1
|
Korsa G, Konwarh R, Masi C, Ayele A, Haile S. Microbial cellulase production and its potential application for textile industries. ANN MICROBIOL 2023; 73:13. [DOI: 10.1186/s13213-023-01715-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/22/2023] [Indexed: 09/03/2023] Open
Abstract
Abstract
Purpose
The textile industry’s previous chemical use resulted in thousands of practical particulate emissions, such as machine component damage and drainage system blockage, both of which have practical implications. Enzyme-based textile processing is cost-effective, environmentally friendly, non-hazardous, and water-saving. The purpose of this review is to give evidence on the potential activity of microbial cellulase in the textile industry, which is mostly confined to the realm of research.
Methods
This review was progressive by considering peer-reviewed papers linked to microbial cellulase production, and its prospective application for textile industries was appraised and produced to develop this assessment. Articles were divided into two categories based on the results of trustworthy educational journals: methods used to produce the diversity of microorganisms through fermentation processes and such approaches used to produce the diversity of microbes through microbial fermentation. Submerged fermentation (SMF) and solid-state fermentation (SSF) techniques are currently being used to meet industrial demand for microbial cellulase production in the bio textile industry.
Results
Microbial cellulase is vital for increasing day to day due to its no side effect on the environment and human health becoming increasingly important. In conventional textile processing, the gray cloth was subjected to a series of chemical treatments that involved breaking the dye molecule’s amino group with Cl − , which started and accelerated dye(-resistant) bond cracking. A cellulase enzyme is primarily derived from a variety of microbial species found in various ecological settings as a biotextile/bio-based product technology for future needs in industrial applications.
Conclusion
Cellulase has been produced for its advantages in cellulose-based textiles, as well as for quality enhancement and fabric maintenance over traditional approaches. Cellulase’s role in the industry was microbial fermentation processes in textile processing which was chosen as an appropriate and environmentally sound solution for a long and healthy lifestyle.
Collapse
|
2
|
Freshwater-Derived Streptomyces: Prospective Polyvinyl Chloride (PVC) Biodegraders. ScientificWorldJournal 2022; 2022:6420003. [DOI: 10.1155/2022/6420003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/15/2022] Open
Abstract
Polyvinyl chloride (PVC) is widely used in industrial applications, such as construction and clothing, owing to its chemical, physical, and environmental resistance. Owing to the previous characteristics, PVC is the third most consumed plastic worldwide and, consequently, an increasing waste accumulation-related problem. The current study evaluated an in-house collection of 61 Actinobacteria strains for PVC resin biodegradation. Weight loss percentage was measured after the completion of incubation. Thermo-gravimetric analysis was subsequently performed using the PVC incubated with the three strains exhibiting the highest weight loss. GC-MS and ionic exchange chromatography analyses were also performed using the culture media supernatant of these three strains. After incubation, 14 strains had a PVC weight loss percentage higher than 50% in ISP-2 broth. These 14 strains were identified as Streptomyces strains. Strains 208, 250, and 290 showed the highest weight loss percentages (57.6–61.5% range). The thermal stability of PVC after bacterial exposure using these three strains was evaluated, and a modification of the representative degradation stages of nonincubated PVC was observed. Additionally, GC-MS analysis revealed the presence of aromatic compounds in the inoculated culture media, and ionic exchange chromatography showed chloride release in the supernatant. A mathematical relation between culture conditions and PVC weight loss was also found for strains 208 and 290, showing an accuracy up to 97.99%. These results highlight the potential of the freshwater-derived Streptomyces strains as candidates for the PVC biodegradation strategy and constitute the first approach to a waste management control scale-up process.
Collapse
|
3
|
Yang H, Huang Y, Li K, Zhu P, Wang Y, Li X, Meng Q, Niu Q, Wang S, Li Q. Lignocellulosic depolymerization induced by ionic liquids regulating composting habitats based on metagenomics analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76298-76309. [PMID: 35668255 DOI: 10.1007/s11356-022-21148-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The application of ionic liquids with sawdust and fresh dairy manure was studied in composting. The degradation of organic matter (OM), dissolved organic matter (DOM), and lignocellulose was analyzed. The DOM decreased by 14.25 mg/g and 11.11 mg/g in experimental group (ILs) and control group (CK), respectively. OM decreased by 7.32% (CK) and 8.91% (ILs), respectively. The degradation rates of hemicellulose, lignin, and cellulose in ILs (56.62%, 42.01%, and 23.97%) were higher than in CK (38.39%, 39.82%, and 16.04%). Microbial community and carbohydrate-active enzymes (CAZymes) were analyzed based on metagenomics. Metagenomic analysis results showed that ionic liquids enriched Actinobacteria and Proteobacteria in composting. Compared with CK, the total abundance values of GH11, GH6, AA6, and AA3_2 in ILs increased by 13.98%, 10.12%, 11.21%, and 13.68%, respectively. Ionic liquids can improve the lignocellulosic degradation by regulating the environmental physicochemical parameters (temperature, pH, C/N) to promote the growth of Actinobacteria and Proteobacteria and carbohydrate-active enzymes (CAZymes) abundance. Therefore, ionic liquids are a promising additive in lignocellulosic waste composting.
Collapse
Affiliation(s)
- Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yiwu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaolan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qingran Meng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Susu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
4
|
Baltaci MO. Enhancement of cellulase production by co-culture of Streptomyces ambofaciens OZ2 and Cytobacillus oceanisediminis OZ5 isolated from rumen samples. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2038581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
5
|
Effect of Organic and Conventional Systems Used to Grow Pecan Trees on Diversity of Soil Microbiota. DIVERSITY 2020. [DOI: 10.3390/d12110436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agronomic management modifies the soil bacterial communities and may alter the carbon fractions. Here, we identify differences in several chemical and biological soil variables, as well as bacterial composition between organic (Org) and conventional (Conv) agronomic management in pecan (Carya illinoinensis) orchards located in Coahuila, Mexico. The analyzed variables were pH, N, P, K, soil organic matter, organic matter quality, soil organic carbon, C/N ratio, carbon fractions, microbial biomass carbon, easily extractable Glomalin, colony-forming units, CO2 emissions, and the enzyme activity. The DNA of soil bacteria was extracted, amplified (V3-V4 16S rRNA), and sequenced using Illumina. To compare variables between agronomic managements, t tests were used. Sequences were analyzed in QIIME (Quantitative Insights Into Microbial Ecology). A canonical correspondence analysis (CCA) was used to observe associations between the ten most abundant phyla and soil variables in both types of agronomic managements. In Org management, variables related to the capture of recalcitrant carbon compounds were significant, and there was a greater diversity of bacterial communities capable of promoting organic carbon sequestration. In Conv management, variables related to the increase in carbon mineralization, as well as the enzymatic activity related to the metabolism of labile compounds, were significant. The CCA suggested a separation between phyla associated with some variables. Agronomic management impacted soil chemical and biological parameters related to carbon dynamics, including bacterial communities associated with carbon sequestration. Further research is still necessary to understand the plasticity of some bacterial communities, as well as the soil–plant dynamics.
Collapse
|
6
|
Riyadi FA, Tahir AA, Yusof N, Sabri NSA, Noor MJMM, Akhir FNMD, Othman N, Zakaria Z, Hara H. Enzymatic and genetic characterization of lignin depolymerization by Streptomyces sp. S6 isolated from a tropical environment. Sci Rep 2020; 10:7813. [PMID: 32385385 PMCID: PMC7210275 DOI: 10.1038/s41598-020-64817-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
The conversion of lignocellulosic biomass into bioethanol or biochemical products requires a crucial pretreatment process to breakdown the recalcitrant lignin structure. This research focuses on the isolation and characterization of a lignin-degrading bacterial strain from a decaying oil palm empty fruit bunch (OPEFB). The isolated strain, identified as Streptomyces sp. S6, grew in a minimal medium with Kraft lignin (KL) as the sole carbon source. Several known ligninolytic enzyme assays were performed, and lignin peroxidase (LiP), laccase (Lac), dye-decolorizing peroxidase (DyP) and aryl-alcohol oxidase (AAO) activities were detected. A 55.3% reduction in the molecular weight (Mw) of KL was observed after 7 days of incubation with Streptomyces sp. S6 based on gel-permeation chromatography (GPC). Gas chromatography-mass spectrometry (GC-MS) also successfully highlighted the production of lignin-derived aromatic compounds, such as 3-methyl-butanoic acid, guaiacol derivatives, and 4,6-dimethyl-dodecane, after treatment of KL with strain S6. Finally, draft genome analysis of Streptomyces sp. S6 also revealed the presence of strong lignin degradation machinery and identified various candidate genes responsible for lignin depolymerization, as well as for the mineralization of the lower molecular weight compounds, confirming the lignin degradation capability of the bacterial strain.
Collapse
Affiliation(s)
- Fatimah Azizah Riyadi
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Analhuda Abdullah Tahir
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Nurtasbiyah Yusof
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Nurul Syazwani Ahmad Sabri
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Megat Johari Megat Mohd Noor
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Fazrena Nadia M D Akhir
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Nor'azizi Othman
- Department of Mechanical Precision Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Zuriati Zakaria
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Hirofumi Hara
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Exoproduction and Molecular Characterization of Peroxidase from Ensifer adhaerens. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9153121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The increased industrial application potentials of peroxidase have led to high market demand, which has outweighed the commercially available peroxidases. Hence, the need for alternative and efficient peroxidase-producers is imperative. This study reported the process parameters for enhanced exoperoxidase production by Ensifer adhaerens NWODO-2 (accession number: KX640918) for the first time, and characterized the enzyme using molecular methods. Peroxidase production by the bacteria was optimal at 48 h, with specific productivity of 12.76 U mg−1 at pH 7, 30 °C and 100 rpm in an alkali lignin fermentation medium supplemented with guaiacol as the most effective inducer and ammonium sulphate as the best inorganic nitrogen source. Upon assessment of some agricultural residues as sources of carbon for the enzyme production, sawdust gave the highest peroxidase productivity (37.50 U mg−1) under solid-state fermentation. A search of the polymerase chain reaction (PCR)-amplified peroxidase gene in UniProtKB using blastx showed 70.5% similarity to an uncharacterized protein in Ensifer adhaerens but phylogenetic analysis suggests that the gene may encode a catalase-peroxidase with an estimated molecular weight of approximately 31 kDa and isoelectric point of about 11. The nucleotide sequence of the detected gene was deposited in the GenBank under the accession number MF374336. In conclusion, the ability of the strain to utilize lignocellulosic materials for peroxidase production augurs well for biotechnological application as this would greatly reduce cost, which is a major challenge in industrial enzyme production.
Collapse
|
8
|
Souagui S, Djoudi W, Boudries H, Béchet M, Leclère V, Kecha M. Modeling and Statistical Optimization of Culture Conditions for Improvement of Antifungal Compounds Production by Streptomyces albidoflavus S19 Strain of Wastewater Origin. ANTI-INFECTIVE AGENTS 2019; 17:39-49. [PMID: 31328084 PMCID: PMC6596383 DOI: 10.2174/2211352516666180813102424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/20/2018] [Accepted: 08/08/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND The actinomycetes strains isolated from unexplored ecosystems are a promising alternative for the biosynthesis of novel antimicrobial compounds. Depending on the interesting antifungal activity of the studied strain S19, the statistical method seems to be an effective tool for optimizing the production of anticandidal molecules. INTRODUCTION This study was conducted in order to optimize the culture parameters (medium nutrients concentrations and initial pH value) affecting the production of antifungal metabolites from S. albidoflavus strain S19 (obtained from wastewater collected in Bejaia region, Algeria) using Response Surface Metho-dology (RSM). The best conditions for anti-Candida albicans compounds biosynthesis were determined. METHODS AND RESULTS The antimicrobial producer strain S. albidoflavus S19 was identified on the basis of morphological, chemicals characters and physiological characteristics along with 16S rRNA gene se-quencing analysis.Response Surface Methodology by Central Composite Design (CCD) was employed to improve the anti-C. albicans agents production through the optimization of medium parameters. The highest antifungal ac-tivity was obtained by using a mixture of 2g l-1 starch, 4g l-1 yeast extract, 2g l-1 peptone at pH 11. CONCLUSION The strain S19 isolated from wastewater showed a significant anti-C. albicans activity and this study revealed the effectiveness of RSM and CCD for increasing bioactive compounds production, rising the diameter of inhibition zones from 13 to 34 mm.
Collapse
Affiliation(s)
- S. Souagui
- Address correspondence to this author at the Laboratoire de Microbiologie Appliquée, Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algérie; E-mail:
| | | | | | | | | | | |
Collapse
|
9
|
Falade AO, Mabinya LV, Okoh AI, Nwodo UU. Agrowastes utilization by Raoultella ornithinolytica for optimal extracellular peroxidase activity. Biotechnol Appl Biochem 2018; 66:60-67. [PMID: 30303255 DOI: 10.1002/bab.1696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/04/2018] [Indexed: 11/12/2022]
Abstract
The industrial applications and prospects of microbial peroxidase are on the upwards trend, thus necessitating the search for sources with high turnaround time. Actinobacterial species have been a major source of peroxidase for the obvious reasons of having robust metabolite expression capabilities. However, other bacteria species have been underexplored for peroxidase production, hence the motivation for the investigation into the peroxidase production potential of Raoultella ornithinolytica OKOH-1 (KX640917). The bacteria expressed optimum specific peroxidase activity of 16.48 ± 0.89 U mg-1 , which is higher than those previously reported. The optimal fermentation conditions were pH 5 (3.44 ± 0.64 U mL-1 ), incubation temperature of 35 °C (5.25 ± 0.00 U mL-1 ), and agitation speed of 150 rpm (9.45 ± 2.57 U mL-1 ), with guaiacol and ammonium chloride as the best inducer and nitrogen supplement, respectively. On valorization of agrowastes as a sole carbon source for the secretion of peroxidase, sawdust gave the best peroxidase yield (15.21 ± 2.48 U mg-1 ) under solid-state fermentation. Also, a nonperoxide-dependent enzyme activity, which suggests probable laccase activity, was observed. The ability of the bacteria to utilize agrowastes is highly economical and as well a suitable waste management strategy. Consequently, R. ornithinolytica OKOH-1 is a promising industrial strain with dexterity for enhanced peroxidase production.
Collapse
Affiliation(s)
- Ayodeji O Falade
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Leonard V Mabinya
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
10
|
Bispo A, Andrade J, Souza D, Teles Z, Nascimento R. UTILIZATION OF AGROINDUSTRIAL BY-PRODUCTS AS SUBSTRATE IN ENDOGLUCANASE PRODUCTION BY Streptomyces diastaticus PA-01 UNDER SUBMERGED FERMENTATION. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180352s20160415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- A.S.R. Bispo
- Universidade Federal do Recôncavo da Bahia, Brazil
| | - J.P. Andrade
- Universidade Federal do Recôncavo da Bahia, Brazil
| | - D.T. Souza
- Universidade Federal do Recôncavo da Bahia, Brazil
| | - Z.N.S. Teles
- Universidade Federal do Recôncavo da Bahia, Brazil
| | | |
Collapse
|
11
|
Jain A, Pelle HS, Baughman WH, Henson JM. Conversion of ammonia-pretreated switchgrass to biofuel precursors by bacterial-fungal consortia under solid-state and submerged-state cultivation. J Appl Microbiol 2017; 122:953-963. [PMID: 27626760 DOI: 10.1111/jam.13295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 11/27/2022]
Abstract
AIM The aim of this study was to develop and evaluate bacterial-fungal communities to deconstruct switchgrass to biofuel precursors. METHODS AND RESULTS Bacterial-fungal consortia, mesophilic (25°C) and thermophilic (50°C), were enriched from switchgrass bales from which enzyme mixtures were used to deconstruct delignified switchgrass (DSG). The bacterial-fungal consortia were able to produce enzymes including endoglucanase, exoglucanase, β-glucosidase, xylanase, xylosidase and pectinase to convert DSG to soluble carbohydrates. 454 pyrosequencing revealed that Paenibacillus and Streptomyces were the dominant bacteria in the mesophilic and thermophilic consortia respectively. Penicillium and Acremonium were the dominant fungi in the mesophilic consortia, whereas Aspergillus and Penicillium were the dominant fungi present in the thermophilic consortia. CONCLUSIONS The results show that the state of cultivation, solid-state or submerged-state, affects the community structure as well as enzyme activities produced by these bacterial-fungal consortia. The enzyme mixture produced by the bacterial-fungal consortia released a higher amount of xylose than glucose during saccharification of DSG. SIGNIFICANCE AND IMPACT OF THE STUDY The study provides a novel approach to produce enzymes for conversion of lignocellulolytic feedstocks to soluble sugars which can be used to produce biofuel precursors.
Collapse
Affiliation(s)
- A Jain
- Biotechnology Institute, University of Minnesota, Twin Cities, Falcon Heights, MN, USA
| | - H S Pelle
- Department of Biology, Sacred Heart University, Fairfield, CT, USA
| | - W H Baughman
- University of South Carolina School of Law, Columbia, SC, USA
| | - J M Henson
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
12
|
de Sales AN, de Souza AC, Moutta RDO, Ferreira-Leitão VS, Schwan RF, Dias DR. Use of lignocellulose biomass for endoxylanase production by Streptomyces termitum. Prep Biochem Biotechnol 2017; 47:505-512. [PMID: 28045607 DOI: 10.1080/10826068.2016.1275015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Actinobacteria isolates from Brazilian Cerrado soil were evaluated for their ability to produce enzymes of the cellulolytic and xylanolytic complex using lignocellulose residual biomass. Preliminary semiquantitative tests, made in Petri plates containing carboxymethylcellulose and beechwood xylan, indicated 11 potential species producing enzymes, all belonging to the genus Streptomyces. The species were subsequently grown in pure substrates in submerged fermentation and analyzed for the production of enzymes endoglucanase, β-glucosidase, endoxylanase, and β-xylosidase. The best results were obtained for endoxylanase enzyme production with Streptomyces termitum(UFLA CES 93). The strain was grown on lignocellulose biomass (bagasse, straw sugarcane, and cocoa pod husk) that was used in natura or acid pretreated. The medium containing sugarcane bagasse in natura favored the production of the endoxylanase that was subsequently optimized through an experimental model. The highest enzyme production 0.387 U mL-1, (25.8 times higher), compared to the lowest value obtained in one of the trials, was observed when combining 2.75% sugar cane bagasse and 1.0 g L-1 of yeast extract to the alkaline medium (pH 9.7). This is the first study using S. termitum as a producer of endoxylanase.
Collapse
Affiliation(s)
- Alenir Naves de Sales
- a Department of Biology , Federal University of Lavras, Campus Universitário , Lavras , Minas Gerais , Brazil
| | - Angélica Cristina de Souza
- a Department of Biology , Federal University of Lavras, Campus Universitário , Lavras , Minas Gerais , Brazil
| | - Rondinele de Oliveira Moutta
- b Catalysis Division, Biocatalysis Laboratory , National Institute of Technology, Ministry of Science, Technology and Innovation, Rio de Janeiro , Rio de Janeiro , Brazil.,c Department of Biochemistry , Federal University of Rio de Janeiro, Rio de Janeiro , Rio de Janeiro , Brazil
| | - Viridiana Santana Ferreira-Leitão
- b Catalysis Division, Biocatalysis Laboratory , National Institute of Technology, Ministry of Science, Technology and Innovation, Rio de Janeiro , Rio de Janeiro , Brazil.,c Department of Biochemistry , Federal University of Rio de Janeiro, Rio de Janeiro , Rio de Janeiro , Brazil
| | - Rosane Freitas Schwan
- a Department of Biology , Federal University of Lavras, Campus Universitário , Lavras , Minas Gerais , Brazil
| | - Disney Ribeiro Dias
- d Department of Food Science , Federal University of Lavras, Campus Universitário , Lavras , Mines Gerais , Brazil
| |
Collapse
|
13
|
Classical Optimization of Cellulase and Xylanase Production by a Marine Streptomyces Species. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6100286] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Adigüzel AO, Tunçer M. Production, Characterization and Application of a Xylanase fromStreptomycessp. AOA40 in Fruit Juice and Bakery Industries. FOOD BIOTECHNOL 2016. [DOI: 10.1080/08905436.2016.1199383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Saini A, Aggarwal NK, Sharma A, Yadav A. Actinomycetes: A Source of Lignocellulolytic Enzymes. Enzyme Res 2015; 2015:279381. [PMID: 26793393 PMCID: PMC4697097 DOI: 10.1155/2015/279381] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/01/2015] [Indexed: 01/17/2023] Open
Abstract
Lignocellulose is the most abundant biomass on earth. Agricultural, forest, and agroindustrial activities generate tons of lignocellulosic wastes annually, which present readily procurable, economically affordable, and renewable feedstock for various lignocelluloses based applications. Lignocelluloses are the focus of present decade researchers globally, in an attempt to develop technologies based on natural biomass for reducing dependence on expensive and exhaustible substrates. Lignocellulolytic enzymes, that is, cellulases, hemicellulases, and lignolytic enzymes, play very important role in the processing of lignocelluloses which is prerequisite for their utilization in various processes. These enzymes are obtained from microorganisms distributed in both prokaryotic and eukaryotic domains including bacteria, fungi, and actinomycetes. Actinomycetes are an attractive microbial group for production of lignocellulose degrading enzymes. Various studies have evaluated the lignocellulose degrading ability of actinomycetes, which can be potentially implemented in the production of different value added products. This paper is an overview of the diversity of cellulolytic, hemicellulolytic, and lignolytic actinomycetes along with brief discussion of their hydrolytic enzyme systems involved in biomass modification.
Collapse
Affiliation(s)
- Anita Saini
- Department of Microbiology, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Neeraj K. Aggarwal
- Department of Microbiology, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Anuja Sharma
- Department of Microbiology, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Anita Yadav
- Department of Biotechnology, Kurukshetra University, Kurukshetra, Haryana 136119, India
| |
Collapse
|
16
|
Optimization of antifungal production by an alkaliphilic and halotolerant actinomycete, Streptomyces sp. SY-BS5, using response surface methodology. J Mycol Med 2015; 25:108-15. [PMID: 25703134 DOI: 10.1016/j.mycmed.2014.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 12/20/2014] [Accepted: 12/31/2014] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Optimization of medium components and physicochemical parameters for antifungal production by an alkaliphilic and salt-tolerant actinomycete designated Streptomyces sp. SY-BS5; isolated from an arid region in south of Algeria. MATERIALS AND METHODS The strain showed broad-spectrum activity against pathogenic and toxinogenic fungi. Identification of the actinomycete strain was realized on the basis of 16S rRNA gene sequencing. Antifungal production was optimized following one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. The most suitable medium for growth and antifungal production was found using one-factor-at-a-time methodology. The individual and interaction effects of three nutritional variables, carbon source (glucose), nitrogen source (yeast extract) and sodium chloride (NaCl) were optimized by Box-Behnken design. Finally, culture conditions for the antifungal production, pH and temperature were studied and determined. RESULTS Analysis of the 16S rRNA gene sequence (1454 nucleotides) assigned this strain to Streptomyces genus with 99% similarity with Streptomyces cyaneofuscatus JCM4364(T), the most closely related. The results of the optimization study show that concentrations 3.476g/L of glucose, 3.876g/L of yeast extract and 41.140g/L of NaCl are responsible for the enhancement of antifungal production by Streptomyces sp. SY-BS5. The preferable culture conditions for antifungal production were pH 10, temperature 30°C for 09 days. CONCLUSION This study proved that RSM is usual and powerful tool for the optimization of antifungal production from actinomycetes.
Collapse
|
17
|
Characterization of a purified decolorizing detergent-stable peroxidase from Streptomyces griseosporeus SN9. Int J Biol Macromol 2015; 73:253-63. [DOI: 10.1016/j.ijbiomac.2014.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 11/23/2022]
|
18
|
Siddique S, Nelofer R, Syed Q, Adnan A, Qureshi FA. Optimization for the enhanced production of avermectin B1b from Streptomyces avermitilis DSM 41445 using artificial neural network. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13765-014-4194-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Ding L, He S, Yan X. Efficient preparation of pseudoalteromone A from marine Pseudoalteromonas rubra QD1-2 by combination of response surface methodology and high-speed counter-current chromatography: a comparison with high-performance liquid chromatography. Appl Microbiol Biotechnol 2014; 98:4369-77. [PMID: 24477384 DOI: 10.1007/s00253-014-5530-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/05/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
Pseudoalteromone A (PA) is a cytotoxic and anti-inflammatory ubiquinone discovered recently from a marine bacterium Pseudoalteromonas sp. CGH2XX. In order to meet its sample supply for further in vivo pharmacological investigation, an efficient method was developed for the preparation of PA by combination of response surface methodology (RSM) and high-speed counter-current chromatography (HSCCC) from marine bacterium P. rubra QD1-2. First, optimization of culture conditions was studied by the RSM to enhance PA production. The results indicated that the optimal cultivation condition was peptone (2.21 g/l), yeast extract (3.125 g/l), glucose (0.125 g/l), KBr (0.02 g/l), inoculum size (6.5 %), medium volume (595 ml), initial pH value (7.0), temperature (28 °C). Under the optimized fermentation condition, PA production was 1.04 mg/l with 14.8-fold increase comparing to 0.07 mg/l under original standard fermentation condition. The PA production was further investigated using a 14-l jar fermenter. Compared to the flask culture, P. rubra QD1-2 offered 45 % increase of PA production at 1.51 mg/l. Then, a rapid and efficient method for the separation and purification of PA from crude culture extract was developed using HSCCC. The two-phase solvent system used for HSCCC separation was composed of n-hexane-ethyl acetate-methanol-water (5:5:9:5, v/v/v/v). The isolation was accomplished within 100 min, and the purity of PA was over 95 %. The recovery of the process was 93 %.
Collapse
Affiliation(s)
- Lijian Ding
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | | | | |
Collapse
|
20
|
Macedo EP, Cerqueira CLO, Souza DAJ, Bispo ASR, Coelho RRR, Nascimento RP. Production of cellulose-degrading enzyme on sisal and other agro-industrial residues using a new Brazilian actinobacteria strain Streptomyces sp. SLBA-08. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2013. [DOI: 10.1590/s0104-66322013000400005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- E. P. Macedo
- Universidade Federal do Recôncavo da Bahia, Brazil
| | | | | | | | | | - R. P. Nascimento
- Universidade Federal do Recôncavo da Bahia, Brazil; Universidade Federal do Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Production of Avermectin B1b From Streptomyces avermitilis 41445 by Batch Submerged Fermentation. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.7198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Cotârleţ M. Medium optimization for the production of cold-active beta amylase by psychrotrophic Streptomyces MIUG 4 alga using response surface methodology. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713020173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Streptomyces misionensis PESB-25 produces a thermoacidophilic endoglucanase using sugarcane bagasse and corn steep liquor as the sole organic substrates. BIOMED RESEARCH INTERNATIONAL 2013; 2013:584207. [PMID: 23586048 PMCID: PMC3622310 DOI: 10.1155/2013/584207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/08/2013] [Accepted: 02/04/2013] [Indexed: 11/17/2022]
Abstract
Streptomyces misionensis strain PESB-25 was screened and selected for its ability to secrete cellulases. Cells were grown in a liquid medium containing sugarcane bagasse (SCB) as carbon source and corn steep liquor (CSL) as nitrogen source, whose concentrations were optimized using response surface methodology (RSM). A peak of endoglucanase accumulation (1.01 U·mL−1) was observed in a medium with SCB 1.0% (w/v) and CSL 1.2% (w/v) within three days of cultivation. S. misionensis PESB-25 endoglucanase activity was thermoacidophilic with optimum pH and temperature range of 3.0 to 3.6 and 62° to 70°C, respectively. In these conditions, values of 1.54 U mL−1 of endoglucanase activity were observed. Moreover, Mn2+ was demonstrated to have a hyperactivating effect on the enzyme. In the presence of MnSO4 (8 mM), the enzyme activity increased threefold, up to 4.34 U·mL−1. Mn2+ also improved endoglucanase stability as the catalyst retained almost full activity upon incubation at 50°C for 4 h, while in the absence of Mn2+, enzyme activity decreased by 50% in this same period. Three protein bands with endoglucanase activity and apparent molecular masses of 12, 48.5 and 119.5 kDa were detected by zymogram.
Collapse
|
24
|
Sadhu S, Ghosh PK, De TK, Maiti TK. Optimization of Cultural Condition and Synergistic Effect of Lactose with Carboxymethyl Cellulose on Cellulase Production by <i>Bacillus</i> sp. Isolated from Fecal Matter of Elephant (<i>Elephas maximus</i>). ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aim.2013.33040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Guo Z, Shen L, Ji Z, Wu W. Enhanced production of a novel cyclic hexapeptide antibiotic (NW-G01) by Streptomyces alboflavus 313 using response surface methodology. Int J Mol Sci 2012; 13:5230-5241. [PMID: 22606040 PMCID: PMC3344276 DOI: 10.3390/ijms13045230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 11/17/2022] Open
Abstract
NW-G01, produced by Streptomyces alboflavus 313, is a novel cyclic hexapeptide antibiotic with many potential applications, including antimicrobial activity and antitumor agents. This study developed a system for optimizing medium components in order to enhance NW-G01 production. In this study, Plackett-Burman design (PBD) was used to find the key ingredients of medium components, and then response surface methodology (RSM) was implemented to determine their optimal concentrations. The results of PBD revealed that the crucial ingredients related to the production of NW-G01 were (NH(4))(2)SO(4), peptone and CaCO(3). A prediction model has been built in the experiments of central composite design and response surface methodology, and its validation has been further verified. The optimal medium composition was determined (g/L): corn starch 15, glucose 15, peptone 3.80, (NH(4))(2)SO(4) 0.06, NaCl 1.5, CaCO(3) 1.30, MgSO(4)·7H(2)O 0.015, K(2)HPO(4)·3H(2)O 0.015, MnCl(2)·4H(2)O 0.015, FeSO(4)·7H(2)O 0.015, and ZnSO(4)·7H(2)O 0.015. Compared with NW-G01 production (5.707 mg/L) in non-optimized fermentation medium, the production of NW-G01 (15.564 mg/L) in optimized fermentation medium had a 2.73-fold increase.
Collapse
Affiliation(s)
- Zhengyan Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling 712100, China; E-Mail:
- Anhui provincial laboratory of Agro-Food safety, Resources & Environment College, Anhui Agricultural University, Hefei 230036, China
| | - Ling Shen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; E-Mail:
| | - Zhiqin Ji
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling 712100, China; E-Mail:
- Shaanxi Province Key Laboratory Research & Development on Botanical Pesticide, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Integrated Management, Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Wenjun Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling 712100, China; E-Mail:
- Shaanxi Province Key Laboratory Research & Development on Botanical Pesticide, Northwest A & F University, Yangling 712100, China
- Key Laboratory of Plant Protection Resources and Pest Integrated Management, Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
26
|
Cellulase Production by Streptomyces viridobrunneus SCPE-09 Using Lignocellulosic Biomass as Inducer Substrate. Appl Biochem Biotechnol 2010; 164:256-67. [DOI: 10.1007/s12010-010-9132-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
|
27
|
Diversity of members of the Streptomyces violaceusniger 16S rRNA gene clade in the legumes rhizosphere in Turkey. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
28
|
Lactose-Enhanced Cellulase Production by Microbacterium sp. Isolated from Fecal Matter of Zebra (Equus zebra). Curr Microbiol 2010; 62:1050-5. [DOI: 10.1007/s00284-010-9816-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 11/03/2010] [Indexed: 11/25/2022]
|
29
|
Pizzul L, Castillo MDP, Stenström J. Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation 2009; 20:751-9. [PMID: 19396551 DOI: 10.1007/s10532-009-9263-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
Abstract
The ability of pure manganese peroxidase (MnP), laccase, lignin peroxidase (LiP) and horseradish peroxidase (HRP) to degrade the widely used herbicide glyphosate and other pesticides was studied in separate in vitro assays with addition of different mediators. Complete degradation of glyphosate was obtained with MnP, MnSO4 and Tween 80, with or without H2O2. In the presence of MnSO4, with or without H(2)O(2), MnP also transformed the herbicide, but to a lower rate. Laccase degraded glyphosate in the presence of (a) 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), (b) MnSO(4) and Tween 80 and (c) ABTS, MnSO4 and Tween 80. The metabolite AMPA was detected in all cases where degradation of glyphosate occurred and was not degraded. The LiP was tested alone or with MnSO4, Tween 80, veratryl alcohol or H2O2 and in the HRP assay the enzyme was added alone or with H2O2 in the reaction mixture. However, these enzymes did not degrade glyphosate. Further experiments using MnP together with MnSO4 and Tween 80 showed that the enzyme was also able to degrade glyphosate in its commercial formulation Roundup Bio. The same enzyme mixture was tested for degradation of 22 other pesticides and degradation products present in a mixture and all the compounds were transformed, with degradation percentages ranging between 20 and 100%. Our results highlight the potential of ligninolytic enzymes to degrade pesticides. Moreover, they suggest that the formation of AMPA, the main metabolite of glyphosate degradation found in soils, can be a result of the activity of lignin-degrading enzymes.
Collapse
Affiliation(s)
- Leticia Pizzul
- Department of Microbiology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.
| | | | | |
Collapse
|
30
|
Production and partial characterization of extracellular peroxidase produced byStreptomyces sp. F6616 isolated in Turkey. ANN MICROBIOL 2009. [DOI: 10.1007/bf03178335] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
31
|
|