1
|
Liang Q, Liu Z, Liang Z, Fu X, Li D, Zhu C, Kong Q, Mou H. Current challenges and development strategies of bacteriocins produced by lactic acid bacteria applied in the food industry. Compr Rev Food Sci Food Saf 2025; 24:e70038. [PMID: 39674838 DOI: 10.1111/1541-4337.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 12/16/2024]
Abstract
Given the great importance of natural biopreservatives in the modern food industry, lactic acid bacteria (LAB)-producing bacteriocins have gained considerable attention due to their antimicrobial activity against foodborne pathogens and spoilage bacteria. Although numerous LAB-producing bacteriocins have demonstrated efficiency in preserving food quality in various applications, only a limited number of these compounds have been commercially approved to date. The currently unclear gastrointestinal metabolism of bacteriocins may pose safety risks, as well as cytotoxicity and immunogenicity, which need to be seriously considered before their application. A more noteworthy concern lies in whether bacteriocins induce an imbalance in the gut microbiota, thereby leading to alterations in the abundance of health-associated microorganisms and their metabolites in the gastrointestinal tract. Accordingly, this review presents unique insights into the challenges arising from metabolic interactions between LAB-producing bacteriocins and the gastrointestinal tract. Besides, the application of bacteriocins in the food industry faces challenges arising from the low production yield, weak stability, and insufficient antimicrobial activity. The corresponding development strategies are proposed for conducting the systematic and comprehensive evaluation of the potential safety risks of bacteriocins and their metabolites. The strategies also focus on the rational design to increase the activity and stability, the fermentation control to enhance the production yield, and the hurdle and embedding technology to improve the application effects. It definitively discloses the perspective of bacteriocins to become natural, sustainable, safe, and eco-friendly biological preservatives for the advancement of the food industry.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Molecular Characterization, Purification, and Mode of Action of Enterocin KAE01 from Lactic Acid Bacteria and Its In Silico Analysis against MDR/ESBL Pseudomonas aeruginosa. Genes (Basel) 2022; 13:genes13122333. [PMID: 36553599 PMCID: PMC9777700 DOI: 10.3390/genes13122333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Bacteriocins are gaining immense importance in therapeutics since they show significant antibacterial potential. This study reports the bacteriocin KAE01 from Enterococcus faecium, along with its characterization, molecular modeling, and antibacterial potency, by targeting the matrix protein of Pseudomonas aeruginosa. The bacteriocin was purified by using ammonium sulfate precipitation and fast protein liquid chromatography (FPLC), and its molecular weight was estimated as 55 kDa by means of SDS-PAGE. The bacteriocin was found to show stability in a wide range of pH values (2.0-10.0) and temperatures (100 °C for 1 h and 121 °C for 15 min). Antimicrobial screening of the purified peptide against different strains of P. aeruginosa showed its significant antibacterial potential. Scanning electron microscopy of bacteriocin-induced bacterial cultures revealed significant changes in the cellular morphology of the pathogens. In silico molecular modeling of KAE01, followed by molecular docking of the matrix protein (qSA) of P. aeruginosa and KAE01, supported the antibacterial potency and SEM findings of this study.
Collapse
|
3
|
Huang Z, Zhou X, Stanton C, Ross RP, Zhao J, Zhang H, Yang B, Chen W. Comparative Genomics and Specific Functional Characteristics Analysis of Lactobacillus acidophilus. Microorganisms 2021; 9:microorganisms9091992. [PMID: 34576887 PMCID: PMC8464880 DOI: 10.3390/microorganisms9091992] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 01/26/2023] Open
Abstract
Lactobacillus acidophilus is a common kind of lactic acid bacteria usually found in the human gastrointestinal tract, oral cavity, vagina, and various fermented foods. At present, many studies have focused on the probiotic function and industrial application of L. acidophilus. Additionally, dozens of L. acidophilus strains have been genome sequenced, but there has been no research to compare them at the genomic level. In this study, 46 strains of L. acidophilus were performed comparative analyses to explore their genetic diversity. The results showed that all the L. acidophilus strains were divided into two clusters based on ANI values, phylogenetic analysis and whole genome comparison, due to the difference of their predicted gene composition of bacteriocin operon, CRISPR-Cas systems and prophages mainly. Additionally, L. acidophilus was a pan-genome open species with a difference in carbohydrates utilization, antibiotic resistance, EPS operon, surface layer protein operon and other functional gene composition. This work provides a better understanding of L. acidophilus from a genetic perspective, and offers a frame for the biotechnological potentiality of this species.
Collapse
Affiliation(s)
- Zheng Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingya Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China; (C.S.); (R.P.R.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Reynolds Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China; (C.S.); (R.P.R.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China; (C.S.); (R.P.R.)
- Correspondence: ; Tel.: +86-510-8591-2155
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.H.); (X.Z.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Dean SN, Rimmer MA, Turner KB, Phillips DA, Caruana JC, Hervey WJ, Leary DH, Walper SA. Lactobacillus acidophilus Membrane Vesicles as a Vehicle of Bacteriocin Delivery. Front Microbiol 2020; 11:710. [PMID: 32425905 PMCID: PMC7203471 DOI: 10.3389/fmicb.2020.00710] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Recent reports have shown that Gram-positive bacteria actively secrete spherical nanometer-sized proteoliposome membrane vesicles (MVs) into their surroundings. Though MVs are implicated in a broad range of biological functions, few studies have been conducted to examine their potential as delivery vehicles of antimicrobials. Here, we investigate the natural ability of Lactobacillus acidophilus MVs to carry and deliver bacteriocin peptides to the opportunistic pathogen, Lactobacillus delbrueckii. We demonstrate that upon treatment with lactacin B-inducing peptide, the proteome of the secreted MVs is enriched in putative bacteriocins encoded by the lab operon. Further, we show that purified MVs inhibit growth and compromise membrane integrity in L. delbrueckii, which is confirmed by confocal microscopy imaging and spectrophotometry. These results show that L. acidophilus MVs serve as conduits for antimicrobials to competing cells in the environment, suggesting a potential role for MVs in complex communities such as the gut microbiome. With the potential for controlling their payload through microbial engineering, MVs produced by L. acidophilus may be an interesting platform for effecting change in complex microbial communities or aiding in the development of new biomedical therapeutics.
Collapse
Affiliation(s)
- Scott N. Dean
- National Research Council Associate, Washington, DC, United States
| | | | - Kendrick B. Turner
- US Naval Research Laboratory, Center for Bio/Molecular Science & Engineering (Code 6900), Washington, DC, United States
| | - Daniel A. Phillips
- American Society for Engineering Education Associate, Washington, DC, United States
| | - Julie C. Caruana
- American Society for Engineering Education Associate, Washington, DC, United States
| | - William Judson Hervey
- US Naval Research Laboratory, Center for Bio/Molecular Science & Engineering (Code 6900), Washington, DC, United States
| | - Dagmar H. Leary
- US Naval Research Laboratory, Center for Bio/Molecular Science & Engineering (Code 6900), Washington, DC, United States
| | - Scott A. Walper
- US Naval Research Laboratory, Center for Bio/Molecular Science & Engineering (Code 6900), Washington, DC, United States
| |
Collapse
|
5
|
Sadishkumar V, Jeevaratnam K. Purification and partial characterization of antilisterial bacteriocin produced byPediococcus pentosaceusKJBC11 fromIdlibatter fermented withPiper betleleaves. J Food Biochem 2017. [DOI: 10.1111/jfbc.12460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Vishwanathan Sadishkumar
- Department of Biochemistry and Molecular Biology; Pondicherry University; Puducherry, 605014 India
| | - Kadirvelu Jeevaratnam
- Department of Biochemistry and Molecular Biology; Pondicherry University; Puducherry, 605014 India
| |
Collapse
|
6
|
Quintana G, Niederle MV, Minahk CJ, Picariello G, Nader-Macías MEF, Pasteris SE. Nisin Z produced by Lactococcus lactis from bullfrog hatchery is active against Citrobacter freundii, a red-leg syndrome related pathogen. World J Microbiol Biotechnol 2017; 33:186. [DOI: 10.1007/s11274-017-2353-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
7
|
Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria. Appl Microbiol Biotechnol 2017; 101:1323-1335. [DOI: 10.1007/s00253-017-8088-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022]
|
8
|
Garsa AK, Kumariya R, Sood SK, Kumar A, Kapila S. Bacteriocin production and different strategies for their recovery and purification. Probiotics Antimicrob Proteins 2016; 6:47-58. [PMID: 24676767 DOI: 10.1007/s12602-013-9153-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteriocins from lactic acid bacteria (LAB) are a diverse group of antimicrobial proteins/peptides, offering potential as biopreservatives, and exhibit a broad spectrum of antimicrobial activity at low concentrations along with thermal as well as pH stability in foods. High bacteriocin production usually occurs in complex media. However, such media are expensive for an economical production process. For effective use of bacteriocins as food biopreservatives, there is a need to have heat-stable wide spectrum bacteriocins produced with high-specific activity in food-grade medium. The main hurdles concerning the application of bacteriocins as food biopreservatives is their low yield in food-grade medium and time-consuming, expensive purification processes, which are suitable at laboratory scale but not at industrial scale. So, the present review focuses on the bacteriocins production using complex and food-grade media, which mainly emphasizes on the bacteriocin producer strains, media used, different production systems used and effect of different fermentation conditions on the bacteriocin production. In addition, this review emphasizes the purification processes designed for efficient recovery of bacteriocins at small and large scale.
Collapse
Affiliation(s)
- Anita Kumari Garsa
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India,
| | | | | | | | | |
Collapse
|
9
|
Wannun P, Piwat S, Teanpaisan R. Purification, Characterization, and Optimum Conditions of Fermencin SD11, a Bacteriocin Produced by Human Orally Lactobacillus fermentum SD11. Appl Biochem Biotechnol 2016; 179:572-82. [PMID: 26892008 DOI: 10.1007/s12010-016-2014-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
Fermencin SD11, a bacteriocin produced by human orally Lactobacillus fermentum SD11, was purified, characterized, and optimized in conditions for bacterial growth and bacteriocin production. Fermencin SD11 was purified using three steps of ammonium sulfate precipitation, gel filtration chromatography, and reverse-phase high-performance liquid chromatography. The molecular weight was found to be 33,000 Da using SDS-PAGE and confirmed as 33,593.4 Da by liquid chromatography-mass spectrometry. Fermencin SD11 exhibited activity against a wide range of oral pathogens including cariogenic and periodontogenic pathogens and Candida. The active activity was stable between 60 - 80 °C in a pH range of 3.0 to 7.0. It was sensitive to proteolytic enzymes (proteinase K and trypsin), but it was not affected by α-amylase, catalase, lysozyme, and saliva. The optimum conditions for growth and bacteriocin production of L. fermentum SD11 were cultured at acidic with pH of 5.0-6.0 at 37 or 40 °C under aerobic or anaerobic conditions for 12 h. It is promising that L. fermentum SD11 and its bacteriocin may be an alternative approach for promoting oral health or prevention of oral diseases, e.g., dental caries and periodontitis, which would require further clinical trials.
Collapse
Affiliation(s)
- Phirawat Wannun
- Common Oral Diseases and Epidemiology Research Center and the Department of Stomatology, Faculty of Dentistry, Prince of Songkla University, Hat-Yai, 90112, Thailand
| | - Supatcharin Piwat
- Common Oral Diseases and Epidemiology Research Center and the Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat-Yai, 90112, Thailand
| | - Rawee Teanpaisan
- Common Oral Diseases and Epidemiology Research Center and the Department of Stomatology, Faculty of Dentistry, Prince of Songkla University, Hat-Yai, 90112, Thailand.
| |
Collapse
|
10
|
Manzo RM, Cardoso MDLM, Tonarelli GG, Simonetta AC. Purification of two bacteriocins produced byEnterococcus faecalisDBFIQ E24 strain isolated from raw bovine milk. INT J DAIRY TECHNOL 2015. [DOI: 10.1111/1471-0307.12258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ricardo M. Manzo
- Cátedras de Microbiología y Biotecnología; Departamento de Ingeniería en Alimentos; Facultad de Ingeniería Química (F.I.Q.); Universidad Nacional del Litoral (U.N.L.); Santa Fe Argentina
- Departamento de Química Orgánica; Universidad Nacional del Litoral (U.N.L.); Ciudad Universitaria; Paraje “El Pozo” Santa Fe Argentina
| | - María de las Mercedes Cardoso
- Cátedras de Microbiología y Biotecnología; Departamento de Ingeniería en Alimentos; Facultad de Ingeniería Química (F.I.Q.); Universidad Nacional del Litoral (U.N.L.); Santa Fe Argentina
- Departamento de Química Orgánica; Universidad Nacional del Litoral (U.N.L.); Ciudad Universitaria; Paraje “El Pozo” Santa Fe Argentina
| | - Georgina G. Tonarelli
- Departamento de Química Orgánica; Universidad Nacional del Litoral (U.N.L.); Ciudad Universitaria; Paraje “El Pozo” Santa Fe Argentina
| | - Arturo C. Simonetta
- Cátedras de Microbiología y Biotecnología; Departamento de Ingeniería en Alimentos; Facultad de Ingeniería Química (F.I.Q.); Universidad Nacional del Litoral (U.N.L.); Santa Fe Argentina
| |
Collapse
|
11
|
Paraplantaricin L-ZB1, a Novel Bacteriocin and Its Application as a Biopreservative Agent on Quality and Shelf Life of Rainbow Trout Fillets Stored at 4 °C. Appl Biochem Biotechnol 2014; 174:2295-306. [DOI: 10.1007/s12010-014-1160-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
|
12
|
Bali V, Panesar PS, Bera MB, Kennedy JF. Bacteriocins: Recent Trends and Potential Applications. Crit Rev Food Sci Nutr 2014; 56:817-34. [DOI: 10.1080/10408398.2012.729231] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Mahmood T, Masud T, Sohail A. Some probiotic and antibacterial properties of Lactobacillus acidophilus cultured from dahi a native milk product. Int J Food Sci Nutr 2014; 65:582-8. [PMID: 24689927 DOI: 10.3109/09637486.2014.880666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, different strains of Lactobacillus acidophilus from dahi were analyzed for certain probiotic and antibacterial properties. Initially, these strains were confirmed by the amplification of 16S rRNA regions and then screened for antibacterial activities against food borne pathogens. The phenotypic relationship between apparent antibacterial activity and cell wall proteins were established by cluster analysis. It was observed that those strains, which have prominent bands having size 22-25 kDa possess antibacterial activity. On the basis of wide spectrum of killing pattern, a strain LA06FT was further characterized that showed no change in its behavior when subjected to the antibiotic protected environment and grow well in acid-bile conditions. The bacteriocin produced by this strain has specific antibacterial activity of 5369.13 AU mg(-1). It remained stable at 60-90 °C and pH range of 4.5-6.5 while proteolytic enzymes inactivate the bacteriocin that confirm its proteinic nature having molecular weight of ≤8.5 kDa.
Collapse
Affiliation(s)
- Talat Mahmood
- Department of Food Technology, Pir Mehr Ali Shah Arid Agriculture University , Rawalpindi , Pakistan
| | | | | |
Collapse
|
14
|
Nandakumar R, Talapatra K. Quantitative profiling of bacteriocins present in dairy-free probiotic preparations of Lactobacillus acidophilus by nanoliquid chromatography-tandem mass spectrometry. J Dairy Sci 2014; 97:1999-2008. [PMID: 24565320 DOI: 10.3168/jds.2013-7470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/28/2013] [Indexed: 01/22/2023]
Abstract
Bacteriocins are a heterogeneous group of ribosomally synthesized peptides or proteins with antimicrobial activity, produced predominantly by lactic acid bacteria, with potential applications as biopreservatives and probiotics. We describe here a novel strategy based on a bottom-up, shotgun proteomic approach using nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) with multiple fragmentation techniques for the quantitative profiling of bacteriocins present in the probiotic preparations of Lactobacillus acidophilus. A direct LC-MS/MS analysis with alternate collision-induced dissociation, high-energy collision dissociation, and electron-transfer dissociation fragmentation following a filter-assisted size-exclusion sample prefractionation has resulted in the identification of peptides belonging to 37 bacteriocins or related proteins. Peptides from lactacin F, helveticin J, lysin, avicin A, acidocin M, curvaticin FS47, and carocin D were predominant. The process of freeze drying under vacuum was observed to affect both the diversity and abundance of bacteriocins. Data acquisition using alternating complementary peptide fragmentation modes, especially electron-transfer dissociation, has significantly enhanced the peptide sequence coverage and number of bacteriocin peptides identified. Multi-enzyme proteolytic digestion was observed to increase the sample complexity and dynamic range, lowering the chances of detection of low-abundant bacteriocin peptides by LC-MS/MS. An analytical platform integrating size exclusion prefractionation, nanoLC-MS/MS analysis with multiple fragmentation techniques, and data-dependent decision tree-driven bioinformatic data analysis is novel in bacteriocin research and suitable for the comprehensive bioanalysis of diverse, low-abundant bacteriocins in complex samples.
Collapse
Affiliation(s)
- Renu Nandakumar
- Proteomics and Metabolomics Core Facility, Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln 68588.
| | - Kesh Talapatra
- Natren Inc., 2382 Townsgate Rd, Westlake Village, CA 91361
| |
Collapse
|
15
|
Anjum N, Maqsood S, Masud T, Ahmad A, Sohail A, Momin A. Lactobacillus acidophilus: Characterization of the Species and Application in Food Production. Crit Rev Food Sci Nutr 2014; 54:1241-51. [DOI: 10.1080/10408398.2011.621169] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Abo-Amer AE. Inhibition of foodborne pathogens by a bacteriocin-like substance produced by a novel strain of Lactobacillus Acidophilus isolated from camel milk. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813030174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Beshkova D, Frengova G. Bacteriocins from lactic acid bacteria: Microorganisms of potential biotechnological importance for the dairy industry. Eng Life Sci 2012. [DOI: 10.1002/elsc.201100127] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
18
|
Seatovic S, Jovanovic-Novakovic J, Zavisic G, Radulovic Z, Gavrovic-Jankulovic M, Jankov R. The partial characterization of the antibacterial peptide bacteriocin G2 produced by the probiotic bacteria Lactobacillus plantarum G2. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2011. [DOI: 10.2298/jsc100605060s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was the partial characterization of the antimicrobial
peptide bacteriocin G2 produced by probiotic bacteria Lactobacillus
plantarum G2, which was isolated from a clinical sample of a healthy person.
Antimicrobial substance was secreted in the supernatant of an L. plantarum
G2 culture, and showed a diverse spectrum of antimicrobial activity of all
the tested strains of the genera Lactobacillus and the pathogenic bacteria
Staphylococcus aureus and Salmonella ?bony. Isoelectric focusing revealed
that bacteriocin G2 is a cationic peptide (pI about 10) with a molecular
mass of 2.2 kDa according to tricine-sodium dodecyl sulphate-polyacrylamide
gel electrophoresis, SDS-PAGE. The antimicrobial activity of bacteriocin G2
was diminished by the proteolytic action of trypsin and proteinase K.
Bacteriocin G2 preserved its biological activity in the temperature range
40-60?C (15 min), which was lost at 80?C. Bacteriocin G2 was stable in the
pH range 2-9, while treatment with 1 % Tween 80 and 1 % urea resulted in
increased antimicrobial activity. The probiotic strain L. plantarum G2
produces the antimicrobial substance proteinaceous in nature with
bacteriocin characteristics. Bacteriocin production is one of the key
properties of probiotic bacteria with clinical potential as anti-infective
agents, which will increase the likelihood of its in vivo efficacy.
Collapse
|
19
|
Antimicrobial compounds produced by Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian meat product. J Ind Microbiol Biotechnol 2009; 37:381-90. [DOI: 10.1007/s10295-009-0684-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
|
20
|
D'ANGELIS C, POLIZELLO A, NONATO M, SPADARO A, DE MARTINIS E. PURIFICATION, CHARACTERIZATION AND N-TERMINAL AMINO ACID SEQUENCING OF SAKACIN 1, A BACTERIOCIN PRODUCED BYLACTOBACILLUS SAKEI1. J Food Saf 2009. [DOI: 10.1111/j.1745-4565.2009.00183.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Tabasco R, García-Cayuela T, Peláez C, Requena T. Lactobacillus acidophilus La-5 increases lactacin B production when it senses live target bacteria. Int J Food Microbiol 2009; 132:109-16. [PMID: 19411126 DOI: 10.1016/j.ijfoodmicro.2009.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/01/2009] [Accepted: 04/05/2009] [Indexed: 10/20/2022]
Abstract
Lactobacillus acidophilus La-5 is a probiotic strain used in dairy products. Production of bacteriocin by L. acidophilus La-5 was achieved when it was grown in co-cultures with the yogurt starter species Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. However, bacteriocin induction was not observed when heat-killed cells were used as inducers. This study demonstrates that L. acidophilus La-5 produces lactacin B and that the bacteriocin expression is controlled by an auto-induction mechanism involving the secreted peptide IP_1800. The transcript level of the lactacin B gene cluster expression was investigated in co-cultures between L. acidophilus La-5 and S. thermophilus STY-31 and a remarkable increase of the bacteriocin structural gene (lbaB) transcription was observed. However, lbaB was transcribed constitutively in uninduced L. acidophilus La-5 cells, but the levels of the secreted bacteriocin were not enough to be detected by the agar diffusion assay. A new method for bacteriocin detection was formulated based on the monitoring on real time of Lactobacillus sakei subsp. sakei growth in presence of the supernatant and the cell wall extracts of pure and induced L. acidophilus La-5. These results showed that part of lactacin B secreted remains adhered to cell envelope.
Collapse
Affiliation(s)
- Raquel Tabasco
- Department of Dairy Science and Technology, Instituto del Frío (CSIC), José Antonio Nováis 10, 28040, Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Millette M, Luquet FM, Lacroix M. In vitro growth control of selected pathogens by Lactobacillus acidophilus- and Lactobacillus casei-fermented milk. Lett Appl Microbiol 2007; 44:314-9. [PMID: 17309510 DOI: 10.1111/j.1472-765x.2006.02060.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Food-borne pathogen inhibition was tested in the presence of a mixture of Lactobacillus acidophilus and Lactobacillus casei during fermentation under controlled pH conditions. METHODS AND RESULTS The growth of Escherichia coli O157:H7, Salmonella serotype Typhimurium, Staphylococcus aureus, Listeria innocua, Enterococcus faecium and Enterococcus faecalis was evaluated for 48 h at 37 degrees C. In the presence of the lactic acid bacteria (LAB), an increase of the generation time was observed for all the gram-positive bacteria evaluated. Staphylococcus aureus was the most sensitive strain showing an increase of the generation time by 210%. However, for all the gram-negative bacteria evaluated, no inhibition occurred after 8 h of fermentation. The soluble portion of Lact. acidophilus- and Lact. casei-fermented milk was recuperated and tested for its antimicrobial activity. Listeria innocua and Staph. aureus were the most sensitive to the presence of fermented milk supernatant showing an inhibition of 85.9% and 84.7%, respectively. This soluble fraction was neutralized to eliminate the antimicrobial effect of the organic acids produced; the most sensitive strains were L. innocua and E. coli O157:H7 showing an inhibition of 65.9% and 61.9%, respectively. Finally, the soluble fraction was neutralized and irradiated at 45 kGy using a (60)Co source to eliminate the possible antimicrobial effect of both organic acids and bacteriocin-like substances. Enterococcus faecalis, E. coli O157:H7 and Staph. aureus were the most affected bacteria by this fraction, showing 39.1, 32 and 31.2% inhibition, respectively. CONCLUSIONS The results obtained in this study suggest the implication of both organic acids and bacteriocin-like inhibitory substances in the antimicrobial activity observed in the soluble fraction of the probiotic preparation. SIGNIFICANCE AND IMPACT OF THE STUDY This study revealed the antimicrobial mechanisms of action of Lact. acidophilus- and Lact. casei-fermented milk used to prevent antibiotic-associated diarrhoea.
Collapse
Affiliation(s)
- M Millette
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, Laval, Quebec, Canada
| | | | | |
Collapse
|
23
|
Production and physicochemical characterization of acidocin D20079, a bacteriocin produced by Lactobacillus acidophilus DSM 20079. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9314-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
|
25
|
Luo XY, Lun YZ, Gao W, Hu HB, Wang Q, Liu Y, Yin JS, Jiang SJ. Effects of spent culture supernatant of Lactobacillus acidophilus on intestinal flora in mice with antibiotic-associated diarrhoea. Shijie Huaren Xiaohua Zazhi 2006; 14:1870-1873. [DOI: 10.11569/wcjd.v14.i19.1870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effects of the spent culture supernatant (SCS) of Lactobacillus acidophilus strain LA14 on the intestinal flora in mice with antibiotic-associated diarrhoea.
METHODS: Sixty mice were randomly and averagely divided into 6 groups: normal control group, model group, SCS group, living bacteria group, SCS plus living bacteria group, and spontaneous recovery group. The animal model of the intestinal flora imbalance was made by intraperitoneal administration of ampicillin 2000 mg/(kg•d) for 3 d. Then the mice in normal control group and model group were killed, while the mice in the other groups were administered (ig) with the corresponding drugs or normal saline (30 mL/kg per day, the adopted concentration of living bacteria was 3×109 CFU/kg per day) for another 3 d. At the end of the 3rd day, all the mice were killed and the floras in the contents of the caecum were analyzed.
RESULTS: Intestinal flora imbalance occurred in the mice administered with ampicillin and the numbers (lgCFU/L) of four main intestinal floras changed obviously. In comparison with those in normal control group, the numbers of Escherichia coli andEnterococcus were significantly increased (10.13 ± 0.10 vs 9.03 ± 0.11, P < 0.01; 10.52 ± 0.11 vs 9.11 ± 0.09, P < 0.01), while the numbers of Lactobacillus and Bifidobacterium were remarkably decreased (10.51 ± 0.07 vs 11.88 ± 0.10, P < 0.01; 10.38 ± 0.31 vs 11.61 ± 0.13, P < 0.05). After the mice were administered with SCS, living bacteria and SCS plus living bacteria, the numbers (compared with those in spontaneous recovery group) of Lactobacillus and Bifidobacterium were remarkably increased (Lactobacillus: 11.53 ± 0.17 vs 9.74 ± 0.37, P < 0.01; 11.54 ± 0.05, 11.45 ± 0.07 vs 9.74 ± 0.37, P < 0.05; Bifidobacterium: 11.54 ± 0.22, 11.30 ± 0.99 vs 9.51 ± 0.52, P < 0.05; 11.13 ± 0.16 vs 9.51 ± 0.52, P < 0.01), while the numbers of Escherichia coli and Enterococcus were significantly decreased again (Escherichia coli: 9.42 ± 0.22, 9.50 ± 0.06, 9.22 ± 0.39 vs 9.97 ± 0.61, P< 0.05; Enterococcus: 9.48 ± 0.20, 9.45 ± 0.16, 9.37 ± 0.21 vs 9.89 ± 0.43, P < 0.05).
CONCLUSION: Both living bacteria and SCS of Lactobacillus acidophilus can regulate the intestinal flora imbalance in mice with antibiotic-associated diarrhoea, and help to recover the numbers of Lactobacillus and Bifidobacterium in the intestinal tract.
Collapse
|
26
|
Hernández D, Cardell E, Zárate V. Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin-like substance produced byLactobacillus plantarumTF711. J Appl Microbiol 2005; 99:77-84. [PMID: 15960667 DOI: 10.1111/j.1365-2672.2005.02576.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The screening and initial characterization of bacteriocins produced by lactic acid bacteria (LAB) from raw Tenerife goats' cheese with possible application as biopreservatives or ripening accelerators for Tenerife cheese. METHODS AND RESULTS One hundred and eighty LAB of the genera Lactobacillus (95), Leuconostoc (64) and Lactococcus (21) isolated from raw Tenerife goats' cheese were screened for the production of antimicrobial substances. Lactobacillus plantarum TF711, which had the broadest spectrum of antimicrobial activity, was selected for further characterization. The antimicrobial compound was determined as a proteinaceous substance, as it was sensitive to proteases. The bacteriocin-like substance, which we called plantaricin TF711, was active against the Gram-positive bacteria Bacillus cereus, Clostridium sporogenes and Staphylococcus aureus; and against the Enterobacteriaceae Shigella sonnei and Klebsiella pneumoniae. It was stable to heat and to treatment with surfactants and organic solvents. Highest antimicrobial activity was found between pH 1 and 9. Plantaricin TF711 exhibited primary metabolite kinetics, a bacteriostatic mode of action and a molecular mass of c. 2.5 kDa as determined by tricine SDS-PAGE. CONCLUSIONS Lact. plantarum TF711 produces a low molecular mass bacteriocin-like compound with a wide spectrum of activity and interesting technological properties (thermostability, good pH stability and stability against surfactants and organic solvents). SIGNIFICANCE AND IMPACT OF THE STUDY Plantaricin TF711 was found to have potential for use as a biopreservative in the food industry.
Collapse
Affiliation(s)
- D Hernández
- Departamento de Microbiología y Biología Celular, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | | | | |
Collapse
|
27
|
Deraz SF, Karlsson EN, Hedström M, Andersson MM, Mattiasson B. Purification and characterisation of acidocin D20079, a bacteriocin produced by Lactobacillus acidophilus DSM 20079. J Biotechnol 2005; 117:343-54. [PMID: 15925717 DOI: 10.1016/j.jbiotec.2005.02.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 02/04/2005] [Accepted: 02/21/2005] [Indexed: 11/29/2022]
Abstract
Bacteriocins are natural antimicrobial agents produced by food fermentative bacteria. Lactobacillus acidophilus DSM 20079 produces a small bacteriocin, with a molecular mass of 6.6 kDa, designated acidocin D20079. This antimicrobial peptide was extremely heat-stable (30 min at 121 degrees C) and was active over a wide pH range. It was found to be sensitive to proteolytic enzymes (trypsin, ficin, pepsin, papain, and proteinase K). Acidocin D20079 has a narrow inhibitory spectrum restricted to the genus Lactobacillus which includes L. sakei NCDO 2714, an organism known to cause anaerobic spoilage of vacuum-packaged meat. Maximum production of acidocin D20079 in MRS broth was detected at pH 6.0, and the peptide was purified by ammonium sulphate precipitation followed by sequential cation exchange and hydrophobic interaction chromatography. Purified acidocin D20079 spontaneously formed spherulite crystals during dialysis. As the N-terminus was found to be blocked for sequencing, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used to determine a partial sequence, and the molecular mass of the bacteriocin in the formed crystals (6.6 kDa). Estimates of the molecular weight of the partially purified peptide, using tricine-SDS-PAGE, in which bacteriocin activity was confirmed by overlayer techniques were in accordance with this value.
Collapse
Affiliation(s)
- Sahar F Deraz
- Department of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, S-22100 Lund, Sweden
| | | | | | | | | |
Collapse
|