterial Extracellular Polymeric Substances from Enterobacter spp. on Rice Growth under Abiotic Stress and Transcriptomic Analysis. Microorganisms 2024; 12:1212. [PMID: 38930594 PMCID: PMC11205796 DOI: 10.3390/microorganisms12061212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Plant biostimulants have received attention as sustainable alternatives to chemical fertilizers. Extracellular polymeric substances (EPSs), among the compounds secreted by plant growth-promoting rhizobacteria (PGPRs), are assumed to alleviate abiotic stress. This study aims to investigate the effect of purified EPSs on rice under abiotic stress and analyze their mechanisms. A pot experiment was conducted to elucidate the effects of inoculating EPSs purified from PGPRs that increase biofilm production in the presence of sugar on rice growth in heat-stress conditions. Since all EPSs showed improvement in SPAD after the stress, Enterobacter ludwigii, which was not characterized as showing higher PGP bioactivities such as phytohormone production, nitrogen fixation, and phosphorus solubilization, was selected for further analysis. RNA extracted from the embryos of germinating seeds at 24 h post-treatment with EPSs or water was used for transcriptome analysis. The RNA-seq analysis revealed 215 differentially expressed genes (DEGs) identified in rice seeds, including 139 up-regulated and 76 down-regulated genes. A gene ontology (GO) enrichment analysis showed that the enriched GO terms are mainly associated with the ROS scavenging processes, detoxification pathways, and response to oxidative stress. For example, the expression of the gene encoding OsAAO5, which is known to function in detoxifying oxidative stress, was two times increased by EPS treatment. Moreover, EPS application improved SPAD and dry weights of shoot and root by 90%, 14%, and 27%, respectively, under drought stress and increased SPAD by 59% under salt stress. It indicates that bacterial EPSs improved plant growth under abiotic stresses. Based on our results, we consider that EPSs purified from Enterobacter ludwigii can be used to develop biostimulants for rice.
Collapse
Affiliation(s)
- Yosra Aoudi
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Shin-ichiro Agake
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumicho, Fuchu-shi 183-8538, Tokyo, Japan;
- Division of Plant Science and Technology, University of Missouri—Bond Life Sciences Center, 1201 Rollins St., Columbia, MO 65201-4231, USA
| | - Safiullah Habibi
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Gary Stacey
- Division of Plant Science and Technology, University of Missouri—Bond Life Sciences Center, 1201 Rollins St., Columbia, MO 65201-4231, USA
| | - Michiko Yasuda
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumicho, Fuchu-shi 183-8538, Tokyo, Japan;
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumicho, Fuchu-shi 183-8538, Tokyo, Japan;
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu-shi 183-8509, Tokyo, Japan
| |
Collapse
|
2
|
Benhadda F, Zykwinska A, Colliec-Jouault S, Sinquin C, Thollas B, Courtois A, Fuzzati N, Toribio A, Delbarre-Ladrat C. Marine versus Non-Marine Bacterial Exopolysaccharides and Their Skincare Applications. Mar Drugs 2023; 21:582. [PMID: 37999406 PMCID: PMC10672628 DOI: 10.3390/md21110582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Bacteria are well-known to synthesize high molecular weight polysaccharides excreted in extracellular domain, which constitute their protective microenvironment. Several bacterial exopolysaccharides (EPS) are commercially available for skincare applications in cosmetic products due to their unique structural features, conferring valuable biological and/or textural properties. This review aims to give an overview of bacterial EPS, an important group of macromolecules used in cosmetics as actives and functional ingredients. For this purpose, the main chemical characteristics of EPS are firstly described, followed by the basics of the development of cosmetic ingredients. Then, a focus on EPS production, including upstream and downstream processes, is provided. The diversity of EPS used in the cosmetic industry, and more specifically of marine-derived EPS is highlighted. Marine bacteria isolated from extreme environments are known to produce EPS. However, their production processes are highly challenging due to high or low temperatures; yield must be improved to reach economically viable ingredients. The biological properties of marine-derived EPS are then reviewed, resulting in the highlight of the challenges in this field.
Collapse
Affiliation(s)
- Fanny Benhadda
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Sylvia Colliec-Jouault
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | | | | | - Nicola Fuzzati
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Alix Toribio
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Christine Delbarre-Ladrat
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| |
Collapse
|
3
|
Wu J, Han X, Ye M, Li Y, Wang X, Zhong Q. Exopolysaccharides synthesized by lactic acid bacteria: biosynthesis pathway, structure-function relationship, structural modification and applicability. Crit Rev Food Sci Nutr 2022; 63:7043-7064. [PMID: 35213280 DOI: 10.1080/10408398.2022.2043822] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Probiotics and their fermentation products are increasingly been focused on due to their health-boosting effects. Exopolysaccharides (EPS) synthetized by lactic acid bacteria (LAB) are widely applied as texture modifiers in dairy, meat and bakery products owning to their improved properties. Moreover, LAB-derived EPS have been confirmed to possess diverse physiological bioactivities including antioxidant, anti-biofilm, antiviral, immune-regulatory or antitumor. However, the low production and high acquisition cost hinder their development. Even though LAB-derived EPS have been extensively studied for their production-improving, there are only few reports on the systematic elucidation and summary of the relationship among biosynthesis pathway, strain selection, production parameter, structure-function relationship. Therefore, a detailed summary on biosynthesis pathway, production parameter and structure-function relationship of LAB-derived EPS is provided in this review, the structural modifications together with the current and potential applications are also discussed in this paper.
Collapse
Affiliation(s)
- Jinsong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Department of Science, Henan University of Animal Husbandry and Economy, Henan, Zhengzhou, China
| | - Xiangpeng Han
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Meizhi Ye
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yao Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xi Wang
- Department of Science, Henan University of Animal Husbandry and Economy, Henan, Zhengzhou, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Barcelos MCS, Vespermann KAC, Pelissari FM, Molina G. Current status of biotechnological production and applications of microbial exopolysaccharides. Crit Rev Food Sci Nutr 2019; 60:1475-1495. [PMID: 30740985 DOI: 10.1080/10408398.2019.1575791] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbial exopolysaccharides (EPS) are an abundant and important group of compounds that can be secreted by bacteria, fungi and algae. The biotechnological production of these substances represents a faster alternative when compared to chemical and plant-derived production with the possibility of using industrial wastes as substrates, a feasible strategy after a comprehensive study of factors that may affect the synthesis by the chosen microorganism and desirable final product. Another possible difficulty could be the extraction and purification methods, a crucial part of the production of microbial polysaccharides, since different methods should be adopted. In this sense, this review aims to present the biotechnological production of microbial exopolysaccharides, exploring the production steps, optimization processes and current applications of these relevant bioproducts.
Collapse
Affiliation(s)
- Mayara C S Barcelos
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Kele A C Vespermann
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Franciele M Pelissari
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Gustavo Molina
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| |
Collapse
|
5
|
Morin A, Heckert M, Poitras E, Leblanc D, Brion F, Moresoli C. Exopolysaccharide production on low-grade maple sap byEnterobacter agglomeransgrown in small scale bioreactors. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1995.tb03120.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Abstract
Microbial polysaccharides are multifunctional and can be divided into intracellular polysaccharides, structural polysaccharides and extracellular polysaccharides or exopolysaccharides (EPS). Extracellular polymeric substances (EPS), produced by both prokaryotes (eubacteria and archaebacteria) and eukaryotes (phytoplankton, fungi, and algae), have been of topical research interest. Newer approaches are carried out today to replace the traditionally used plant gums by their bacterial counterparts. The bacterial exopolysaccharides represent a wide range of chemical structures, but have not yet acquired appreciable significance. Chemically, EPS are rich in high molecular weight polysaccharides (10 to 30 kDa) and have heteropolymeric composition. They have new-fangled applications due to the unique properties they possess. Owing to this, exopolysaccharides have found multifarious applications in the food, pharmaceutical and other industries. Hence, the present article converges on bacterial exopolysaccharides.
Collapse
Affiliation(s)
- Anita Suresh Kumar
- Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | | | | |
Collapse
|
7
|
Purchase D, Miles RJ, Young TW. Cadmium uptake and nitrogen fixing ability in heavy-metal-resistant laboratory and field strains of Rhizobium leguminosarum biovar trifolii. FEMS Microbiol Ecol 2006. [DOI: 10.1111/j.1574-6941.1997.tb00359.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
|