1
|
Fox LJ, Kelly PP, Humphreys GJ, Waigh TA, Lu JR, McBain AJ. Assessing the risk of resistance to cationic biocides incorporating realism-based and biophysical approaches. J Ind Microbiol Biotechnol 2022; 49:kuab074. [PMID: 34718634 PMCID: PMC9113109 DOI: 10.1093/jimb/kuab074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022]
Abstract
The control of microorganisms is a key objective in disease prevention and in medical, industrial, domestic, and food-production environments. Whilst the effectiveness of biocides in these contexts is well-evidenced, debate continues about the resistance risks associated with their use. This has driven an increased regulatory burden, which in turn could result in a reduction of both the deployment of current biocides and the development of new compounds and formulas. Efforts to balance risk and benefit are therefore of critical importance and should be underpinned by realistic methods and a multi-disciplinary approach, and through objective and critical analyses of the literature. The current literature on this topic can be difficult to navigate. Much of the evidence for potential issues of resistance generation by biocides is based on either correlation analysis of isolated bacteria, where reports of treatment failure are generally uncommon, or laboratory studies that do not necessarily represent real biocide applications. This is complicated by inconsistencies in the definition of the term resistance. Similar uncertainties also apply to cross-resistance between biocides and antibiotics. Risk assessment studies that can better inform practice are required. The resulting knowledge can be utilised by multiple stakeholders including those tasked with new product development, regulatory authorities, clinical practitioners, and the public. This review considers current evidence for resistance and cross-resistance and outlines efforts to increase realism in risk assessment. This is done in the background of the discussion of the mode of application of biocides and the demonstrable benefits as well as the potential risks.
Collapse
Affiliation(s)
- Laura J Fox
- Biological Physics, Department of Physics and Astronomy, Schuster Building, Faculty of Science and Engineering, University of Manchester, M13 9PL, UK
| | - Paul P Kelly
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Gavin J Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Thomas A Waigh
- Biological Physics, Department of Physics and Astronomy, Schuster Building, Faculty of Science and Engineering, University of Manchester, M13 9PL, UK
| | - Jian R Lu
- Biological Physics, Department of Physics and Astronomy, Schuster Building, Faculty of Science and Engineering, University of Manchester, M13 9PL, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
2
|
Modeling Oral Multispecies Biofilm Recovery After Antibacterial Treatment. Sci Rep 2019; 9:804. [PMID: 30692576 PMCID: PMC6349915 DOI: 10.1038/s41598-018-37170-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/28/2018] [Indexed: 11/18/2022] Open
Abstract
Recovery of multispecies oral biofilms is investigated following treatment by chlorhexidine gluconate (CHX), iodine-potassium iodide (IPI) and Sodium hypochlorite (NaOCl) both experimentally and theoretically. Experimentally, biofilms taken from two donors were exposed to the three antibacterial solutions (irrigants), respectively, for 10 minutes. We observe that (a) live bacterial cell ratios decline for a week after the exposure and the trend then reverses beyond the week; after fifteen weeks, live bacterial cell ratios in biofilms fully return to their pretreatment levels; (b) NaOCl is shown as the strongest antibacterial agent for the oral biofilms; (c) multispecies oral biofilms from different donors showed no difference in their susceptibility to all the bacterial solutions. Guided by the experiment, a mathematical model for biofilm dynamics is developed, accounting for multiple bacterial phenotypes, quorum sensing, and growth factor proteins, to describe the nonlinear time evolutionary behavior of the biofilms. The model captures time evolutionary dynamics of biofilms before and after antibacterial treatment very well. It reveals the important role played by quorum sensing molecules and growth factors in biofilm recovery and verifies that the source of biofilms has a minimal effect to their recovery. The model is also applied to describe the state of biofilms of various ages treated respectively by CHX, IPI and NaOCl, taken from different donors. Good agreement with experimental data predicted by the model is obtained as well, confirming its applicability to modeling biofilm dynamics in general.
Collapse
|
3
|
Santhakumar K, Viswanath V. Novel Methods for Efficacy Testing of Disinfectants – Part I. TENSIDE SURFACT DET 2019. [DOI: 10.3139/113.110597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
The pathogens which are the effective transmitters of various infections pose a serious problem in restraining their interference in maintaining a sterile environment. The practical applicability of traditional methods of disinfection is restricted due to their cumbersomeness, toxic product generation, and cost-effectiveness. Therefore, the objective of the current review is to elaborate the efficacies and limitations of various novel disinfectants that can show their activity in a few minutes of treatment. The expected outcome would be feasibility for selection of a favorable disinfectant through various technologies that can generate uniform results and form a basis for the true estimation required parameters. Hence, the current paper ends with the consideration of unique new techniques that distinguishes their simplicity, safety, and efficacy in generating a sterile environment.
Collapse
Affiliation(s)
| | - Valikala Viswanath
- Carbon dioxide Research and Green Technologies Center , VIT University, Tamil Nadu , India
| |
Collapse
|
4
|
Humayoun SB, Hiott LM, Gupta SK, Barrett JB, Woodley TA, Johnston JJ, Jackson CR, Frye JG. An assay for determining the susceptibility of Salmonella isolates to commercial and household biocides. PLoS One 2018; 13:e0209072. [PMID: 30571686 PMCID: PMC6301668 DOI: 10.1371/journal.pone.0209072] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
Poultry and meat products contaminated with Salmonella enterica are a major cause of foodborne illness in the United States. The food industries use a wide variety of antimicrobial interventions to reduce bacterial contamination. However, little is known about Salmonella susceptibility to these compounds and some studies have shown a concerning link between biocide resistance and antibiotic resistance. To investigate this, a 96 well panel of 17 common household and commercially used biocides was designed to determine the minimum inhibitory concentrations (MIC) of these compounds for Salmonella. The panel contained two-fold serial dilutions of chemicals including Dodecyltrimethylammonium chloride (DC), Benzalkonium chloride (BKC), Cetylpyridinium chloride (CPC), Hexadecyltrimethylammonium bromide (HB), Hexadecyltrimethylammonium chloride (HC), Acetic acid (AA), Lactic acid (LA), Citric acid (CA), Peroxyacetic acid (PXA), Acidified sodium chlorite (ASC), Sodium hypochlorite (SHB), 1,3 dibromo, 5,5 dimethylhydantoin (DBH), Chlorhexidine (CHX), Sodium metasilicate (SM), Trisodium phosphate (TSP), Arsenite (ARI), and Arsenate (ARA). The assay was used to test the susceptibility of 88 multidrug resistant (MDR) Salmonella isolates from animal sources. Bacteria are defined as multidrug resistant (MDR) if it exhibited non-susceptibility to at least one agent in three or more antimicrobial categories. The concentration of biocide at which ≥50% of the isolates could not grow was designated as the minimum inhibitory concentration or MIC50 and was used as the breakpoint in this study. The MIC50 (μg ml-1) for the tested MDR Salmonella was 256 for DC, 40 for BKC, 80 for CPC. HB and HC, 1,640 for AA, 5664 for LA, 3,156 for CA, 880 for PXA, 320 for ASC, 3.0 for CHX, 1,248 for DBH, 3,152 (6%) for SHB, 60,320 for SM, 37,712 for TSP, 56 for ARI and 832 for ARA. A few isolates were not susceptible at the MIC50 breakpoint to some chemicals indicating possible resistance. Isolates with MICs of two 2-fold dilutions above the MIC50 were considered resistant. Biocides for which resistant isolates were detected included CPC (n = 1 isolate), HB (1), CA (18), ASC (7), CHX (22), ARA (16), and ARI (4). There was no correlation detected between the biocide susceptibility of Salmonella isolates and antibiotic resistance. This assay can determine the MICs of bacteria to 17 biocides in a single test and will be useful in evaluating the efficacy of biocides and to detect the development of resistance to them.
Collapse
Affiliation(s)
- Shaheen B. Humayoun
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - Lari M. Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - Sushim K. Gupta
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - John B. Barrett
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - Tiffanie A. Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - John J. Johnston
- United States Department of Agriculture, Food Safety and Inspection Service, Fort Collins, CO, United States of America
| | - Charlene R. Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - Jonathan G. Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| |
Collapse
|
5
|
The Effect of Some Antiseptics on Molds and Yeasts Isolated from Wards in Al-Diwaniya Teaching Hospital, Iraq. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Robertson J, Dalton J, Wiles S, Gizdavic-Nikolaidis M, Swift S. The tuberculocidal activity of polyaniline and functionalised polyanilines. PeerJ 2016; 4:e2795. [PMID: 28028468 PMCID: PMC5178338 DOI: 10.7717/peerj.2795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis is considered a leading cause of death worldwide. More than 95% of cases and deaths occur in low- and middle-income countries. In resource-limited countries, hospitals often lack adequate facilities to manage and isolate patients with infectious tuberculosis (TB), relying instead on personal protective equipment, such as facemasks, to reduce nosocomial transmission of the disease. Facemasks impregnated with an antimicrobial agent may be a cost-effective way of adding an extra level of protection against the spread of TB by reducing the risk of disease transmission. Conducting polymers, such as polyaniline (PANI), and their functionalised derivatives are a novel class of antimicrobial agents with potential as non-leaching additives to provide contamination resistant surfaces. We have investigated the antimicrobial action of PANI and a functionalised derivative, poly-3-aminobenzoic acid (P3ABA), against mycobacteria and have determined the optimal treatment time and concentration to achieve significant knockdown of Mycobacterium smegmatis and Mycobacterium tuberculosis on an agar surface. Results indicated that P3ABA is a potential candidate for use as an anti-tuberculoid agent in facemasks to reduce TB transmission.
Collapse
Affiliation(s)
- Julia Robertson
- Department of Molecular Medicine and Pathology, University of Auckland , Auckland , New Zealand
| | - James Dalton
- Department of Molecular Medicine and Pathology, University of Auckland , Auckland , New Zealand
| | - Siouxsie Wiles
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; Bioluminescent Superbugs Lab, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | | | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland , Auckland , New Zealand
| |
Collapse
|
7
|
Shackelford JCN, Hanlon GW, Maillard JY. Use of a new alginate film test to study the bactericidal efficacy of the high-level disinfectant ortho-phthalaldehyde. J Antimicrob Chemother 2005; 57:335-8. [PMID: 16332730 DOI: 10.1093/jac/dki432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To evaluate the merit of a new alginate efficacy film test to determine the bactericidal activity of the high-level disinfectant ortho-phthalaldehyde (OPA). METHODS The efficacy of OPA was investigated using a new sodium alginate surface film test against Mycobacterium chelonae NCIMB 1474 and Epping, and Pseudomonas aeruginosa NCIMB 10421 under different test conditions. RESULTS OPA was highly bactericidal against P. aeruginosa but its mycobactericidal efficacy was seriously reduced and produced >or=5 log reductions only at a concentration of 0.5% (w/v) within 30-60 min without organic load. CONCLUSIONS The sodium alginate film efficacy was reproducible between repeats. Inactivation results depended upon the concentration of OPA, contact time, the presence of an organic load and the bacterial genera.
Collapse
Affiliation(s)
- J C N Shackelford
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | | | | |
Collapse
|
8
|
Scanlon MP, Quinn PJ. Inactivation of Mycobacterium bovis in cattle slurry by five volatile chemicals. J Appl Microbiol 2000; 89:854-61. [PMID: 11119161 DOI: 10.1046/j.1365-2672.2000.01190.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This research was undertaken to evaluate volatile chemicals which retained mycobactericidal activity in cattle slurry. Mycobacterium bovis, suspended in sterilized cattle slurry, was treated with different concentrations of five volatile chemicals with mycobactericidal activity. Following treatment of the slurry for specified time intervals, the reaction mixture was lyophilized to remove the volatile chemicals, and samples of the reconstituted slurry were used to inoculate flasks of Lowenstein-Jensen medium to determine survival or inactivation of the mycobacteria. Acetone, at a concentration of 22.5%, inactivated M. bovis in less than 24 h. Ammonium hydroxide, at a concentration of 1%, was mycobactericidal after 36 h. Chloroform at a concentration of 0.5%, ethyl alcohol at a concentration of 17.5% and xylene at a concentration of 3% inactivated the mycobacteria within 48 h. Some of the volatile chemicals with mycobactericidal activity are potentially useful at farm level.
Collapse
Affiliation(s)
- M P Scanlon
- Department of Veterinary Microbiology and Parasitology, University College Dublin, Ireland
| | | |
Collapse
|