1
|
Yang H, Heirbaut S, Jing X, De Neve N, Vandaele L, Jeyanathan J, Fievez V. Susceptibility of dairy cows to subacute ruminal acidosis is reflected in both prepartum and postpartum bacteria as well as odd- and branched-chain fatty acids in feces. J Anim Sci Biotechnol 2022; 13:87. [PMID: 36195941 PMCID: PMC9533591 DOI: 10.1186/s40104-022-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background The transition period is a challenging period for high-producing dairy cattle. Cows in early lactation are considered as a group at risk of subacute ruminal acidosis (SARA). Variability in SARA susceptibility in early lactation is hypothesized to be reflected in fecal characteristics such as fecal pH, dry matter content, volatile and odd- and branched-chain fatty acids (VFA and OBCFA, respectively), as well as fecal microbiota. This was investigated with 38 periparturient dairy cows, which were classified into four groups differing in median and mean time of reticular pH below 6 as well as area under the curve of pH below 6. Furthermore, we investigated whether fecal differences were already obvious during a period prior to the SARA risk (prepartum). Results Variation in reticular pH during a 3-week postpartum period was not associated with differences in fecal pH and VFA concentration. In the postpartum period, the copy number of fecal bacteria and methanogens of unsusceptible (UN) cows was higher than moderately susceptible (MS) or susceptible (SU) cows, while the genera Ruminococcus and Prevotellacea_UCG-001 were proportionally less abundant in UN compared with SU cows. Nevertheless, only a minor reduction was observed in iso-BCFA proportions in fecal fatty acids of SU cows, particularly iso-C15:0 and iso-C16:0, compared with UN cows. Consistent with the bacterial changes postpartum, the lower abundance of Ruminococcus was already observed in the prepartum fecal bacterial communities of UN cows, whereas Lachnospiraceae_UCG-001 was increased. Nevertheless, no differences were observed in the prepartum fecal VFA or OBCFA profiles among the groups. Prepartum fecal bacterial communities of cows were clustered into two distinct clusters with 70% of the SU cows belonging to cluster 1, in which they represented 60% of the animals. Conclusions Inter-animal variation in postpartum SARA susceptibility was reflected in post- and prepartum fecal bacterial communities. Differences in prepartum fecal bacterial communities could alert for susceptibility to develop SARA postpartum. Our results generated knowledge on the association between fecal bacteria and SARA development which could be further explored in a prevention strategy. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00738-8.
Collapse
Affiliation(s)
- Hong Yang
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Campus Coupure, building F, 1st floor, Coupure Links 653, 9000, Ghent, Belgium
| | - Stijn Heirbaut
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Campus Coupure, building F, 1st floor, Coupure Links 653, 9000, Ghent, Belgium
| | - Xiaoping Jing
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Campus Coupure, building F, 1st floor, Coupure Links 653, 9000, Ghent, Belgium.,State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Nympha De Neve
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Campus Coupure, building F, 1st floor, Coupure Links 653, 9000, Ghent, Belgium
| | - Leen Vandaele
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Scheldeweg 68, 9090, Melle, Belgium
| | - Jeyamalar Jeyanathan
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Campus Coupure, building F, 1st floor, Coupure Links 653, 9000, Ghent, Belgium
| | - Veerle Fievez
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Campus Coupure, building F, 1st floor, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
2
|
Pacífico C, Hartinger T, Stauder A, Schwartz-Zimmermann HE, Reisinger N, Faas J, Zebeli Q. Supplementing a Clay Mineral-Based Feed Additive Modulated Fecal Microbiota Composition, Liver Health, and Lipid Serum Metabolome in Dairy Cows Fed Starch-Rich Diets. Front Vet Sci 2021; 8:714545. [PMID: 34722695 PMCID: PMC8548638 DOI: 10.3389/fvets.2021.714545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Starch-rich diets are a commonly adopted strategy in order to sustain high milk yields in dairy cows. However, these diets are known to increase the risk of gut dysbiosis and related systemic health disorders. This study aimed to evaluate the effects of supplementing a clay mineral-based feed additive (CM; Mycofix® Plus, BIOMIN) on fecal microbiota structure, fecal short-chain fatty acid (SCFA) fermentation, serum metabolome, and liver health in primiparous (PP, n = 8) and multiparous (MP, n = 16) early-lactation Simmental cows (737 ± 90 kg of live body weight). Cows were randomly assigned to either a control or CM group (55 g per cow and day) and transitioned from a diet moderate in starch (26.3 ± 1.0%) to a high starch diet (32.0 ± 0.8%). Supplementation of CM reversed the decrease in bacterial diversity, richness, and evenness (p < 0.05) during high-starch diet, demonstrating that CM supplementation efficiently eased hindgut dysbiosis. The CM treatment reduced levels of Lactobacillus in PP cows during starch-rich feeding and elevated fecal pH, indicating a healthier hindgut milieu compared with that in control. Butyrate and propionate levels were modulated by CM supplementation, with butyrate being lower in CM-treated MP cows, whereas propionate was lower in MP but higher in PP cows. Supplementing CM during high-starch feeding increased the concentrations of the main primary bile salts and secondary bile acids in the serum and improved liver function in cows as indicated by reduced levels of glutamate dehydrogenase and γ-glutamyl-transferase, as well as higher serum albumin and triglyceride concentrations. These changes and those related to lipid serum metabolome were more pronounced in PP cows as also corroborated by relevance network analysis.
Collapse
Affiliation(s)
- Cátia Pacífico
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Thomas Hartinger
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Alexander Stauder
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| | - Heidi Elisabeth Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Johannes Faas
- BIOMIN Research Center, BIOMIN Holding GmbH, Tulln, Austria
| | - Qendrim Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
3
|
Al-Ajmi D, Rahman S, Banu S. Occurrence, virulence genes, and antimicrobial profiles of Escherichia coli O157 isolated from ruminants slaughtered in Al Ain, United Arab Emirates. BMC Microbiol 2020; 20:210. [PMID: 32677884 PMCID: PMC7364618 DOI: 10.1186/s12866-020-01899-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli (STEC) is a major source of food-borne illness around the world. E. coli O157 has been widely reported as the most common STEC serogroup and has emerged as an important enteric pathogen. Cattle, in particular have been identified as a major E. coli O157:H7 reservoir of human infections; however, the prevalence of this organism in camels, sheep, and goats is less understood. The aim of this study was to evaluate the occurrence and concentration of E. coli serotype O157 in the feces of healthy camels (n = 140), cattle (n = 137), sheep (n = 141) and goats (n = 150) slaughtered in United Arab Emirates (UAE) for meat consumption between September 2017 and August 2018. We used immunomagnetic separation coupled with a culture-plating method to detect E. coli O157. Non-sorbitol fermenting colonies were assessed via latex-agglutination testing, and positive cultures were analyzed by performing polymerase chain reactions to detect genes encoding attaching and effacing protein (eaeA), hemolysin A (hlyA, also known as ehxA) and Shiga toxin (stx1 and stx2), and E. coli O157:H7 specific genes (rfb O157, uidA, and fliC). All E. coli O157 isolates were analyzed for their susceptibility to 20 selected antimicrobials. RESULTS E. coli O157 was observed in camels, goats, and cattle fecal samples at abundances of 4.3, 2, and 1.46%, respectively, but it was undetectable in sheep feces. The most prevalent E. coli O157 gene in all STEC isolates was stx2;, whereas, stx1 was not detected in any of the samples. The fecal samples from camels, goats, and cattle harbored E. coli O157 isolates that were 100% susceptible to cefotaxime, chloramphenicol, ciprofloxacin, norfloxacin, and polymyxin B. CONCLUSION To our knowledge, this is the first report on the occurrence of E. coli O157 in slaughter animals in the UAE. Our results clearly demonstrate the presence of E. coli O157 in slaughtered animals, which could possibly contaminate meat products intended for human consumption.
Collapse
Affiliation(s)
- Dawood Al-Ajmi
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates.
| | - Shafeeq Rahman
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Sharmila Banu
- Department of Integrative Agriculture, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Manure-borne pathogens as an important source of water contamination: An update on the dynamics of pathogen survival/transport as well as practical risk mitigation strategies. Int J Hyg Environ Health 2020; 227:113524. [DOI: 10.1016/j.ijheh.2020.113524] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/15/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
|
5
|
Modulation of Enterohaemorrhagic Escherichia coli Survival and Virulence in the Human Gastrointestinal Tract. Microorganisms 2018; 6:microorganisms6040115. [PMID: 30463258 PMCID: PMC6313751 DOI: 10.3390/microorganisms6040115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 01/05/2023] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is a major foodborne pathogen responsible for human diseases ranging from diarrhoea to life-threatening complications. Survival of the pathogen and modulation of virulence gene expression along the human gastrointestinal tract (GIT) are key features in bacterial pathogenesis, but remain poorly described, due to a paucity of relevant model systems. This review will provide an overview of the in vitro and in vivo studies investigating the effect of abiotic (e.g., gastric acid, bile, low oxygen concentration or fluid shear) and biotic (e.g., gut microbiota, short chain fatty acids or host hormones) parameters of the human gut on EHEC survival and/or virulence (especially in relation with motility, adhesion and toxin production). Despite their relevance, these studies display important limitations considering the complexity of the human digestive environment. These include the evaluation of only one single digestive parameter at a time, lack of dynamic flux and compartmentalization, and the absence of a complex human gut microbiota. In a last part of the review, we will discuss how dynamic multi-compartmental in vitro models of the human gut represent a novel platform for elucidating spatial and temporal modulation of EHEC survival and virulence along the GIT, and provide new insights into EHEC pathogenesis.
Collapse
|
6
|
Berry ED, Wells JE, Varel VH, Hales KE, Kalchayanand N. Persistence of Escherichia coli O157:H7 and Total Escherichia coli in Feces and Feedlot Surface Manure from Cattle Fed Diets with and without Corn or Sorghum Wet Distillers Grains with Solubles. J Food Prot 2017; 80:1317-1327. [PMID: 28708031 DOI: 10.4315/0362-028x.jfp-17-018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Feeding corn wet distillers grains with solubles (WDGS) to cattle can increase the load of Escherichia coli O157:H7 in feces and on hides, but the mechanisms are not fully understood. The objective of these experiments was to examine a role for the persistence of E. coli O157:H7 in the feces and feedlot pen surfaces of cattle fed WDGS. In the first study, feces from steers fed 0, 20, 40, or 60% corn WDGS were inoculated with E. coli O157:H7. The E. coli O157:H7 numbers in feces from cattle fed 0% corn WDGS rapidly decreased (P < 0.05), from 6.28 to 2.48 log CFU/g of feces by day 14. In contrast, the E. coli O157:H7 numbers in feces from cattle fed 20, 40, and 60% corn WDGS were 4.21, 5.59, and 6.13 log CFU/g of feces, respectively, on day 14. A second study evaluated the survival of E. coli O157:H7 in feces from cattle fed 0 and 40% corn WDGS. Feces were collected before and 28 days after the dietary corn was switched from high-moisture corn to dry-rolled corn. Within dietary corn source, the pathogen persisted at higher concentrations (P < 0.05) in 40% corn WDGS feces at day 7 than in 0% WDGS. For 40% corn WDGS feces, E. coli O157:H7 persisted at higher concentrations (P < 0.05) at day 7 in feces from cattle fed high-moisture corn (5.36 log CFU/g) than from those fed dry-rolled corn (4.27 log CFU/g). The percentage of WDGS had no effect on the E. coli O157:H7 counts in feces from cattle fed steam-flaked corn-based diets containing 0, 15, and 30% sorghum WDGS. Greater persistence of E. coli O157:H7 on the pen surfaces of animals fed corn WDGS was not demonstrated, although these pens had a higher prevalence of the pathogen in the feedlot surface manure after the cattle were removed. Both or either the greater persistence and higher numbers of E. coli O157:H7 in the environment of cattle fed WDGS may play a part in the increased prevalence of E. coli O157:H7 in cattle by increasing the transmission risk.
Collapse
Affiliation(s)
- Elaine D Berry
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, P.O. Box 166, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - James E Wells
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, P.O. Box 166, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Vincent H Varel
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, P.O. Box 166, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Kristin E Hales
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, P.O. Box 166, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Norasak Kalchayanand
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, P.O. Box 166, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| |
Collapse
|
7
|
Luedtke BE, Bosilevac JM. Comparison of methods for the enumeration of enterohemorrhagic Escherichia coli from veal hides and carcasses. Front Microbiol 2015; 6:1062. [PMID: 26483780 PMCID: PMC4586433 DOI: 10.3389/fmicb.2015.01062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/15/2015] [Indexed: 11/13/2022] Open
Abstract
The increased association of enterohemorrhagic Escherichia coli (EHEC) with veal calves has led the United States Department of Agriculture Food Safety and Inspection Service to report results of veal meat contaminated with the Top 7 serogroups separately from beef cattle. However, detection methods that can also provide concentration for determining the prevalence and abundance of EHEC associated with veal are lacking. Here we compared the ability of qPCR and a molecular based most probable number assay (MPN) to detect and enumerate EHEC from veal hides at the abattoir and the resulting pre-intervention carcasses. In addition, digital PCR (dPCR) was used to analyze select samples. The qPCR assay was able to enumerate total EHEC in 32% of the hide samples with a range of approximately 34 to 91,412 CFUs/100 cm2 (95% CI 4-113,460 CFUs/100 cm2). Using the MPN assay, total EHEC was enumerable in 48% of the hide samples and ranged from approximately 1 to greater than 17,022 CFUs/100 cm2 (95% CI 0.4–72,000 CFUs/100 cm2). The carcass samples had lower amounts of EHEC with a range of approximately 4–275 CFUs/100 cm2 (95% CI 3–953 CFUs/100 cm2) from 17% of samples with an enumerable amount of EHEC by qPCR. For the MPN assay, the carcass samples ranged from 0.1 to 1 CFUs/100 cm2 (95% CI 0.02–4 CFUs/100 cm2) from 29% of the samples. The correlation coefficient between the qPCR and MPN enumeration methods indicated a moderate relation (R2 = 0.39) for the hide samples while the carcass samples had no relation (R2 = 0.002), which was likely due to most samples having an amount of total EHEC below the reliable limit of quantification for qPCR. Interestingly, after enrichment, 81% of the hide samples and 94% of the carcass samples had a detectable amount of total EHEC by qPCR. From our analysis, the MPN assay provided a higher percentage of enumerable hide and carcass samples, however determining an appropriate dilution range and the limited throughput offer additional challenges.
Collapse
Affiliation(s)
- Brandon E Luedtke
- U. S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U. S. Meat Animal Research Center Clay Center, NE, USA
| | - Joseph M Bosilevac
- U. S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U. S. Meat Animal Research Center Clay Center, NE, USA
| |
Collapse
|
8
|
Kamel M, El-Hassan DGA, El-Sayed A. Epidemiological studies on Escherichia coli O157:H7 in Egyptian sheep. Trop Anim Health Prod 2015; 47:1161-7. [DOI: 10.1007/s11250-015-0843-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/27/2015] [Indexed: 11/29/2022]
|
9
|
Gil MI, Selma MV, Suslow T, Jacxsens L, Uyttendaele M, Allende A. Pre- and Postharvest Preventive Measures and Intervention Strategies to Control Microbial Food Safety Hazards of Fresh Leafy Vegetables. Crit Rev Food Sci Nutr 2014; 55:453-68. [DOI: 10.1080/10408398.2012.657808] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Wells JE, Kim M, Bono JL, Kuehn LA, Benson AK. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM:Escherichia coli O157:H7, diet, and fecal microbiome in beef cattle12. J Anim Sci 2014; 92:1345-55. [DOI: 10.2527/jas.2013-7282] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- J. E. Wells
- USDA, ARS, US Meat Animal Research Center, Clay Center, NE 689334
| | - M. Kim
- USDA, ARS, US Meat Animal Research Center, Clay Center, NE 689334
| | - J. L. Bono
- USDA, ARS, US Meat Animal Research Center, Clay Center, NE 689334
| | - L. A. Kuehn
- USDA, ARS, US Meat Animal Research Center, Clay Center, NE 689334
| | - A. K. Benson
- Department of Food Science and Technology, University of Nebraska, Lincoln 68583
| |
Collapse
|
11
|
SdiA aids enterohemorrhagic Escherichia coli carriage by cattle fed a forage or grain diet. Infect Immun 2013; 81:3472-8. [PMID: 23836826 DOI: 10.1128/iai.00702-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) causes hemorrhagic colitis and life-threatening complications. The main reservoirs for EHEC are healthy ruminants. We reported that SdiA senses acyl homoserine lactones (AHLs) in the bovine rumen to activate expression of the glutamate acid resistance (gad) genes priming EHEC's acid resistance before they pass into the acidic abomasum. Conversely, SdiA represses expression of the locus of enterocyte effacement (LEE) genes, whose expression is not required for bacterial survival in the rumen but is necessary for efficient colonization at the rectoanal junction (RAJ) mucosa. Our previous studies show that SdiA-dependent regulation was necessary for efficient EHEC colonization of cattle fed a grain diet. Here, we compared the SdiA role in EHEC colonization of cattle fed a forage hay diet. We detected AHLs in the rumen of cattle fed a hay diet, and these AHLs activated gad gene expression in an SdiA-dependent manner. The rumen fluid and fecal samples from hay-fed cattle were near neutrality, while the same digesta samples from grain-fed animals were acidic. Cattle fed either grain or hay and challenged with EHEC orally carried the bacteria similarly. EHEC was cleared from the rumen within days and from the RAJ mucosa after approximately one month. In competition trials, where animals were challenged with both wild-type and SdiA deletion mutant bacteria, diet did not affect the outcome that the wild-type strain was better able to persist and colonize. However, the wild-type strain had a greater advantage over the SdiA deletion mutant at the RAJ mucosa among cattle fed the grain diet.
Collapse
|
12
|
Su R, Munns K, Beauchemin KA, Schwartzkopf-Genswein K, Jin-Quan L, Topp E, Sharma R. Effect of backgrounding and transition diets on fecal concentration and strain types of commensalEscherichia coliin beef cattle. CANADIAN JOURNAL OF ANIMAL SCIENCE 2011. [DOI: 10.4141/cjas2010-034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Su, R., Munns, K., Beauchemin, K. A., Schwartzkopf-Genswein, K., Jin-Quan, L., Topp, E. and Sharma, R. 2011. Effect of backgrounding and transition diets on fecal concentration and strain types of commensal Escherichia coli in beef cattle. Can. J. Anim. Sci. 91: 449–458. The aim of the study was to assess the effect of four different backgrounding diets [55% corn silage in combination with 40% of either temper rolled barley-grain, wheat dried distillers' grain, corn dried distillers' grain or millrun (dry matter basis)] and a transition diet containing increasing amount of concentrate (60 to 90%) on fecal Escherichia coli in feedlot heifers. Heifers were fed backgrounding forage based diets for 91 d and then were shifted to a transition diet for an additional 18 d. Strain characterization of E. coli (n=224) was carried out at time time points over 109 d and indicated that heifers fed the barley–grain diet shed higher (P<0.001) total and tetracycline-resistant (Tetr) E. coli in the backgrounding phase. Of the total E. coli examined (n=224), 70.3% showed resistance to one or more of the 14 antimicrobials examined, which increased to 82.3% by day 109. Among the recovered E. coli, 23 phenotypes and 154 pulsed field gel electrophoresis patterns grouped into 38 clusters indicative of extensive E. coli diversity in heifers. Although supplementation of 40% barley-grain was correlated to higher total E. coli shedding in the backgrounding phase, the backgrounding diets did not influence strain clustering. Strains collected during the transition phase clustered more closely than those collected during the backgrounding phase. This increased strain clustering with high concentrate inclusion in the transition diet was observed within 18 d of the transition phase. Our study indicated variations in E. coli shedding rates and strain clustering in relation to time and diet.
Collapse
Affiliation(s)
- R. Su
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, AB T1J 4B1, Canada
- 1391 Standford St, London, ON, Canada N5V 4T3
| | - K. Munns
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, AB T1J 4B1, Canada
| | - K. A. Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, AB T1J 4B1, Canada
| | - K. Schwartzkopf-Genswein
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, AB T1J 4B1, Canada
| | - L. Jin-Quan
- 1391 Standford St, London, ON, Canada N5V 4T3
| | - E. Topp
- Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 10018, China
| | - R. Sharma
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
13
|
Jacob ME, Callaway TR, Nagaraja TG. Dietary interactions and interventions affecting Escherichia coli O157 colonization and shedding in cattle. Foodborne Pathog Dis 2009; 6:785-92. [PMID: 19737058 DOI: 10.1089/fpd.2009.0306] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Escherichia coli O157 is an important foodborne pathogen affecting human health and the beef cattle industry. Contamination of carcasses at slaughter is correlated to the prevalence of E. coli O157 in cattle feces. Many associations have been made between dietary factors and E. coli O157 prevalence in cattle feces. Preharvest interventions, such as diet management, could reduce the fecal prevalence and diminish the impact of this adulterant. Dietary influences, including grain type and processing method, forage quality, and distillers grains have all been associated with E. coli O157 prevalence. In addition, several plant compounds, including phenolic acids and essential oils, have been proposed as in-feed intervention strategies. The specific mechanisms responsible for increased or decreased E. coli O157 shedding or survival are not known but are often attributed to changes in hindgut ecology induced by diet types. Some interventions may have a direct bacterial effect. Frequently, results of studies are conflicting or not repeatable, which speaks to the complexity of the hindgut ecosystem, variation in animal feed utilization, and variation within feed products. Still, understanding specific mechanisms, driven by diet influences, responsible for E. coli O157 shedding will aid in the development and implementation of better and practical preharvest intervention strategies.
Collapse
Affiliation(s)
- Megan E Jacob
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas 66503-8663, USA
| | | | | |
Collapse
|
14
|
Mirzaagha P, Louie M, Read RR, Sharma R, Yanke LJ, Topp E, McAllister TA. Characterization of tetracycline- and ampicillin-resistant Escherichia coli isolated from the feces of feedlot cattle over the feeding period. Can J Microbiol 2009; 55:750-61. [PMID: 19767846 DOI: 10.1139/w09-015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate tetracycline and ampicillin resistance in Escherichia coli isolated from the feces of 50 crossbred steers housed in 5 feedlot pens. The steers were not administered antibiotics over a 246-day feeding period. A total of 216 isolates were selected for further characterization. The E. coli isolates were selected on MacConkey agar or on MacConkey agar amended with ampicillin (50 microg/mL) or tetracycline (4 microg/mL). Pulsed-field gel electrophoresis (PFGE) typing (XbaI digestion), screening against 11 antibiotics, and multiplex PCR for 14 tet and 3 beta-lactamase genes were conducted. Prevalence of antimicrobial resistance in E. coli at each sampling day was related both temporally and by pen. Multiplex PCR revealed that tet(B) was most prevalent among tetracycline-resistant isolates, whereas beta-lactamase tem1-like was detected mainly in ampicillin-resistant isolates. Our results suggest that antimicrobial resistance in E. coli populations persists over the duration of the feeding period, even in the absence of in-feed antibiotics. Many of the isolates with the same antibiograms had indistinguishable PFGE patterns. Characterization of the factors that influence the nature of this nonselective resistance could provide important information for consideration in the regulation of in-feed antimicrobials for feedlot cattle.
Collapse
Affiliation(s)
- Parasto Mirzaagha
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Herold S, Paton JC, Srimanote P, Paton AW. Differential effects of short-chain fatty acids and iron on expression of iha in Shiga-toxigenic Escherichia coli. Microbiology (Reading) 2009; 155:3554-3563. [DOI: 10.1099/mic.0.029454-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Shiga-toxigenic Escherichia coli (STEC) colonizing the bowel are exposed to a variety of short-chain fatty acids (SCFAs), including acetate, propionate and butyrate, produced by gut microflora. However, the total concentrations and relative amounts of SCFAs in the lumen vary with intestinal niche. Here we report that conditions simulating SCFA concentrations present in the human gut trigger expression of the iha gene, which encodes an adherence-conferring outer-membrane protein of pathogenic E. coli. We show that growth under conditions simulating colonic, but not ileal, SCFA concentrations increases iha expression in three tested STEC strains, with the strongest expression detected in LEE-negative STEC O113:H21 strain 98NK2. Expression of iha is known to be subject to Fur-mediated iron repression in O157:H7 STEC, and the same occurs in 98NK2. However, exogenous iron did not repress iha expression in the presence of colonic SCFAs in either 98NK2 or the O157:H7 strain EDL933. Moreover, exposure to the iron chelator 2,2′-dipyridyl caused no further enhancement of iha expression over that induced by colonic SCFAs. These findings indicate that SCFAs regulate iha expression in STEC independently of iron. Increased expression of iha under colonic but not ileal SCFA conditions possibly may contribute to preferential colonization of the human colon by STEC.
Collapse
Affiliation(s)
- Sylvia Herold
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, South Australia, 5005, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, South Australia, 5005, Australia
| | - Potjanee Srimanote
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, South Australia, 5005, Australia
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, South Australia, 5005, Australia
| |
Collapse
|
16
|
Franz E, van Bruggen AH. Ecology ofE. coliO157:H7 andSalmonella entericain the Primary Vegetable Production Chain. Crit Rev Microbiol 2008; 34:143-61. [DOI: 10.1080/10408410802357432] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Franz E, Semenov AV, van Bruggen AHC. Modelling the contamination of lettuce with Escherichia coli O157:H7 from manure-amended soil and the effect of intervention strategies. J Appl Microbiol 2008; 105:1569-84. [PMID: 19146493 DOI: 10.1111/j.1365-2672.2008.03915.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS A growing number of foodborne illnesses has been associated with the consumption of fresh produce. In this study, the probability of lettuce contamination with Escherichia coli O157:H7 from manure-amended soil and the effect of intervention strategies was determined. METHODS AND RESULTS Pathogen prevalence and densities were modelled probabilistically through the primary production chain of lettuce (manure, manure-amended soil and lettuce). The model estimated an average of 0.34 contaminated heads per hectare. A minimum manure storage time of 30 days and a minimum fertilization-to-planting interval of 60 days was most successful in reducing the risk. Some specific organic farming practices concerning manure and soil management were found to be risk reducing. CONCLUSIONS Certain specific organic farming practices reduced the likelihood of contamination. This cannot be generalized to organic production as a whole. However, the conclusion is relevant for areas like the Netherlands where there is high use of manure in both organic and conventional vegetable production. SIGNIFICANCE AND IMPACT OF THE STUDY Recent vegetable-associated disease outbreaks stress the importance of a safe vegetable production chain. The present study contributed to this by providing a first estimate of the likelihood of lettuce contamination with E. coli O157:H7 and the effectiveness of risk mitigation strategies.
Collapse
Affiliation(s)
- E Franz
- Biological Farming Systems Group, Wageningen University and Research Centre, Wageningen, the Netherlands.
| | | | | |
Collapse
|
18
|
Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet J 2008; 176:21-31. [DOI: 10.1016/j.tvjl.2007.12.016] [Citation(s) in RCA: 575] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2007] [Indexed: 11/19/2022]
|
19
|
Gilbert RA, Denman SE, Padmanabha J, Fegan N, Al Ajmi D, McSweeney CS. Effect of diet on the concentration of complex Shiga toxin-producing Escherichia coli and EHEC virulence genes in bovine faeces, hide and carcass. Int J Food Microbiol 2007; 121:208-16. [PMID: 18068254 DOI: 10.1016/j.ijfoodmicro.2007.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 09/05/2007] [Accepted: 11/06/2007] [Indexed: 10/22/2022]
Abstract
An experiment was conducted to determine whether diets based on structural carbohydrate and/or simple sugars, as found in roughage and/or molasses-based diets, reduce the bovine faecal populations of Shiga toxin-producing Escherichia coli (STEC) isolates containing the eaeA and ehxA genes, referred to as complex STEC (cSTEC), compared with typical high starch, grain-based feedlot diets. In addition, whether commercial lairage management practices promote or diminish any diet-induced responses on the contamination of carcasses was also investigated. After 13 days on the dietary treatments total faecal E. coli numbers were approximately one log lower in the roughage (R) and roughage +50% molasses (RM) diets compared with grain (G) fed animals, this difference varying between 0.5 and 1 log at lairage. Fermentation patterns were similar in the R and RM diets whereas decreased pH and enhanced butyrate fermentation pathways were associated with the G diet. A significant decrease in the faecal concentration of the eaeA gene occurred when animals were changed from high grain to R and RM diets for 6-13 days, compared with animals maintained on the G diet. Significantly lower concentrations of the ehxA gene were also associated with the R diet. Concentrations of the stx(2) gene however, were unaffected by diet. cSTEC were infrequently isolated, with the faecal concentrations of these organisms being low (<3 log(10) MPN per g faeces). cSTEC were only isolated from animals fed G or RM diets, but were never isolated from cattle fed the roughage-based diet, with this diet-induced effect sustained following lairage. These organisms were not detected on the hide and carcass of animals found to shed cSTEC in their faeces and thus appeared uncontaminated with cSTEC.
Collapse
Affiliation(s)
- Rosalind Ann Gilbert
- CSIRO Livestock Industries, Queensland Bioscience Precinct, St Lucia, Queensland 4067, Australia
| | | | | | | | | | | |
Collapse
|
20
|
The physiological and metabolic impacts on sheep and cattle of feed and water deprivation before and during transport. Nutr Res Rev 2007; 20:17-28. [DOI: 10.1017/s0954422407745006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sheep and cattle are frequently subjected to feed and water deprivation (FWD) for about 12 h before, and then during, transport to reduce digesta load in the gastrointestinal tract. This FWD is marked by weight loss as urine and faeces mainly in the first 24 h but continuing at a reduced rate subsequently. The weight of rumen contents falls although water loss is to some extent masked by saliva inflow. FWD is associated with some stress, particularly when transportation is added. This is indicated by increased levels of plasma cortisol that may be partly responsible for an observed increase in the output of water and N in urine and faeces. Loss of body water induces dehydration that may induce feelings of thirst by effects on the hypothalamus structures through the renin–angiotensin–aldosterone system. There are suggestions that elevated cortisol levels depress angiotensin activity and prevent sensations of thirst in dehydrated animals, but further research in this area is needed. Dehydration coupled with the discharge of Na in urine challenges the maintenance of homeostasis. In FWD, Na excretion in urine is reduced and, with the reduction in digesta load, Na is gradually returned from the digestive tract to the extracellular fluid space. Control of enteropathogenic bacteria by normal rumen microbes is weakened by FWD and resulting infections may threaten animal health and meat safety. Recovery time is required after transport to restore full feed intake and to ensure that adequate glycogen is present in muscle pre-slaughter to maintain meat quality.
Collapse
|
21
|
Berry ED, Wells JE, Archibeque SL, Ferrell CL, Freetly HC, Miller DN. Influence of genotype and diet on steer performance, manure odor, and carriage of pathogenic and other fecal bacteria. II. Pathogenic and other fecal bacteria1,2. J Anim Sci 2006; 84:2523-32. [PMID: 16908658 DOI: 10.2527/jas.2005-747] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study assessed the influence of cattle genotype and diet on the carriage and shedding of zoonotic bacterial pathogens and levels of generic Escherichia coli in feces and ruminal contents of beef cattle during the growing and finishing periods. Fifty-one steers of varying proportions of Brahman and MARC III [0 (15), 1/4 (20), 1/2 (7), and 3/4 Brahman (9)] genotypes were divided among 8 pens, such that each breed type was represented in each pen. Four pens each were assigned to 1 of 2 diets [100% chopped bromegrass hay or a diet composed primarily of corn silage (87%)] that were individually fed for a 119-d growing period, at which time the steers were switched to the same high-concentrate, corn-based finishing diet and fed to a target weight of 560 kg. Feces or ruminal fluid were collected and analyzed at alternating intervals of 14 d or less. Generic E. coli concentrations in feces or ruminal fluid did not differ (P > 0.10) by genotype or by growing diet in the growing or finishing periods. However, the concentrations in both feces and ruminal fluid increased in all cattle when switched to the same high-corn diet in the finishing period. There was no effect (P > 0.25) of diet or genotype during either period on E. coli O157 shedding in feces. Forty-one percent of the steers were positive for Campylobacter spp. at least once during the study, and repeated isolations of Campylobacter spp. from the same steer were common. These repeated isolations from the same animals may be responsible for the apparent diet (P = 0.05) and genotype effects (P = 0.02) on Campylobacter in feces in the finishing period. Cells bearing stx genes were detected frequently in both feces (22.5%) and ruminal fluid (19.6%). The number of stx-positive fecal samples was greater (P < 0.05) for 1/2 Brahman steers (42.9%) than for 1/4 Brahman (25.0%) or 3/4 Brahman steers (22.2%), but were not different compared with MARC III steers (38.3%). The greater feed consumption of 1/2 Brahman and MARC III steers may have resulted in greater starch passage into the colon, accompanied by an increase in fecal bacterial populations, which may have further improved the ability to detect stx genes in these cattle. There was no correlation between either ADG or daily DMI and the number of positive samples of E. coli O157, Campylobacter spp., or stx genes, which agrees with our current understanding that these microorganisms occur commonly in, and with no measurable detriment to, healthy cattle.
Collapse
Affiliation(s)
- E D Berry
- USDA-ARS, US Meat Animal Research Center, Clay Center, NE 68933, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Al-Ajmi D, Padmanabha J, Denman SE, Gilbert RA, Al Jassim RAM, McSweeney CS. Evaluation of a PCR detection method for Escherichia coli O157:H7/H- bovine faecal samples. Lett Appl Microbiol 2006; 42:386-91. [PMID: 16599993 DOI: 10.1111/j.1472-765x.2005.01850.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS Combinations of PCR primer sets were evaluated to establish a multiplex PCR method to specifically detect Escherichia coli O157:H7 genes in bovine faecal samples. METHODS AND RESULTS A multiplex PCR method combining three primer sets for the E. coli O157:H7 genes rfbE, uidA and E. coli H7 fliC was developed and tested for sensitivity and specificity with pure cultures of 27 E. coli serotype O157 strains, 88 non-O157 E. coli strains, predominantly bovine in origin and five bacterial strains other than E. coli. The PCR method was very specific in the detection of E. coli O157:H7 and O157:H- strains, and the detection limit in seeded bovine faecal samples was <10 CFU g(-1) faeces, following an 18-h enrichment at 37 degrees C, and could be performed using crude DNA extracts as template. CONCLUSIONS A new multiplex PCR method was developed to detect E. coli O157:H7 and O157:H-, and was shown to be highly specific and sensitive for these strains both in pure culture and in crude DNA extracts prepared from inoculated bovine faecal samples. SIGNIFICANCE AND IMPACT OF THE STUDY This new multiplex PCR method is suitable for the rapid detection of E. coli O157:H7 and O157:H- genes in ruminant faecal samples.
Collapse
Affiliation(s)
- D Al-Ajmi
- School of Animal Studies, University of Queensland, Gatton, Qld, Australia
| | | | | | | | | | | |
Collapse
|