1
|
Zerbo KBF, Yameogo F, Wonni I, Somda I. Analysis of the Genetic Variation and Geographic Distribution Patterns of Xanthomonas citri pv. citri Strains in Citrus Production in Burkina Faso. PHYTOPATHOLOGY 2024; 114:2024-2032. [PMID: 38829919 DOI: 10.1094/phyto-04-24-0121-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
It is essential to have a thorough knowledge of the genetic variation among different strains of Xanthomonas citri pv. citri, which is responsible for causing citrus bacterial canker. This understanding is important for studying disease characteristics, population structure, and evolution and ultimately for developing sustainable methods of control. A total of 48 strains obtained from citrus production areas in Burkina Faso in 2012, 2020, and 2021 were subjected to Polymerase Chain reaction (PCR) tests using specific primers. The aim was to examine the distribution of type 3 effectors and determine the geographical origins of the strains. The examination of the distribution of type 3 non-transcription-activator-like effectors (TALEs) revealed a broader range of strains obtained in 2020 and 2021 than in 2012. However, all the strains possessed a shared set of three genes, specifically, XopE2, XopN, and AvrBs2. Furthermore, all examined effectors were observed in the Bobo-Dioulasso region. Regarding the characterization of TALEs, two profiles containing two to three TALEs were discovered. Profile 1, consisting of two TALEs, was found in 37 X. citri pv. citri strains, whereas Profile 2, comprising three TALEs, was detected in 11 strains. Among the three TALEs (A, B, and C) that were identified, TALEs B and C were present in all the strains. The correlation matrix indicated a positive association between the type 3 effector content of strains and the duration of their isolation. Principal component analysis revealed a limited organization of the strains under investigation. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kevin Ben Fabrice Zerbo
- Centre National de la Recherche Scientifique et Technologique/Institut de l'Environnement et de Recherches Agricoles (INERA)/Laboratoire Mixte International/Observatoire des Agents Pathogènes, Biosécurité et Biodiversité (LMI PathoBios), 01 BP 910, Bobo-Dioulasso, Burkina Faso
- Université Nazi BONI/Clinique des Plantes, 01 BP1091, Bobo-Dioulasso, Burkina Faso
| | - Florence Yameogo
- Centre National de la Recherche Scientifique et Technologique/Institut de l'Environnement et de Recherches Agricoles (INERA)/Laboratoire Mixte International/Observatoire des Agents Pathogènes, Biosécurité et Biodiversité (LMI PathoBios), 01 BP 910, Bobo-Dioulasso, Burkina Faso
- Université Nazi BONI/Clinique des Plantes, 01 BP1091, Bobo-Dioulasso, Burkina Faso
| | - Issa Wonni
- Centre National de la Recherche Scientifique et Technologique/Institut de l'Environnement et de Recherches Agricoles (INERA)/Laboratoire Mixte International/Observatoire des Agents Pathogènes, Biosécurité et Biodiversité (LMI PathoBios), 01 BP 910, Bobo-Dioulasso, Burkina Faso
| | - Irénée Somda
- Université Nazi BONI/Clinique des Plantes, 01 BP1091, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
2
|
Adhikary R, Mandal S, Mandal V. Seasonal Variation Imparts the Shift in Endophytic Bacterial Community Between Mango and its Hemiparasites. Curr Microbiol 2022; 79:287. [PMID: 35962289 DOI: 10.1007/s00284-022-02987-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
Abstract
The study of community composition and community structure is important to know the ecological behaviour and community dynamics of the participating species and to understand the molecular interplay that lies between them. The community diversity greatly lies in the physiological status of the host and the environmental factors. The present study aims to explore the endophytic bacterial communities and their dynamics in the pre-flowering and post-flowering seasons in the horticulturally important Mango (Mangifera indica L.) and its hemiparasites: Loranthus parasiticus (L.) Marr. and Macrosolen colchinchinensis (Lour.) Tiegh. through a metagenomic approach using the sequence of V3 region of 16S rRNA gene. The genera Bacillus, Acinetobacter and Corynebacterium, under the phyla Firmicutes, Proteobacteria and Actinobacteria, respectively, were found to be the most abundant genera present in mango and its hemiparasites. It was found that during the post-flowering season, the twigs and leaves of mango had lesser endophytes than in other seasons while the alpha-diversity indices of the representative genera were the highest in L. parasiticus during the same seasons. However, in M. colchinchinensis, the alpha diversity was also higher in the post-flowering season similar to another hemiparasite plant L. parasiticus. The ecological, taxonomic and complex correlation studies unravelled that the hemiparasites act as the potent reservoirs of endophytic communities throughout the year and during favourable conditions, these bacterial communities disseminate to the mango plant.
Collapse
Affiliation(s)
- Rajsekhar Adhikary
- Plant and Microbial Physiology and Biochemistry Laboratory, Department of Botany, University of Gour, Banga, P.O. - Mokdumpur, Malda, WB, 732103, India.,Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| | - Vivekananda Mandal
- Plant and Microbial Physiology and Biochemistry Laboratory, Department of Botany, University of Gour, Banga, P.O. - Mokdumpur, Malda, WB, 732103, India.
| |
Collapse
|
3
|
Pruvost O, Richard D, Boyer K, Javegny S, Boyer C, Chiroleu F, Grygiel P, Parvedy E, Robène I, Maillot-Lebon V, Hamza A, Lobin KK, Naiken M, Vernière C. Diversity and Geographical Structure of Xanthomonas citri pv. citri on Citrus in the South West Indian Ocean Region. Microorganisms 2021; 9:microorganisms9050945. [PMID: 33925745 PMCID: PMC8146439 DOI: 10.3390/microorganisms9050945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023] Open
Abstract
A thorough knowledge of genotypic and phenotypic variations (e.g., virulence, resistance to antimicrobial compounds) in bacteria causing plant disease outbreaks is key for optimizing disease surveillance and management. Using a comprehensive strain collection, tandem repeat-based genotyping techniques and pathogenicity assays, we characterized the diversity of X. citri pv. citri from the South West Indian Ocean (SWIO) region. Most strains belonged to the prevalent lineage 1 pathotype A that has a wide host range among rutaceous species. We report the first occurrence of genetically unrelated, nonepidemic lineage 4 pathotype A* (strains with a host range restricted to Mexican lime and related species) in Mauritius, Moheli and Réunion. Microsatellite data revealed that strains from the Seychelles were diverse, grouped in three different clusters not detected in the Comoros and the Mascarenes. Pathogenicity data suggested a higher aggressiveness of strains of one of these clusters on citron (Citrus medica). With the noticeable exception of the Comoros, there was no sign of recent interisland movement of the pathogen. Consistent with this finding, the copL gene, a marker for the plasmid-borne copLAB copper resistance that was recently identified in Réunion, was not detected in 568 strains from any islands in the SWIO region apart from Réunion.
Collapse
Affiliation(s)
- Olivier Pruvost
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
- Correspondence: ; Tel.: +262-262492720
| | - Damien Richard
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
- ANSES, Plant Health Laboratory, F-97410 St Pierre, La Réunion, France
- UFR Sciences et Technologies, Université de la Réunion, UMR PVBMT, F-97490 St Denis, La Réunion, France
| | - Karine Boyer
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
| | - Stéphanie Javegny
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
| | - Claudine Boyer
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
| | - Frédéric Chiroleu
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
| | - Pierre Grygiel
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
| | - Evelyne Parvedy
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
| | - Isabelle Robène
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
| | - Véronique Maillot-Lebon
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
| | | | | | - Marc Naiken
- National Biosecurity Agency, Victoria P.O Box 464, Mahé, Seychelles;
| | - Christian Vernière
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
- PHIM Plant Health Institute, CIRAD, INRAE, Institut Agro, IRD, University Montpellier, F-34398 Montpellier, France
| |
Collapse
|
4
|
Robène I, Maillot-Lebon V, Chabirand A, Moreau A, Becker N, Moumène A, Rieux A, Campos P, Gagnevin L, Gaudeul M, Baider C, Chiroleu F, Pruvost O. Development and comparative validation of genomic-driven PCR-based assays to detect Xanthomonas citri pv. citri in citrus plants. BMC Microbiol 2020; 20:296. [PMID: 33004016 PMCID: PMC7528614 DOI: 10.1186/s12866-020-01972-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/08/2020] [Indexed: 01/07/2023] Open
Abstract
Background Asiatic Citrus Canker, caused by Xanthomonas citri pv. citri, severely impacts citrus production worldwide and hampers international trade. Considerable regulatory procedures have been implemented to prevent the introduction and establishment of X. citri pv. citri into areas where it is not present. The effectiveness of this surveillance largely relies on the availability of specific and sensitive detection protocols. Although several PCR- or real-time PCR-based methods are available, most of them showed analytical specificity issues. Therefore, we developed new conventional and real-time quantitative PCR assays, which target a region identified by comparative genomic analyses, and compared them to existing protocols. Results Our assays target the X. citri pv. citri XAC1051 gene that encodes for a putative transmembrane protein. The real-time PCR assay includes an internal plant control (5.8S rDNA) for validating the assay in the absence of target amplification. A receiver-operating characteristic approach was used in order to determine a reliable cycle cut-off for providing accurate qualitative results. Repeatability, reproducibility and transferability between real-time devices were demonstrated for this duplex qPCR assay (XAC1051-2qPCR). When challenged with an extensive collection of target and non-target strains, both assays displayed a high analytical sensitivity and specificity performance: LOD95% = 754 CFU ml− 1 (15 cells per reaction), 100% inclusivity, 97.2% exclusivity for XAC1051-2qPCR; LOD95% = 5234 CFU ml− 1 (105 cells per reaction), 100% exclusivity and inclusivity for the conventional PCR. Both assays can detect the target from naturally infected citrus fruit. Interestingly, XAC1051-2qPCR detected X. citri pv. citri from herbarium citrus samples. The new PCR-based assays displayed enhanced analytical sensitivity and specificity when compared with previously published PCR and real-time qPCR assays. Conclusions We developed new valuable detection assays useful for routine diagnostics and surveillance of X. citri pv. citri in citrus material. Their reliability was evidenced through numerous trials on a wide range of bacterial strains and plant samples. Successful detection of the pathogen was achieved from both artificially and naturally infected plants, as well as from citrus herbarium samples, suggesting that these assays will have positive impact both for future applied and academic research on this bacterium.
Collapse
Affiliation(s)
| | | | - Aude Chabirand
- Unit for Tropical Pests and Diseases, Plant Health Laboratory (LSV), French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Saint-Pierre, Reunion Island, France
| | - Aurélie Moreau
- Unit for Tropical Pests and Diseases, Plant Health Laboratory (LSV), French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Saint-Pierre, Reunion Island, France
| | - Nathalie Becker
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Sorbonne Université, EPHE, Université des Antilles, CNRS, Paris, France
| | - Amal Moumène
- Université de La Réunion, UMR PVBMT, Saint-Pierre, Reunion Island, France
| | - Adrien Rieux
- CIRAD, UMR PVBMT, Saint-Pierre, Reunion Island, France
| | - Paola Campos
- CIRAD, UMR PVBMT, Saint-Pierre, Reunion Island, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Sorbonne Université, EPHE, Université des Antilles, CNRS, Paris, France
| | | | - Myriam Gaudeul
- Herbier national (P), Muséum National d'Histoire Naturelle, Paris, France
| | - Claudia Baider
- Ministry of Agro Industry and Food Security, Mauritius Herbarium, R.E. Vaughan Building (MSIRI compound) Agricultural Services, Réduit, Mauritius
| | | | | |
Collapse
|
5
|
Pruvost O, Boyer K, Ravigné V, Richard D, Vernière C. Deciphering how plant pathogenic bacteria disperse and meet: Molecular epidemiology of Xanthomonas citri pv. citri at microgeographic scales in a tropical area of Asiatic citrus canker endemicity. Evol Appl 2019; 12:1523-1538. [PMID: 31462912 PMCID: PMC6708428 DOI: 10.1111/eva.12788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/25/2019] [Accepted: 02/24/2019] [Indexed: 12/15/2022] Open
Abstract
Although some plant pathogenic bacteria represent a significant threat to agriculture, the determinants of their ecological success and evolutionary potential are still poorly understood. Refining our understanding of bacterial strain circulation at small spatial scales and the biological significance and evolutionary consequences of co-infections are key questions. The study of bacterial population biology can be challenging, because it requires high-resolution markers that can be genotyped with a high throughput. Here, we overcame this difficulty for Xanthomonas citri pv. citri, a genetically monomorphic bacterium causing Asiatic citrus canker (ACC). Using a genotyping method that did not require cultivating the bacterium or purifying DNA, we deciphered the pathogen's spatial genetic structure at several microgeographic scales, down to single lesion, in a situation of ACC endemicity. In a grove where copper was recurrently applied for ACC management, copper-susceptible and copper-resistant X. citri pv. citri coexisted and the bacterial population structured as three genetic clusters, suggesting a polyclonal contamination. The range of spatial dependency, estimated for the two largest clusters, was four times greater for the cluster predominantly composed of copper-resistant bacteria. Consistently, the evenness value calculated for this cluster was indicative of increased transmission. Linkage disequilibrium was high even at a tree scale, probably due to a combination of clonality and admixture. Approximately 1% of samples exhibited within-lesion multilocus polymorphism, explained at least in part by polyclonal infections. Canker lesions, which are of major biological significance as an inoculum source, may also represent a preferred niche for horizontal gene transfer. This study points out the potential of genotyping data for estimating the range of spatial dependency of plant bacterial pathogens, an important parameter for guiding disease management strategies.
Collapse
Affiliation(s)
| | | | | | - Damien Richard
- CIRADUMR PVBMTSaint Pierre, La RéunionFrance
- ANSESSaint Pierre, La RéunionFrance
- Université de la RéunionUMR PVBMTSaint Denis, La RéunionFrance
| | - Christian Vernière
- CIRADUMR PVBMTSaint Pierre, La RéunionFrance
- CIRADUMR BGPIMontpellierFrance
| |
Collapse
|
6
|
Zombre C, Sankara P, Ouédraogo SL, Wonni I, Boyer K, Boyer C, Terville M, Javegny S, Allibert A, Vernière C, Pruvost O. Natural Infection of Cashew (Anacardium occidentale) by Xanthomonas citri pv. mangiferaeindicae in Burkina Faso. PLANT DISEASE 2016; 100:718-723. [PMID: 30688624 DOI: 10.1094/pdis-10-15-1137-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Xanthomonas citri pv. mangiferaeindicae is the causal agent of bacterial canker of mango (Mangifera indica, Anacardiaceae), a disease of international importance. Since the original description of the bacterium in the 1940s, the status of cashew (Anacardium occidentale, Anacardiaceae) as a host species has been unclear. Here, we report the first outbreak of a cashew bacterial disease in Burkina Faso (Western Africa) where X. citri pv. mangiferaeindicae recently emerged on mango. A comprehensive molecular characterization, based on multilocus sequence analysis, supplemented with pathogenicity assays of isolates obtained during the outbreak, indicated that the causal agent on cashew in Burkina Faso is X. citri pv. mangiferaeindicae and not X. citri pv. anacardii, which was previously reported as the causal agent of a cashew bacterial leaf spot in Brazil. Pathogenicity data supported by population biology in Burkina Faso suggest a lack of host specialization. Therefore, the inoculum from each crop is potentially harmful to both host species. Symptoms induced on cashew leaves and fruit by X. citri pv. mangiferaeindicae and nonpigmented strains of X. citri pv. anacardii are similar, although the causative bacteria are genetically different. Thus, xanthomonads pathogenic on cashew may represent a new example of pathological convergence in this bacterial genus.
Collapse
Affiliation(s)
- C Zombre
- Université de Ouagadougou, Ecole doctorale Science et Technologie, Ouagadougou, Burkina Faso
| | - P Sankara
- Université de Ouagadougou, Ecole doctorale Science et Technologie, Ouagadougou, Burkina Faso
| | - S L Ouédraogo
- Institut de l'Environnement et de Recherches Agricoles, Bobo Dioulasso, Burkina Faso
| | - I Wonni
- Institut de l'Environnement et de Recherches Agricoles, Bobo Dioulasso, Burkina Faso
| | - K Boyer
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France
| | - C Boyer
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France
| | - M Terville
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France
| | - S Javegny
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France
| | - A Allibert
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France
| | - C Vernière
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France
| | - O Pruvost
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France
| |
Collapse
|
7
|
Leduc A, Traoré YN, Boyer K, Magne M, Grygiel P, Juhasz CC, Boyer C, Guerin F, Wonni I, Ouedraogo L, Vernière C, Ravigné V, Pruvost O. Bridgehead invasion of a monomorphic plant pathogenic bacterium:Xanthomonas citripv. citri, an emerging citrus pathogen in Mali and Burkina Faso. Environ Microbiol 2015; 17:4429-42. [DOI: 10.1111/1462-2920.12876] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/06/2015] [Indexed: 11/29/2022]
Affiliation(s)
- A. Leduc
- UMR PVBMT; CIRAD; 97410 Saint Pierre La Réunion France
| | | | - K. Boyer
- UMR PVBMT; CIRAD; 97410 Saint Pierre La Réunion France
| | - M. Magne
- UMR PVBMT; CIRAD; 97410 Saint Pierre La Réunion France
| | - P. Grygiel
- UMR PVBMT; CIRAD; 97410 Saint Pierre La Réunion France
| | - C. C. Juhasz
- UMR PVBMT; CIRAD; 97410 Saint Pierre La Réunion France
| | - C. Boyer
- UMR PVBMT; CIRAD; 97410 Saint Pierre La Réunion France
| | - F. Guerin
- UMR PVBMT; Université de la Réunion; 97410 Saint Pierre La Réunion France
| | - I. Wonni
- Institut de l'Environnement et de Recherches agricoles; 01 BP910 Bobo Dioulasso Burkina Faso
| | - L. Ouedraogo
- Institut de l'Environnement et de Recherches agricoles; 01 BP910 Bobo Dioulasso Burkina Faso
| | - C. Vernière
- UMR PVBMT; CIRAD; 97410 Saint Pierre La Réunion France
| | - V. Ravigné
- UMR BGPI; CIRAD; 34398 Montpellier France
| | - O. Pruvost
- UMR PVBMT; CIRAD; 97410 Saint Pierre La Réunion France
| |
Collapse
|
8
|
Scientific Opinion on the risk to plant health of Xanthomonas citri pv. citri and Xanthomonas citri pv. aurantifolii for the EU territory. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3556] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
9
|
Escalon A, Javegny S, Vernière C, Noël LD, Vital K, Poussier S, Hajri A, Boureau T, Pruvost O, Arlat M, Gagnevin L. Variations in type III effector repertoires, pathological phenotypes and host range of Xanthomonas citri pv. citri pathotypes. MOLECULAR PLANT PATHOLOGY 2013; 14:483-96. [PMID: 23437976 PMCID: PMC6638789 DOI: 10.1111/mpp.12019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The mechanisms determining the host range of Xanthomonas are still undeciphered, despite much interest in their potential roles in the evolution and emergence of plant pathogenic bacteria. Xanthomonas citri pv. citri (Xci) is an interesting model of host specialization because of its pathogenic variants: pathotype A strains infect a wide range of Rutaceous species, whereas pathotype A*/A(W) strains have a host range restricted to Mexican lime (Citrus aurantifolia) and alemow (Citrus macrophylla). Based on a collection of 55 strains representative of Xci worldwide diversity assessed by amplified fragment length polymorphism (AFLP), we investigated the distribution of type III effectors (T3Es) in relation to host range. We examined the presence of 66 T3Es from xanthomonads in Xci and identified a repertoire of 28 effectors, 26 of which were shared by all Xci strains, whereas two (xopAG and xopC1) were present only in some A*/A(W) strains. We found that xopAG (=avrGf1) was present in all A(W) strains, but also in three A* strains genetically distant from A(W) , and that all xopAG-containing strains induced the hypersensitive response (HR) on grapefruit and sweet orange. The analysis of xopAD and xopAG suggested horizontal transfer between X. citri pv. bilvae, another citrus pathogen, and some Xci strains. A strains were genetically less diverse, induced identical phenotypic responses and possessed indistinguishable T3E repertoires. Conversely, A*/A(W) strains exhibited a wider genetic diversity in which clades correlated with geographical origin and T3E repertoire, but not with pathogenicity, according to T3E deletion experiments. Our data outline the importance of taking into account the heterogeneity of Xci A*/A(W) strains when analysing the mechanisms of host specialization.
Collapse
Affiliation(s)
- Aline Escalon
- UMR PVBMT, CIRAD, F-97410 Saint-Pierre, La Réunion, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Delcourt S, Vernière C, Boyer C, Pruvost O, Hostachy B, Robène-Soustrade I. Revisiting the Specificity of PCR Primers for Diagnostics of Xanthomonas citri pv. citri by Experimental and In Silico Analyses. PLANT DISEASE 2013; 97:373-378. [PMID: 30722361 DOI: 10.1094/pdis-04-12-0351-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Asiatic citrus canker disease, caused by Xanthomonas citri pv. citri, seriously impacts citrus production worldwide. Two pathogenic variants, A and A*/Aw, have been described within this pathovar. Two additional pathovars of X. citri with a limited geographic distribution and reduced pathogenicity, namely X. citri pvs. aurantifolii and bilvae, are also pathogenic to citrus and some rutaceous species. Rapid and reliable identification is required for these citrus pathogens, which are classified as a quarantine organism in citrus-producing countries. The specificity of nine polymerase chain reaction primers previously designed for the identification of X. citri pv. citri or citrus bacterial canker strains (both pvs. citri and aurantifolii) was assayed on a large strain collection (n = 87), including the two pathotypes of X. citri pv. citri, other genetic related or unrelated pathogenic xanthomonads, and saprophytic xanthomonads. This study gave congruent results with the original articles when testing the same strains or pathovars but the use of a broad inclusivity and exclusivity panel of strains highlighted new findings. Particularly, primers 2/3, 4/7, and KingF/R failed to provide amplification for three strains from the pathotype A*/Aw. Moreover, all pairs of primers detected at least one non-target strain. These data were supported by in silico analysis of the DNA sequences available from National Center for Biotechnology Information databases.
Collapse
Affiliation(s)
- Suzy Delcourt
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, La Réunion, France
| | | | - Claudine Boyer
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, La Réunion, France
| | | | | | | |
Collapse
|
11
|
Hamza AA, Robène-Soustrade I, Jouen E, Gagnevin L, Lefeuvre P, Chiroleu F, Pruvost O. Genetic and Pathological Diversity Among Xanthomonas Strains Responsible for Bacterial Spot on Tomato and Pepper in the Southwest Indian Ocean Region. PLANT DISEASE 2010; 94:993-999. [PMID: 30743480 DOI: 10.1094/pdis-94-8-0993] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacterial spot of tomato and pepper, a major problem in tropical climates, can be caused by several Xanthomonas genospecies. We examined the genetic and pathological diversity of a collection of 72 strains from the southwest Indian Ocean region as part of a regional research and development program to update inventories of agricultural pests and pathogens. Xanthomonas euvesicatoria, X. perforans, X. gardneri, and X. vesicatoria were identified in our strain collection. The identification of strains at the species level was consistently achieved by amplified fragment length polymorphism (AFLP) and multilocus sequence analysis (MLSA). Overall, X. euvesicatoria was the species recovered prevalently. MLSA data based on four housekeeping genes identified two to three sequence types per genospecies. It suggested that sequence variations primarily consisted of synonymous mutations, although a recombination event spanning several hundred nucleotides was detected for some strains of X. euvesicatoria on the atpD gene coding for the F1-F0-ATPase β subunit. The pathogenicity of strains was consistent with data found in the literature. Some pathological variations were primarily observed among strains identified as X. euvesicatoria. This study provides the first ever comprehensive description of the status of Xanthomonas species that cause bacterial spot of tomato and pepper in the southwest Indian Ocean region.
Collapse
Affiliation(s)
- A A Hamza
- Research Plant Pathologists, 97410 Saint Pierre, La Réunion, France
| | | | - E Jouen
- Research Plant Pathologists, 97410 Saint Pierre, La Réunion, France
| | - L Gagnevin
- Research Plant Pathologists, 97410 Saint Pierre, La Réunion, France
| | - P Lefeuvre
- Research Plant Pathologists, 97410 Saint Pierre, La Réunion, France
| | - F Chiroleu
- Statistician, CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7, chemin de l'Irat, France
| | - O Pruvost
- Research Plant Pathologist, 97410 Saint Pierre, La Réunion, France
| |
Collapse
|
12
|
Janse JD. Diagnostic methods for phytopathogenic bacteria of stone fruits and nuts in COST 873. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1365-2338.2009.02356.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Bui Thi Ngoc L, Vernière C, Jouen E, Ah-You N, Lefeuvre P, Chiroleu F, Gagnevin L, Pruvost O. Amplified fragment length polymorphism and multilocus sequence analysis-based genotypic relatedness among pathogenic variants of Xanthomonas citri pv. citri and Xanthomonas campestris pv. bilvae. Int J Syst Evol Microbiol 2010; 60:515-525. [DOI: 10.1099/ijs.0.009514-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three pathogenic variants (i.e. pathotypes) have been described within Xanthomonas citri pv. citri, the causal agent of Asiatic citrus canker. Pathotype A strains naturally infect a wide range of Citrus species and members of some related genera. In contrast, pathotypes A* and Aw have narrow host ranges within the genus Citrus and have been isolated from Mexican lime (Citrus aurantifolia L.) and from Mexican lime and alemow (Citrus macrophylla L.), respectively. We used amplified fragment length polymorphism (AFLP) and multilocus sequence analysis (MLSA) based on four partial housekeeping gene sequences (atpD, dnaK, efp and gyrB) for the genotypic classification of Xanthomonas citri pv. citri and the poorly characterized citrus pathogen Xanthomonas campestris pv. bilvae. A Mantel test showed that genetic distances derived from AFLP and MLSA were highly correlated. X. campestris pv. bilvae showed a close relatedness to the type strain of X. citri, indicating that this pathovar should be reclassified as X. citri pv. bilvae. All pathotype A* and Aw strains were most closely related to X. citri pv. citri strains with a wide host range (pathotype A), confirming previous DNA–DNA hybridization data. Pathotype Aw should be considered a junior synonym of pathotype A* on the basis of pathogenicity tests, AFLP, MLSA and PCR using pathovar-specific primers. Evolutionary genome divergences computed from AFLP data suggested that pathotype A* (including Aw strains) is a group of strains that shows a wider genetic diversity than pathotype A.
Collapse
Affiliation(s)
- Lan Bui Thi Ngoc
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, 97410 Saint Pierre, La Réunion, France
| | - Christian Vernière
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, 97410 Saint Pierre, La Réunion, France
| | - Emmanuel Jouen
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, 97410 Saint Pierre, La Réunion, France
| | - Nathalie Ah-You
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, 97410 Saint Pierre, La Réunion, France
| | - Pierre Lefeuvre
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, 97410 Saint Pierre, La Réunion, France
| | - Frédéric Chiroleu
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, 97410 Saint Pierre, La Réunion, France
| | - Lionel Gagnevin
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, 97410 Saint Pierre, La Réunion, France
| | - Olivier Pruvost
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7 chemin de l'Irat, 97410 Saint Pierre, La Réunion, France
| |
Collapse
|
14
|
Laurent P, Chabirand A, Jouen E, Robène-Soustrade I, Gagnevin L, Hostachy B, Pruvost O. A new semi-selective medium for the isolation ofXanthomonas axonopodispv.dieffenbachiae, the etiological agent of anthurium bacterial blight. Lett Appl Microbiol 2009; 49:210-6. [DOI: 10.1111/j.1472-765x.2009.02643.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Pruvost O, Savelon C, Boyer C, Chiroleu F, Gagnevin L, Jacques MA. Populations of Xanthomonas citri pv. mangiferaeindicae from asymptomatic mango leaves are primarily endophytic. MICROBIAL ECOLOGY 2009; 58:170-178. [PMID: 19139953 DOI: 10.1007/s00248-008-9480-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 11/25/2008] [Indexed: 05/27/2023]
Abstract
Epiphytic survival of several Xanthomonas pathovars has been reported, but most studies failed to determine whether such populations were resident epiphytes, resulting from latent infections, or casual epiphytes. This study aimed at understanding the nature of Xanthomonas citri pv. mangiferaeindicae populations associated with asymptomatic leaves. When spray-inoculated on mango leaves cv. Maison Rouge, the pathogen multiplied markedly in association with juvenile leaves, but was most often detected as low population sizes (<1 x 10(3) cfu g(-1)) in association with mature leaves. Our results suggest a very low biological significance of biofilm-associated populations of X. citri pv. mangiferaeindicae, while saprophytic microbiota associated with mango leaves survived frequently as biofilms. A chloroform vapor-based disinfestation assay which kills cells specifically located on the leaf surface and not those located within the leaf mesophyll was developed. When applied to spray-inoculated leaves maintained under controlled environmental conditions, 155 out of the 168 analyzed datasets collected over three assessment dates for seven bacterial strains representative of the genetic diversity of the pathogen failed to demonstrate a significant X. citri pv. mangiferaeindicae population decrease on chloroform treated leaves up to 13 days after inoculation. We conclude that an efficient survival of X. citri pv. mangiferaeindicae present on mango leaf surfaces following a limited dissemination event is largely dependent on the availability of juvenile plant tissues. The bacterium gains access to protected sites (e.g., mesophyll) through stomata where it becomes endophytic and eventually causes disease. Chloroform vapor-based disinfestation assays should be useful for further studies aiming at evaluating survival sites of bacteria associated with the phyllosphere.
Collapse
Affiliation(s)
- Olivier Pruvost
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion, Pôle de Protection des Plantes, 7, chemin de l'Irat, 97410 Saint Pierre, Réunion Island, France.
| | | | | | | | | | | |
Collapse
|
16
|
Ah-You N, Gagnevin L, Chiroleu F, Jouen E, Neto JR, Pruvost O. Pathological Variations Within Xanthomonas campestris pv. mangiferaeindicae Support Its Separation Into Three Distinct Pathovars that Can Be Distinguished by Amplified Fragment Length Polymorphism. PHYTOPATHOLOGY 2007; 97:1568-1577. [PMID: 18943717 DOI: 10.1094/phyto-97-12-1568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Bacterial black spot, caused by Xanthomonas campestris pv. mangiferaeindicae, is an important disease of mango (Mangifera indica). Several other plant genera of the family Anacardiaceae were described as host species for xanthomonads. We studied pathological variations among strains in a worldwide collection from several Anacardiaceae genera. Strains were classified into three pathogenicity groups. Group I strains (from the Old World) multiplied markedly in leaf tissue of mango and cashew (Anacardium occidentale). Group II strains (from Brazil) multiplied markedly in cashew leaf tissue, but not in mango. Moreover, mango leaves inoculated with group I and group II strains exhibited lesions with different morphologies, consistent with variations in symptomology previously reported on mango under field conditions. Group I strains produced black, raised lesions, consistent with the original description of the pathovar, whereas group II strains produced brownish, flat lesions. Group III strains produced a unique syndrome on ambarella (Spondias dulcis) and mombin (Spondias mombin). Based on evolutionary genome divergence derived from amplified fragment length polymorphism (AFLP) data, the three groups were genetically distinct and were related to groups 9.5, 9.6, and 9.4 of X. axonopodis identified by Rademaker, respectively. As each group was characterized by unique symptomology and/or host range, we propose that X. campestris pv. mangiferaeindicae be split into three pathovars of X. axonopodis: X. axonopodis pv. mangiferaeindicae, X. axonopodis pv. anacardii, and X. axonopodis pv. spondiae. Within pv. mangiferaeindicae sensu novo, AFLP data were consistent with that previously published for restriction fragment length polymorphism groups and suggested long-distance movement of the pathogen, likely through propagative material.
Collapse
|