1
|
Guo X, Zhang J, Han L, Lee J, Williams SC, Forsberg A, Xu Y, Austin RN, Feng L. Structure and mechanism of the alkane-oxidizing enzyme AlkB. Nat Commun 2023; 14:2180. [PMID: 37069165 PMCID: PMC10110569 DOI: 10.1038/s41467-023-37869-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Alkanes are the most energy-rich form of carbon and are widely dispersed in the environment. Their transformation by microbes represents a key step in the global carbon cycle. Alkane monooxygenase (AlkB), a membrane-spanning metalloenzyme, converts straight chain alkanes to alcohols in the first step of the microbially-mediated degradation of alkanes, thereby playing a critical role in the global cycling of carbon and the bioremediation of oil. AlkB biodiversity is attributed to its ability to oxidize alkanes of various chain lengths, while individual AlkBs target a relatively narrow range. Mechanisms of substrate selectivity and catalytic activity remain elusive. Here we report the cryo-EM structure of AlkB, which provides a distinct architecture for membrane enzymes. Our structure and functional studies reveal an unexpected diiron center configuration and identify molecular determinants for substrate selectivity. These findings provide insight into the catalytic mechanism of AlkB and shed light on its function in alkane-degrading microorganisms.
Collapse
Affiliation(s)
- Xue Guo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lei Han
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Juliet Lee
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shoshana C Williams
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Allison Forsberg
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90007, USA
| | - Yan Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Shapiro TN, Manucharova NA, Lobakova ES. Activity of alkanmonooxygenase alkB gene in strains of hydrocarbon-oxidizing bacteria isolated from petroleum products. Vavilovskii Zhurnal Genet Selektsii 2022; 26:575-582. [PMID: 36313823 PMCID: PMC9556310 DOI: 10.18699/vjgb-22-70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 06/16/2023] Open
Abstract
Alkanmonooxygenase enzymes AlkB and Cyp153 are responsible for the aerobic degradation of n-alkanes of petroleum and petroleum products. To prove the usage of n-alkanes from oil and petroleum products by hydrocarbon-oxidizing bacteria isolated from aviation kerosene TS-1 and automobile gasoline AI-95, the detection of the key genes alkB, Alk1, Alk2, Alk3 and Cyp153 encoding alkanmonooxygenases AlkB and Cyp153 (responsible for the oxidation of hydrocarbons with a certain chain length) was carried out. It was found that bacterial strains isolated from TS-1 jet fuel, except Deinococcus sp. Bi7, had at least one of the studied n-alkane degradation genes. The strains Sphingobacterium multivorum Bi2; Alcaligenes faecalis Bi3; Rhodococcus sp. Bi4; Sphingobacterium sp. Bi5; Rhodococcus erythropolis Bi6 contained the alkB gene. In the strains of hydrocarbon-oxidizing bacteria isolated from gasoline AI- 95, this alkanmonooxygenase gene was not detected. Using the real-time PCR method, the activity of the alkB gene in all bacterial strains isolated from petroleum products was analyzed and the number of its copies was determined. By real-time PCR using a primer with a different sequence of nucleotides to detect the alkB gene, its activity was established in all bacterial strains isolated from gasoline AI-95; besides, the strain Paenibacillus agaridevorans Bi11 was assigned to the group with a high level of its activity (1290 copies/ml). According to the assessment of the growth of isolated hydrocarbon-oxidizing bacteria on a solid Evans mineral medium with the addition of the model mixture of hydrocarbons, the strains were divided into three groups. The distributions of strains of hydrocarbon-oxidizing bacteria in the groups based on the activity of the alkB gene and groups formed based on the growth ability and use of the model mixture of hydrocarbons and petroleum products were found to be consistent. The results obtained indicate that we need to use a complex of molecular and physiological methods for a comprehensive analysis of the distribution of the studied genes in bacteria and to assess their activity in the strains of hydrocarbon-oxidizing bacteria capable of biodegradation of petroleum hydrocarbons.
Collapse
Affiliation(s)
- T N Shapiro
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - N A Manucharova
- Lomonosov Moscow State University, Faculty of Soil Science, Moscow, Russia
| | - E S Lobakova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| |
Collapse
|
3
|
Ansari N, Rokhbakhsh-Zamin F, Hassanshahian M, Hesni MA. The Occurrence of Crude Oil-Degrading Bacteria in Some Sponges Collected at the Persian Gulf: Ecological Importance and Biotechnological Application. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2014529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nasrin Ansari
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran
| | | | - Mehdi Hassanshahian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Majid Askari Hesni
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
4
|
Guillen Ferrari D, Pratscher J, Aspray TJ. Assessment of the use of compost stability as an indicator of alkane and aromatic hydrocarbon degrader abundance in green waste composting materials and finished composts for soil bioremediation application. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:365-369. [PMID: 31351622 DOI: 10.1016/j.wasman.2019.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Green waste composting materials and finished composts were collected from different commercial ex situ composting sites all treating source segregated green waste feedstocks. Stability of each material was determined using the standard ORG0020 dynamic respiration test. To assess whether stability could be used as an indicator for the potential suitability of green waste composting materials and finished composts as amendments for soil bioremediation, comparison was made with alkane and aromatic hydrocarbon degrader abundance determined using a quantitative PCR (qPCR) approach. Specifically, primers targeting alkB and, polyaromatic hydrocarbon ring-hydroxylating dioxygenases genes (PAH-RHD) of Gram positive (GP) and Gram negative (GN) populations were used for qPCR analysis. The results showed no direct correction between compost stability and gene abundance. Further, increase in alkB gene abundance was not linked to PAH-RHD gene abundance. The results support the use of qPCR as a tool for screening organic amendments on a site by site basis for soil bioremediation treatment.
Collapse
Affiliation(s)
- Diana Guillen Ferrari
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, UK
| | - Jennifer Pratscher
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, UK
| | - Thomas J Aspray
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS Scotland, UK; Solidsense Ltd, Bearsden, East Dunbartonshire, G61 3BA Scotland, UK; Environmental Reclamation Services Ltd, Westerhill Road, Bishopbriggs, Glasgow, G64 2QH Scotland, UK.
| |
Collapse
|
5
|
Isolation of a polyethylene degrading Paenibacillus sp. from a landfill in Brazil. Arch Microbiol 2019; 201:699-704. [DOI: 10.1007/s00203-019-01637-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
|
6
|
Al-Mailem DM, Kansour MK, Radwan SS. Capabilities and limitations of DGGE for the analysis of hydrocarbonoclastic prokaryotic communities directly in environmental samples. Microbiologyopen 2017; 6. [PMID: 28516483 PMCID: PMC5635167 DOI: 10.1002/mbo3.495] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 11/12/2022] Open
Abstract
Prokaryotic communities in pristine and oil-contaminated desert soil, seawater, and hypersaline coastal soil were analyzed using culture-dependent and culture-independent approaches. The former technique was the dilution-plating method. For the latter, total genomic DNA was extracted and the 16S rRNA genes were amplified using a universal bacterial primer pair and primer pairs specific for Actinobacteria, Gammaproteobacteria, and Archaea. The amplicons were resolved using denaturing gradient gel electrophoresis (DGGE) and sequenced, and the sequences were compared to those in GenBank. The plating method offered the advantages of capturing the targeted hydrocarbonoclastic microorganisms, counting them and providing cultures for further study. However, this technique could not capture more than a total of 15 different prokaryotic taxa. Those taxa belonged predominantly to the genera Alcanivorax, Pseudoxanthomonas, Bosea, Halomonas, and Marinobacter. The individual isolates in culture consumed between 19 and 50% of the available crude oil in 10 days. Although the culture-independent approach revealed much more microbial diversity, it was not problem-free. The subdivision primers exhibited satisfactory specificity, but they failed to capture all the available taxa. The universal bacterial primer pair ignored Actinobacteria altogether, although the primer pair specific for Actinobacteria captured many of them, for example, the genera Geodermatophilus, Streptomyces, Mycobacterium, Pontimonas, Rhodococcus, Blastococcus, Kocuria, and many others. Because most researchers worldwide use universal primers for PCR, this finding should be considered critically to avoid misleading interpretations.
Collapse
Affiliation(s)
- Dina M Al-Mailem
- Microbiology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Mayada K Kansour
- Microbiology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Samir S Radwan
- Microbiology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| |
Collapse
|
7
|
Wang X, Zhao X, Li H, Jia J, Liu Y, Ejenavi O, Ding A, Sun Y, Zhang D. Separating and characterizing functional alkane degraders from crude-oil-contaminated sites via magnetic nanoparticle-mediated isolation. Res Microbiol 2016; 167:731-744. [PMID: 27475037 DOI: 10.1016/j.resmic.2016.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022]
Abstract
Uncultivable microorganisms account for over 99% of all species on the planet, but their functions are yet not well characterized. Though many cultivable degraders for n-alkanes have been intensively investigated, the roles of functional n-alkane degraders remain hidden in the natural environment. This study introduces the novel magnetic nanoparticle-mediated isolation (MMI) technology in Nigerian soils and successfully separates functional microbes belonging to the families Oxalobacteraceae and Moraxellaceae, which are dominant and responsible for alkane metabolism in situ. The alkR-type n-alkane monooxygenase genes, instead of alkA- or alkP-type, were the key functional genes involved in the n-alkane degradation process. Further physiological investigation via a BIOLOG PM plate revealed some carbon (Tween 20, Tween 40 and Tween 80) and nitrogen (tyramine, l-glutamine and d-aspartic acid) sources promoting microbial respiration and n-alkane degradation. With further addition of promoter carbon or nitrogen sources, the separated functional alkane degraders significantly improved n-alkane biodegradation rates. This suggests that MMI is a promising technology for separating functional microbes from complex microbiota, with deeper insight into their ecological functions and influencing factors. The technique also broadens the application of the BIOLOG PM plate for physiological research on functional yet uncultivable microorganisms.
Collapse
Affiliation(s)
- Xinzi Wang
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK
| | - Xiaohui Zhao
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Hanbing Li
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, PR China
| | - Yueqiao Liu
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Odafe Ejenavi
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Dayi Zhang
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK.
| |
Collapse
|
8
|
Lumactud R, Shen SY, Lau M, Fulthorpe R. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination. Front Microbiol 2016; 7:755. [PMID: 27252685 PMCID: PMC4878295 DOI: 10.3389/fmicb.2016.00755] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/04/2016] [Indexed: 11/13/2022] Open
Abstract
The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except S. canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene, or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons (PHCs) substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.
Collapse
Affiliation(s)
- Rhea Lumactud
- Department of Physical and Environmental Sciences, University of Toronto-Scarborough Toronto, ON, Canada
| | - Shu Yi Shen
- Department of Physical and Environmental Sciences, University of Toronto-Scarborough Toronto, ON, Canada
| | - Mimas Lau
- Department of Physical and Environmental Sciences, University of Toronto-Scarborough Toronto, ON, Canada
| | - Roberta Fulthorpe
- Department of Physical and Environmental Sciences, University of Toronto-Scarborough Toronto, ON, Canada
| |
Collapse
|
9
|
Gittel A, Donhauser J, Røy H, Girguis PR, Jørgensen BB, Kjeldsen KU. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments. Front Microbiol 2015; 6:1414. [PMID: 26733961 PMCID: PMC4681840 DOI: 10.3389/fmicb.2015.01414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/27/2015] [Indexed: 01/05/2023] Open
Abstract
Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e.g., during prospecting for oil and gas, and may act as an indicator of anthropogenic oil spills in marine sediments.
Collapse
Affiliation(s)
- Antje Gittel
- Center for Geomicrobiology, Department of Bioscience, Aarhus UniversityAarhus, Denmark
| | - Jonathan Donhauser
- Center for Geomicrobiology, Department of Bioscience, Aarhus UniversityAarhus, Denmark
| | - Hans Røy
- Center for Geomicrobiology, Department of Bioscience, Aarhus UniversityAarhus, Denmark
| | - Peter R. Girguis
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, USA
| | - Bo B. Jørgensen
- Center for Geomicrobiology, Department of Bioscience, Aarhus UniversityAarhus, Denmark
| | - Kasper U. Kjeldsen
- Center for Geomicrobiology, Department of Bioscience, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
10
|
Acosta-González A, Martirani-von Abercron SM, Rosselló-Móra R, Wittich RM, Marqués S. The effect of oil spills on the bacterial diversity and catabolic function in coastal sediments: a case study on the Prestige oil spill. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15200-14. [PMID: 25869434 DOI: 10.1007/s11356-015-4458-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/27/2015] [Indexed: 05/20/2023]
Abstract
The accident of the Prestige oil tanker in 2002 contaminated approximately 900 km of the coastline along the northern Spanish shore, as well as parts of Portugal and France coast, with a mixture of heavy crude oil consisting of polycyclic aromatic hydrocarbons, alkanes, asphaltenes and resins. The capacity of the autochthonous bacterial communities to respond to the oil spill was assessed indirectly by determining the hydrocarbon profiles of weathered oil samples collected along the shore, as well as through isotope ratios of seawater-dissolved CO2, and directly by analyses of denaturing gradient gel electrophoresis fingerprints and 16S rRNA gene libraries. Overall, the results evidenced biodegradation of crude oil components mediated by natural bacterial communities, with a bias towards lighter and less substituted compounds. The changes observed in the Proteobacteria, the most abundant phylum in marine sediments, were related to the metabolic profiles of the sediment. The presence of crude oil in the supratidal and intertidal zones increased the abundance of Alpha- and Gammaproteobacteria, dominated by the groups Sphingomonadaceae, Rhodobacteraceae and Chromatiales, whilst Gamma- and Deltaproteobacteria were more relevant in subtidal zones. The phylum Actinobacteria, and particularly the genus Rhodococcus, was a key player in the microbial response to the spill, especially in the degradation of the alkane fraction. The addition of inorganic fertilizers enhanced total biodegradation rates, suggesting that, in these environments, nutrients were insufficient to support significant growth after the huge increase in carbon sources, as evidenced in other spills. The presence of bacterial communities able to respond to a massive oil input in this area was consistent with the important history of pollution of the region by crude oil.
Collapse
Affiliation(s)
- Alejandro Acosta-González
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, 18008, Granada, Spain
- Facultad de Ingeniería, Universidad de La Sabana, Autopista Norte km 7, Chía, Cundinamarca, Colombia
| | - Sophie-Marie Martirani-von Abercron
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, 18008, Granada, Spain
| | - Ramon Rosselló-Móra
- Institut Mediterrani d'Estudis Avançats, IMEDEA, CSIC-UIB, C/. Miquel Marqués 21, 07190, Esporles, Illes Balears, Spain
| | - Regina-Michaela Wittich
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, 18008, Granada, Spain
| | - Silvia Marqués
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Profesor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
11
|
Mukherjee S, Sipilä T, Pulkkinen P, Yrjälä K. Secondary successional trajectories of structural and catabolic bacterial communities in oil-polluted soil planted with hybrid poplar. Mol Ecol 2015; 24:628-42. [DOI: 10.1111/mec.13053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Shinjini Mukherjee
- Department of Biosciences; MEM-Group; University of Helsinki; PO Box 56 FI-00014 Helsinki Finland
| | - Timo Sipilä
- Department of Biosciences; University of Helsinki; PO Box 65 FI-00014 Helsinki Finland
| | - Pertti Pulkkinen
- The Finnish Forest Research Institute; Haapastensyrjäntie 34 FI-12600 Läyliäinen Finland
| | - Kim Yrjälä
- Department of Biosciences; MEM-Group; University of Helsinki; PO Box 56 FI-00014 Helsinki Finland
| |
Collapse
|
12
|
Wallisch S, Gril T, Dong X, Welzl G, Bruns C, Heath E, Engel M, Suhadolc M, Schloter M. Effects of different compost amendments on the abundance and composition of alkB harboring bacterial communities in a soil under industrial use contaminated with hydrocarbons. Front Microbiol 2014; 5:96. [PMID: 24659987 PMCID: PMC3952045 DOI: 10.3389/fmicb.2014.00096] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 02/21/2014] [Indexed: 02/06/2023] Open
Abstract
Alkane degrading microorganisms play an important role for the bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the abundance and diversity of bacteria harboring the alkane monooxygenase gene (alkB) in an oil-contaminated soil originated from an industrial zone in Celje, Slovenia (Technosol). Soil without any amendments (control soil) and soil amended with two composts differing in their maturation stage and nutrient availability, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12, and 36 weeks of incubation. As expected the addition of compost stimulated the degradation of alkanes in the investigated soil shortly after the addition. By using quantitative real-time PCR higher number of alkB genes were detected in soil samples amended with compost compared to the control soils. To get an insight into the composition of alkB harboring microbial communities, we performed next generation sequencing of amplicons of alkB gene fragment. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soils with stronger effects of the less maturated, nutrient poor compost. The phylogenetic analysis of communities suggested that the addition of compost stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost. AlkB harboring γ-proteobacteria like Shewanella or Hydrocarboniphaga as well as α-proteobacteria of the genus Agrobacterium responded also positively to the addition of compost to soil. The amendment of the less maturated, nutrient poor compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla) mainly at the early sampling time points. Our data indicates that compost amendments significantly change abundance and diversity pattern of alkB harboring microbes in Technosol and might be a useful agent to stimulate bioremediation of hydrocarbons in contaminated soils.
Collapse
Affiliation(s)
- Stefanie Wallisch
- Research Unit Environmental Genomics, Helmholtz Zentrum München Munich, Germany
| | - Tjasa Gril
- Research Unit Environmental Genomics, Helmholtz Zentrum München Munich, Germany
| | - Xia Dong
- Research Unit Environmental Genomics, Helmholtz Zentrum München Munich, Germany
| | - Gerd Welzl
- Research Unit Environmental Genomics, Helmholtz Zentrum München Munich, Germany
| | - Christian Bruns
- Organic Agricultural Sciences, University of Kassel Witzenhausen, Germany
| | | | - Marion Engel
- Research Unit Environmental Genomics, Helmholtz Zentrum München Munich, Germany
| | - Marjetka Suhadolc
- Biotechnical Faculty, Center for Soil and Environmental Science, University of Ljubljana Ljubljana, Slovenia
| | - Michael Schloter
- Research Unit Environmental Genomics, Helmholtz Zentrum München Munich, Germany
| |
Collapse
|
13
|
Hexadecane-degradation by Teskumurella and Stenotrophomonas Strains Isolated From Hydrocarbon Contaminated Soils. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.9182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Hassanshahian M, Ahmadinejad M, Tebyanian H, Kariminik A. Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances). MARINE POLLUTION BULLETIN 2013; 73:300-5. [PMID: 23790464 DOI: 10.1016/j.marpolbul.2013.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/29/2013] [Accepted: 05/06/2013] [Indexed: 05/15/2023]
Abstract
Petroleum products spill and leakage have become two major environmental challenges in Iran. Sampling was performed in the petroleum reservoir waste water of Tehran and Kerman Provinces of Iran. Alkane degrading bacteria were isolated by enrichment in a Bushnel-Hass medium, with hexadecane as sole source of carbon and energy. The isolated strains were identified by amplification of 16S rDNA gene and sequencing. Specific primers were used for identification of alkane hydroxylase gene. Fifteen alkane degrading bacteria were isolated and 8 strains were selected as powerful degradative bacteria. These 8 strains relate to Rhodococcus jostii, Stenotrophomonas maltophilia, Achromobacter piechaudii, Tsukamurella tyrosinosolvens, Pseudomonas fluorescens, Rhodococcus erythropolis, Stenotrophomonas maltophilia, Pseudomonas aeruginosa genera. The optimum concentration of hexadecane that allowed high growth was 2.5%. Gas chromatography results show that all strains can degrade approximately half of hexadecane in one week of incubation. All of the strains have alkane hydroxylase gene which are important for biodegradation. As a result, this study indicates that there is a high diversity of degradative bacteria in petroleum reservoir waste water in Iran.
Collapse
Affiliation(s)
- Mehdi Hassanshahian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | | | |
Collapse
|
15
|
Jurelevicius D, Alvarez VM, Peixoto R, Rosado AS, Seldin L. The Use of a Combination of alkB Primers to Better Characterize the Distribution of Alkane-Degrading Bacteria. PLoS One 2013; 8:e66565. [PMID: 23825163 PMCID: PMC3688950 DOI: 10.1371/journal.pone.0066565] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/08/2013] [Indexed: 11/22/2022] Open
Abstract
The alkane monooxygenase AlkB, which is encoded by the alkB gene, is a key enzyme involved in bacterial alkane degradation. To study the alkB gene within bacterial communities, researchers need to be aware of the variations in alkB nucleotide sequences; a failure to consider the sequence variations results in the low representation of the diversity and richness of alkane-degrading bacteria. To minimize this shortcoming, the use of a combination of three alkB-targeting primers to enhance the detection of the alkB gene in previously isolated alkane-degrading bacteria was proposed. Using this approach, alkB-related PCR products were detected in 79% of the strains tested. Furthermore, the chosen set of primers was used to study alkB richness and diversity in different soils sampled in Carmópolis, Brazil and King George Island, Antarctica. The DNA extracted from the different soils was PCR amplified with each set of alkB-targeting primers, and clone libraries were constructed, sequenced and analyzed. A total of 255 alkB phylotypes were detected. Venn diagram analyses revealed that only low numbers of alkB phylotypes were shared among the different libraries derived from each primer pair. Therefore, the combination of three alkB-targeting primers enhanced the richness of alkB phylotypes detected in the different soils by 45% to 139%, when compared to the use of a single alkB-targeting primer. In addition, a dendrogram analysis and beta diversity comparison of the alkB composition showed that each of the sampling sites studied had a particular set of alkane-degrading bacteria. The use of a combination of alkB primers was an efficient strategy for enhancing the detection of the alkB gene in cultivable bacteria and for better characterizing the distribution of alkane-degrading bacteria in different soil environments.
Collapse
Affiliation(s)
- Diogo Jurelevicius
- Laboratório de Genética Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Marques Alvarez
- Laboratório de Genética Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Peixoto
- Laboratório de Ecologia Molecular Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre S. Rosado
- Laboratório de Ecologia Molecular Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucy Seldin
- Laboratório de Genética Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
16
|
Giebler J, Wick LY, Schloter M, Harms H, Chatzinotas A. Evaluating the assignment of alkB terminal restriction fragments and sequence types to distinct bacterial taxa. Appl Environ Microbiol 2013; 79:3129-32. [PMID: 23455350 PMCID: PMC3623158 DOI: 10.1128/aem.04028-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/27/2013] [Indexed: 01/08/2023] Open
Abstract
Sequence and terminal restriction fragment length polymorphism (T-RFLP) analyses revealed multiple alkB gene copies/cell in soil bacterial isolates and an apparently high genetic mobility among various phylogenetic groups. Identifying alkane degraders by alkB terminal restriction fragments (T-RFs) and sequences is strongly biased, as the phylogenetic trees based on 16S rRNA and alkB gene sequences were highly inconsistent.
Collapse
Affiliation(s)
- Julia Giebler
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Lukas Y. Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Michael Schloter
- Research Unit for Environmental Genomics, HelmholtzZentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
17
|
Naing SH, Parvez S, Pender-Cudlip M, Groves JT, Austin RN. Substrate specificity and reaction mechanism of purified alkane hydroxylase from the hydrocarbonoclastic bacterium Alcanivorax borkumensis (AbAlkB). J Inorg Biochem 2013; 121:46-52. [PMID: 23337786 PMCID: PMC3595352 DOI: 10.1016/j.jinorgbio.2012.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
An alkane hydroxylase from the marine organism Alcanivorax borkumensis (AbAlkB) was purified. The purified protein retained high activity in an assay with purified rubredoxin (AlkG), purified maize ferredoxin reductase, NADPH, and selected substrates. The reaction mechanism of the purified protein was probed using the radical clock substrates bicyclo[4.1.0]heptane (norcarane), bicyclo[3.1.0]hexane (bicyclohexane), methylphenylcyclopropane and deuterated and non-deuterated cyclohexane. The distribution of products from the radical clock substrates supports the hypothesis that purified AbAlkB hydroxylates substrates by forming a substrate radical. Experiments with deuterated cyclohexane indicate that the rate-determining step has a significant CH bond breaking character. The products formed from a number of differently shaped and sized substrates were characterized to determine the active site constraints of this AlkB. AbAlkB can catalyze the hydroxylation of a large number of aromatic compounds and linear and cyclic alkanes. It does not catalyze the hydroxylation of alkanes with a chain length longer than 15 carbons, nor does it hydroxylate sterically hindered C-H bonds.
Collapse
Affiliation(s)
- Swe-Htet Naing
- Department of Chemistry, Bates College, 5 Andrews Rd. Lewiston ME 04240, 207-786-6295, fax: 207-786-8336
| | - Saba Parvez
- Department of Chemistry, Bates College, 5 Andrews Rd. Lewiston ME 04240, 207-786-6295, fax: 207-786-8336
| | - Marilla Pender-Cudlip
- Department of Chemistry, Bates College, 5 Andrews Rd. Lewiston ME 04240, 207-786-6295, fax: 207-786-8336
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton NJ 08544
| | - Rachel N. Austin
- Department of Chemistry, Bates College, 5 Andrews Rd. Lewiston ME 04240, 207-786-6295, fax: 207-786-8336
| |
Collapse
|
18
|
Viggor S, Juhanson J, Jõesaar M, Mitt M, Truu J, Vedler E, Heinaru A. Dynamic changes in the structure of microbial communities in Baltic Sea coastal seawater microcosms modified by crude oil, shale oil or diesel fuel. Microbiol Res 2013; 168:415-27. [PMID: 23510642 DOI: 10.1016/j.micres.2013.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 01/29/2013] [Accepted: 02/09/2013] [Indexed: 11/29/2022]
Abstract
The coastal waters of the Baltic Sea are constantly threatened by oil spills, due to the extensive transportation of oil products across the sea. To characterise the hydrocarbon-degrading bacterial community of this marine area, microcosm experiments on diesel fuel, crude oil and shale oil were performed. Analysis of these microcosms, using alkane monooxygenase (alkB) and 16S rRNA marker genes in PCR-DGGE experiments, demonstrated that substrate type and concentration strongly influence species composition and the occurrence of alkB genes in respective oil degrading bacterial communities. Gammaproteobacteria (particularly the genus Pseudomonas) and Alphaproteobacteria were dominant in all microcosms treated with oils. All alkB genes carried by bacterial isolates (40 strains), and 8 of the 11 major DGGE bands from the microcosms, had more than 95% sequence identity with the alkB genes of Pseudomonas fluorescens. However, the closest relatives of the majority of sequences (54 sequences from 79) of the alkB gene library from initially collected seawater DNA were Actinobacteria. alkB gene expression, induced by hexadecane, was recorded in isolated bacterial strains. Thus, complementary culture dependent and independent methods provided a more accurate picture about the complex seawater microbial communities of the Baltic Sea.
Collapse
Affiliation(s)
- Signe Viggor
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ethyl tert-butyl ether (ETBE) biodegradation by a syntrophic association of Rhodococcus sp. IFP 2042 and Bradyrhizobium sp. IFP 2049 isolated from a polluted aquifer. Appl Microbiol Biotechnol 2013; 97:10531-9. [DOI: 10.1007/s00253-013-4803-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/26/2022]
|
20
|
Lever MA. Functional gene surveys from ocean drilling expeditions - a review and perspective. FEMS Microbiol Ecol 2013; 84:1-23. [PMID: 23228016 DOI: 10.1111/1574-6941.12051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/18/2012] [Accepted: 11/29/2012] [Indexed: 12/18/2022] Open
Abstract
The vast majority of microbes inhabiting the subseafloor remain uncultivated and their energy sources unknown. Thus, a focus of ocean drilling expeditions over the past decade has been to characterize the distribution of microbes associated with specific metabolic reactions. An important question has been whether microbes involved in key microbial processes, such as sulfate reduction and methanogenesis, differ fundamentally from their counterparts in surface environments. To this end, functional genes of anaerobic methane cycling (mcrA), sulfate reduction (dsrAB), acetogenesis (fhs), and dehalorespiration (rdhA) have been examined. A compilation of existing functional gene data suggests that subseafloor microbes involved in anaerobic methane cycling, sulfate reduction, acetogenesis, and dehalorespiration are not fundamentally different from their counterparts in the surface world. Moreover, quantifications of mcrA and dsrAB suggest that, unless the majority of subseafloor microbes involved in methane cycling and sulfate reduction are too genetically divergent to be detected with conventional methods, these processes only support a small fraction (< 1%) of total microbial biomass in the deep biosphere. Ecological explanations for the observed trends, target processes and methods for future investigations, and strategies for tackling the unresolved issue of microbial contamination in samples obtained by ocean drilling are discussed.
Collapse
Affiliation(s)
- Mark A Lever
- Center for Geomicrobiology, Institute of BioScience, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
21
|
De Pasquale C, Palazzolo E, Lo Piccolo L, Quatrini P. Degradation of long-chain n-alkanes in soil microcosms by two actinobacteria. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:374-381. [PMID: 22320689 DOI: 10.1080/10934529.2012.645786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The ability of two recently isolated actinobacteria, that degrade medium and long chain n-alkanes in laboratory water medium, was investigated in soil microcosms using different standard soils that were artificially contaminated with n-alkanes of different length (C(12)- C(20)- C(24)- C(30)). The two strains, identified as Nocardia sp. SoB and Gordonia sp. SoCp, revealed a similar high HC degradation efficiency with an average of 75% alkane degraded after 28 days incubation. A selectivity of bacteria towards n-alkanes of different length was detected as well as a consistent effect of soil texture and other soil physical chemical characteristics on degradation. It was demonstrated the specific aptitude of these selected strains towards specific environmental conditions.
Collapse
Affiliation(s)
- Claudio De Pasquale
- Dipartimento dei Sistemi Agro-Ambientali (SAgA), Università degli Studi di Palermo, Palermo, Italy.
| | | | | | | |
Collapse
|
22
|
Hassanshahian M, Emtiazi G, Cappello S. Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. MARINE POLLUTION BULLETIN 2012; 64:7-12. [PMID: 22130193 DOI: 10.1016/j.marpolbul.2011.11.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/30/2011] [Accepted: 11/08/2011] [Indexed: 05/15/2023]
Abstract
Twenty-five crude-oil-degrading bacteria were isolated from oil-contaminated sites in the Persian Gulf and the Caspian Sea. Based on a high growth rate on crude oil and on hydrocarbon degradation ability, 11 strains were selected from the 25 isolated strains for further study. Determination of the nucleotide sequence of the 16S rRNA gene showed that these isolated strains belonged to genera Acinetobacter, Pseudomonas, Gordonia, Rhodococcus, Cobetia, Halomonas, Alcanivorax, Marinobacter and Microbacterium. Among the 11 isolates, strains BS (Acinetobacter calcoaceticus, 98%) and PG-12 (Alcanivorax dieselolei, 98%) were the most effective in degrading crude oil. Rate of crude-oil degradation of 82% (isolate BS) and 71% (isolate PG-12) were observed after 1 week of cultivation in mineral medium. These strains had high emulsification activity and biosurfactant production. GC-MS analysis showed that A. dieselolei PG-12 can degrade different alkanes in crude oil. Screening of the distribution of the alkane hydroxylase gene in 25 isolates in relation to the source of isolation indicated that the group (II) alkane hydroxylase is prevalent in the Caspian Sea, but in the Persian Gulf, the frequency of the group (III) alkane hydroxylase gene is greater than that of the group (II) alkane hydroxylase gene.
Collapse
Affiliation(s)
- Mehdi Hassanshahian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Giti Emtiazi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Simone Cappello
- Instituto per l'Ambiente Marino Costiero (IAMC), CNR Section of Messina, Messina, Italy
| |
Collapse
|
23
|
Pérez-de-Mora A, Engel M, Schloter M. Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes. MICROBIAL ECOLOGY 2011; 62:959-972. [PMID: 21567188 DOI: 10.1007/s00248-011-9858-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 04/08/2011] [Indexed: 05/30/2023]
Abstract
Unraveling functional genes related to biodegradation of organic compounds has profoundly improved our understanding of biological remediation processes, yet the ecology of such genes is only poorly understood. We used a culture-independent approach to assess the abundance and diversity of bacteria catalyzing the degradation of n-alkanes with a chain length between C(5) and C(16) at a forest site co-contaminated with mineral oil hydrocarbons and metals for nearly 60 years. The alkB gene coding for a rubredoxin-dependent alkane monooxygenase enzyme involved in the initial activation step of aerobic aliphatic hydrocarbon metabolism was used as biomarker. Within the area of study, four different zones were evaluated: one highly contaminated, two intermediately contaminated, and a noncontaminated zone. Contaminant concentrations, hydrocarbon profiles, and soil microbial respiration and biomass were studied. Abundance of n-alkane-degrading bacteria was quantified via real-time PCR of alkB, whereas genetic diversity was examined using molecular fingerprints (T-RFLP) and clone libraries. Along the contamination plume, hydrocarbon profiles and increased respiration rates suggested on-going natural attenuation at the site. Gene copy numbers of alkB were similar in contaminated and control areas. However, T-RFLP-based fingerprints suggested lower diversity and evenness of the n-alkane-degrading bacterial community in the highly contaminated zone compared to the other areas; both diversity and evenness were negatively correlated with metal and hydrocarbon concentrations. Phylogenetic analysis of alkB denoted a shift of the hydrocarbon-degrading bacterial community from Gram-positive bacteria in the control zone (most similar to Mycobacterium and Nocardia types) to Gram-negative genotypes in the contaminated zones (Acinetobacter and alkB sequences with little similarity to those of known bacteria). Our results underscore a qualitative rather than a quantitative response of hydrocarbon-degrading bacteria to the contamination at the molecular level.
Collapse
Affiliation(s)
- Alfredo Pérez-de-Mora
- Helmholtz Zentrum München--Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Department of Terrestrial Ecogenetics, Institute of Soil Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | | | | |
Collapse
|
24
|
Chikere CB, Okpokwasili GC, Chikere BO. Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech 2011; 1:117-138. [PMID: 22611524 PMCID: PMC3339601 DOI: 10.1007/s13205-011-0014-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/06/2011] [Indexed: 11/09/2022] Open
Abstract
Bioremediation of hydrocarbon pollutants is advantageous owing to the cost-effectiveness of the technology and the ubiquity of hydrocarbon-degrading microorganisms in the soil. Soil microbial diversity is affected by hydrocarbon perturbation, thus selective enrichment of hydrocarbon utilizers occurs. Hydrocarbons interact with the soil matrix and soil microorganisms determining the fate of the contaminants relative to their chemical nature and microbial degradative capabilities, respectively. Provided the polluted soil has requisite values for environmental factors that influence microbial activities and there are no inhibitors of microbial metabolism, there is a good chance that there will be a viable and active population of hydrocarbon-utilizing microorganisms in the soil. Microbial methods for monitoring bioremediation of hydrocarbons include chemical, biochemical and microbiological molecular indices that measure rates of microbial activities to show that in the end the target goal of pollutant reduction to a safe and permissible level has been achieved. Enumeration and characterization of hydrocarbon degraders, use of micro titer plate-based most probable number technique, community level physiological profiling, phospholipid fatty acid analysis, 16S rRNA- and other nucleic acid-based molecular fingerprinting techniques, metagenomics, microarray analysis, respirometry and gas chromatography are some of the methods employed in bio-monitoring of hydrocarbon remediation as presented in this review.
Collapse
Affiliation(s)
- Chioma Blaise Chikere
- Department of Microbiology, University of Port-Harcourt, P.M.B. 5323, Port Harcourt, Rivers State Nigeria
| | | | | |
Collapse
|
25
|
Alonso-Gutiérrez J, Teramoto M, Yamazoe A, Harayama S, Figueras A, Novoa B. Alkane-degrading properties of Dietzia sp. H0B, a key player in the Prestige oil spill biodegradation (NW Spain). J Appl Microbiol 2011; 111:800-10. [PMID: 21767337 DOI: 10.1111/j.1365-2672.2011.05104.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Investigation of the alkane-degrading properties of Dietzia sp. H0B, one of the isolated Corynebacterineae strains that became dominant after the Prestige oil spill. METHODS AND RESULTS Using molecular and chemical analyses, the alkane-degrading properties of strain Dietzia sp. H0B were analysed. This Grampositive isolate was able to grow on n-alkanes ranging from C₁₂ to C₃₈ and branched alkanes (pristane and phytane). 8-Hexadecene was detected as an intermediate of hexadecane degradation by Dietzia H0B, suggesting a novel alkane-degrading pathway in this strain. Three putative alkane hydroxylase genes (one alkB homologue and two CYP153 gene homologues of cytochrome P450 family) were PCR-amplified from Dietzia H0B and differed from previously known hydroxylase genes, which might be related to the novel degrading activity observed on Dietzia H0B. The alkane degradation activity and the alkB and CYP153 gene expression were observed constitutively regardless of the presence of the substrate, suggesting additional, novel pathways for alkane degradation. CONCLUSIONS The results from this study suggest novel alkane-degrading pathways in Dietzia H0B and a genetic background coding for two different putative oil-degrading enzymes, which is mostly unexplored and worth to be subject of further functional analysis. SIGNIFICANCE AND IMPACT OF THE STUDY This study increases the scarce information available about the genetic background of alkane degradation in genus Dietzia and suggests new pathways and novel expression mechanisms of alkane degradation.
Collapse
|
26
|
Paisse S, Duran R, Coulon F, Goñi-Urriza M. Are alkane hydroxylase genes (alkB) relevant to assess petroleum bioremediation processes in chronically polluted coastal sediments? Appl Microbiol Biotechnol 2011; 92:835-44. [PMID: 21660544 DOI: 10.1007/s00253-011-3381-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 11/24/2022]
Abstract
The diversity of alkB-related alkane hydroxylase sequences and the relationship between alkB gene expression and the hydrocarbon contamination level have been investigated in the chronically polluted Etang-de-Berre sediments. For this purpose, these sediments were maintained in microcosms and submitted to a controlled oil input miming an oil spill. New degenerated PCR primers targeting alkB-related alkane hydroxylase sequences were designed to explore the diversity and the expression of these genes using terminal restriction fragment length polymorphism fingerprinting and gene library analyses. Induction of alkB genes was detected immediately after oil addition and their expression detected only during 2 days, although the n-alkane degradation was observed throughout the 14 days of incubation. The alkB gene expression within triplicate microcosms was heterogeneous probably due to the low level of alkB transcripts. Moreover, the alkB gene expression of dominant OTUs has been observed in unoiled microcosms indicating that the expression of this gene cannot be directly related to the oil contamination. Although the dominant alkB genes and transcripts detected were closely related to the alkB of Marinobacter aquaeolei isolated from an oil-producing well, and to alkB genes related to the obligate alkanotroph Alcanivorax borkumensis, no clear relationship between the oil contamination and the expression of the alkB genes could be established. This finding suggests that in such coastal environments, alkB gene expression is not a function relevant enough to monitor bacterial response to oil contamination.
Collapse
Affiliation(s)
- Sandrine Paisse
- Equipe Environnement et Microbiologie-UMR IPREM5254, Université de Pau, BP 1155, 64013 Pau cedex, France
| | | | | | | |
Collapse
|
27
|
Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A. Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:1568-75. [PMID: 21216097 DOI: 10.1016/j.jhazmat.2010.12.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/09/2010] [Indexed: 05/06/2023]
Abstract
The combined use of plants and associated microorganisms has great potential for cleaning up soils contaminated with petroleum hydrocarbons. Apart from environmental conditions the physicochemical properties of the soil are the main factors influencing the survival and activity of an inoculated strain as well as the growth of plants. This study examined the effect of different soil types (sandy, loamy sand and loam) on the survival, gene abundance and catabolic gene expression of two inoculated strains (Pseudomonas sp. strain ITRI53 and Pantoea sp. strain BTRH79) in the rhizosphere and shoot interior of Italian ryegrass vegetated in diesel contaminated soils. High colonization, gene abundance and expression in loamy soils were observed. By contrast, low colonization, gene abundance and absence of gene expression in sandy soil were found. The highest levels of genes expression and hydrocarbon degradation were seen in loamy soil that had been inoculated with BTRH79 and were significantly higher compared to those in other soils. A positive correlation was observed between gene expression and hydrocarbon degradation indicating that catabolic gene expression is necessary for contaminant degradation. These results suggest that soil type influences the bacterial colonization and microbial activities and subsequently the efficiency of contaminant degradation.
Collapse
Affiliation(s)
- Muhammad Afzal
- AIT Austrian Institute of Technology GmbH, Department of Health and Environment, A-2444 Seibersdorf, Austria
| | | | | | | | | |
Collapse
|
28
|
Wang W, Wang L, Shao Z. Diversity and abundance of oil-degrading bacteria and alkane hydroxylase (alkB) genes in the subtropical seawater of Xiamen Island. MICROBIAL ECOLOGY 2010; 60:429-39. [PMID: 20683589 DOI: 10.1007/s00248-010-9724-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 07/09/2010] [Indexed: 05/13/2023]
Abstract
In this report, the diversity of oil-degrading bacteria and alkB gene was surveyed in the seawater around Xiamen Island. Forty-four isolates unique in 16S rRNA sequence were obtained after enrichment with crude oil. Most of the obtained isolates exhibited growth with diesel oil and crude oil. alkB genes were positively detected in 16 isolates by degenerate polymerase chain reaction (PCR). And for the first time, alkB genes were found in bacteria of Gallaecimonas, Castellaniella, Paracoccus, and Leucobacter. Additional 29 alkB sequences were retrieved from genomic DNA of the oil-degrading communities. Phylogenetic analysis showed that the obtained alkB genes formed five groups, most of which exhibited 60-80% similarity at the amino acid level with sequences retrieved from the GenBank database. Furthermore, the abundance of alkB genes in seawater was examined by real-time PCR. The results showed that alkB genes of each group in situ ranged from about 3 × 10(3) to 3 × 10(5) copies L(-1), with the homologs of Alcanivorax and Pseudomonas being the most predominant. Bacteria of Alcanivorax, Acinetobacter, and Pseudomonas are important oil degraders in this area; while those frequently reported in other area, like Oleiphilus spp., Oleispira spp., and Thalassolituus spp. were not found in our report. These results indicate that bacteria and genes involved in oil degradation are quite diverse, and may have restriction in geographic distribution in some species.
Collapse
Affiliation(s)
- Wanpeng Wang
- School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | |
Collapse
|
29
|
Nicolau E, Kuhn L, Marchal R, Jouanneau Y. Proteomic investigation of enzymes involved in 2-ethylhexyl nitrate biodegradation in Mycobacterium austroafricanum IFP 2173. Res Microbiol 2009; 160:838-47. [DOI: 10.1016/j.resmic.2009.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/23/2009] [Accepted: 09/27/2009] [Indexed: 10/20/2022]
|
30
|
Amouric A, Quéméneur M, Grossi V, Liebgott PP, Auria R, Casalot L. Identification of different alkane hydroxylase systems inRhodococcus ruberstrain SP2B, an hexane-degrading actinomycete. J Appl Microbiol 2009; 108:1903-16. [DOI: 10.1111/j.1365-2672.2009.04592.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Novel alkane hydroxylase gene (alkB) diversity in sediments associated with hydrocarbon seeps in the Timor Sea, Australia. Appl Environ Microbiol 2009; 75:7391-8. [PMID: 19820158 DOI: 10.1128/aem.01370-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrocarbon seeps provide inputs of petroleum hydrocarbons to widespread areas of the Timor Sea. Alkanes constitute the largest proportion of chemical components found in crude oils, and therefore genes involved in the biodegradation of these compounds may act as bioindicators for this ecosystem's response to seepage. To assess alkane biodegradation potential, the diversity and distribution of alkane hydroxylase (alkB) genes in sediments of the Timor Sea were studied. Deduced AlkB protein sequences derived from clone libraries identified sequences only distantly related to previously identified AlkB sequences, suggesting that the Timor Sea maybe a rich reservoir for novel alkane hydroxylase enzymes. Most sequences clustered with AlkB sequences previously identified from marine Gammaproteobacteria though protein sequence identities averaged only 73% (with a range of 60% to 94% sequence identities). AlkB sequence diversity was lower in deep water (>400 m) samples off the continental slope than in shallow water (<100 m) samples on the continental shelf but not significantly different in response to levels of alkanes. Real-time PCR assays targeting Timor Sea alkB genes were designed and used to quantify alkB gene targets. No correlation was found between gene copy numbers and levels of hydrocarbons measured in sediments using sensitive gas chromatography-mass spectrometry techniques, probably due to the very low levels of hydrocarbons found in most sediment samples. Interestingly, however, copy numbers of alkB genes increased substantially in sediments exposed directly to active seepage even though only low or undetectable concentrations of hydrocarbons were measured in these sediments in complementary geochemical analyses due to efficient biodegradation.
Collapse
|
32
|
Mehboob F, Junca H, Schraa G, Stams AJM. Growth of Pseudomonas chloritidismutans AW-1(T) on n-alkanes with chlorate as electron acceptor. Appl Microbiol Biotechnol 2009; 83:739-47. [PMID: 19352644 PMCID: PMC2690828 DOI: 10.1007/s00253-009-1985-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/20/2009] [Accepted: 03/21/2009] [Indexed: 10/27/2022]
Abstract
Microbial (per)chlorate reduction is a unique process in which molecular oxygen is formed during the dismutation of chlorite. The oxygen thus formed may be used to degrade hydrocarbons by means of oxygenases under seemingly anoxic conditions. Up to now, no bacterium has been described that grows on aliphatic hydrocarbons with chlorate. Here, we report that Pseudomonas chloritidismutans AW-1(T) grows on n-alkanes (ranging from C7 until C12) with chlorate as electron acceptor. Strain AW-1(T) also grows on the intermediates of the presumed n-alkane degradation pathway. The specific growth rates on n-decane and chlorate and n-decane and oxygen were 0.5 +/- 0.1 and 0.4 +/- 0.02 day(-1), respectively. The key enzymes chlorate reductase and chlorite dismutase were assayed and found to be present. The oxygen-dependent alkane oxidation was demonstrated in whole-cell suspensions. The strain degrades n-alkanes with oxygen and chlorate but not with nitrate, thus suggesting that the strain employs oxygenase-dependent pathways for the breakdown of n-alkanes.
Collapse
|
33
|
Hamamura N, Fukui M, Ward DM, Inskeep WP. Assessing soil microbial populations responding to crude-oil amendment at different temperatures using phylogenetic, functional gene (alkB) and physiological analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:7580-7586. [PMID: 18983078 DOI: 10.1021/es800030f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The effect of temperature as a determinant for selecting microbial populations associated with alkane-degradation was examined in crude oil-amended soil microcosms. After a 30-day incubation, >95% of n-alkane components in the crude-oil were depleted and approximately 40 and 60% of added [14C] hexadecane was converted to 14CO2 at 4-10 and 25 degrees C, respectively. Concomitant with crude-oil depletion, 16S rRNA gene sequence analysis revealed the emergence of a prominent Rhodococcus-like 16S rRNA sequence at all temperatures and a prominent Pseudomonas-like sequence at 4 and 10 degrees C. The diversity of alkane hydroxylase genes (alkB) associated with the amendments was examined using group-specific alkB-PCR primerstargeting phylogenetically distinct groups of alkane-degrading bacteria and subsequent cloning, denaturing gradient gel electrophoresis and sequencing analyses. Diverse Rhodococcus-alkB genes were detected at all temperatures, while a single prominent Pseudomonas-alkB genotype was detected only at lower temperatures. Two isolates obtained from the microcosms were shown to have 16S rRNA and alkB genes identical to those observed and were used to examine growth as a function of temperature. The Pseudomonas isolate exhibited a substantially higher growth rate at 4 and 10 degrees C than the Rhodococcus isolate, consistent with the inference that differences in adaptation to low temperature explain the observed shift in populations. High resolution analysis of alkB genes enabled the differentiation of distinct alkane-degrading populations responding to crude-oil amendment from other closely related, well-studied strains with different temperature adaptations.
Collapse
Affiliation(s)
- Natsuko Hamamura
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | |
Collapse
|
34
|
Quatrini P, Scaglione G, De Pasquale C, Riela S, Puglia AM. Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. J Appl Microbiol 2007; 104:251-9. [PMID: 17922832 DOI: 10.1111/j.1365-2672.2007.03544.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the petroleum hydrocarbon (HC)-degrading potential of indigenous micro-organisms in a sandy Mediterranean coast, accidentally contaminated with petroleum-derived HCs. METHODS AND RESULTS Using culturable methods, a population of Gram-positive n-alkane degraders was detected in the contaminated soil. Five isolates, identified as one Nocardia, two Rhodococcus and two Gordonia strains, were able to degrade medium- and long-chain n-alkanes up to C(36) as assessed by growth assays and gas chromatography-mass spectrometry analysis. Diverging alkane hydroxylase-encoding genes (alkB) were detected by PCR, using degenerated primers, in all the strains; multiple sequences were obtained from the Nocardia strain, while only one alkB gene was detected in the Rhodococcus and Gordonia strains. The majority of the alkB sequences were related to Rhodococcus alkB2, but none was identical to it. CONCLUSIONS Actinomycetes might have a key role in bioremediation of n-alkane-contaminated sites under dry, resource-limited conditions, such as those found in the Mediterranean shorelines. SIGNIFICANCE AND IMPACT OF THE STUDY To our knowledge, this is the first study on the bioremediation potential in Mediterranean contaminated beaches.
Collapse
Affiliation(s)
- P Quatrini
- Dipartimento di Biologia Cellulare e dello Sviluppo A. Monroy, University of Palermo, Palermo, Italy.
| | | | | | | | | |
Collapse
|
35
|
Lopes Ferreira N, Mathis H, Labbé D, Monot F, Greer CW, Fayolle-Guichard F. n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains. Appl Microbiol Biotechnol 2007; 75:909-19. [PMID: 17347817 DOI: 10.1007/s00253-007-0892-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/09/2007] [Accepted: 02/11/2007] [Indexed: 11/27/2022]
Abstract
Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.
Collapse
|
36
|
van Beilen JB, Funhoff EG. Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 2007; 74:13-21. [PMID: 17216462 DOI: 10.1007/s00253-006-0748-0] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 11/03/2006] [Accepted: 11/05/2006] [Indexed: 11/30/2022]
Abstract
This review focuses on the role and distribution in the environment of alkane hydroxylases and their (potential) applications in bioremediation and biocatalysis. Alkane hydroxylases play an important role in the microbial degradation of oil, chlorinated hydrocarbons, fuel additives, and many other compounds. Environmental studies demonstrate the abundance of alkane degraders and have lead to the identification of many new species, including some that are (near)-obligate alkanotrophs. The availability of a growing collection of alkane hydroxylase gene sequences now allows estimations of the relative abundance of the different enzyme systems and the distribution of the host organisms.
Collapse
Affiliation(s)
- Jan B van Beilen
- Département de Biologie Moléculaire Végétale, Le Biophore, Quartier Sorge, Université de Lausanne, 1015, Lausanne, Switzerland.
| | | |
Collapse
|
37
|
Popp N, Schlömann M, Mau M. Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils. Microbiology (Reading) 2006; 152:3291-3304. [PMID: 17074900 DOI: 10.1099/mic.0.29054-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Soils contaminated with mineral oil hydrocarbons are often cleaned in off-site bioremediation systems. In order to find out which bacteria are active during the degradation phase in such systems, the diversity of the active microflora in a degrading soil remediation system was investigated by small-subunit (SSU) rRNA analysis. Two sequential RNA extracts from one soil sample were generated by a procedure incorporating bead beating. Both extracts were analysed separately by generating individual SSU rDNA clone libraries from cDNA of the two extracts. The sequencing results showed moderate diversity. The two clone libraries were dominated by Gammaproteobacteria, especially Pseudomonas spp. Alphaproteobacteria and Betaproteobacteria were two other large groups in the clone libraries. Actinobacteria, Firmicutes, Bacteroidetes and Epsilonproteobacteria were detected in lower numbers. The obtained sequences were predominantly related to genera for which cultivated representatives have been described, but were often clustered together in the phylogenetic tree, and the sequences that were most similar were originally obtained from soils and not from pure cultures. Most of the dominant genera in the clone libraries, e.g. Pseudomonas, Acinetobacter, Sphingomonas, Acidovorax and Thiobacillus, had already been detected in (mineral oil hydrocarbon) contaminated environmental samples. The occurrence of the genera Zymomonas and Rhodoferax was novel in mineral oil hydrocarbon-contaminated soil.
Collapse
Affiliation(s)
- Nicole Popp
- Interdisziplinäres Ökologisches Zentrum, TU Bergakademie Freiberg, Leipziger Str. 29, D-09599 Freiberg, Germany
| | - Michael Schlömann
- Interdisziplinäres Ökologisches Zentrum, TU Bergakademie Freiberg, Leipziger Str. 29, D-09599 Freiberg, Germany
| | - Margit Mau
- Interdisziplinäres Ökologisches Zentrum, TU Bergakademie Freiberg, Leipziger Str. 29, D-09599 Freiberg, Germany
| |
Collapse
|
38
|
Powell SM, Ferguson SH, Bowman JP, Snape I. Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. MICROBIAL ECOLOGY 2006; 52:523-32. [PMID: 16944337 DOI: 10.1007/s00248-006-9131-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 06/13/2006] [Indexed: 05/11/2023]
Abstract
A real-time polymerase chain reaction (PCR) method to quantify the proportion of microorganisms containing alkane monooxygenase was developed and used to follow changes in the microbial community in hydrocarbon-contaminated Antarctic soil during a bioremediation field trial. Assays for the alkB and rpoB genes were validated and found to be both sensitive and reproducible (less than 2% intrarun variation and 25-38% interrun variation). Results from the real-time PCR analysis were compared to analysis of the microbial population by a culture-based technique [most probable number (MPN) counts]. Both types of analysis indicated that fertilizer addition to hydrocarbon-contaminated soil stimulated the indigenous bacterial population within 1 year. The proportion of alkB containing microorganisms was positively correlated to the concentration of n-alkanes in the soil. After the concentration of n-alkanes in the soil decreased, the proportion of alkane-degrading microorganisms decreased, but the proportion of total hydrocarbon-degrading microorganisms increased, indicating another shift in the microbial community structure and ongoing biodegradation.
Collapse
Affiliation(s)
- Shane M Powell
- Tasmanian Institute of Agricultural Research, University of Tasmania, Hobart 7001, Australia.
| | | | | | | |
Collapse
|
39
|
Kloos K, Munch JC, Schloter M. A new method for the detection of alkane-monooxygenase homologous genes (alkB) in soils based on PCR-hybridization. J Microbiol Methods 2006; 66:486-96. [PMID: 16522338 DOI: 10.1016/j.mimet.2006.01.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 01/27/2006] [Accepted: 01/27/2006] [Indexed: 11/21/2022]
Abstract
An improved method was developed that allowed the specific detection of the gene alkB (coding for the rubredoxin dependent alkane monooxygenase) from bacteria without any obvious strain specific discrimination using a combination of PCR and hybridization. This approach enabled a fast culture-independent monitoring of environmental samples for the occurrence of alkB, and an estimation of the gene copy number and the genetic diversity. Both parameters provide useful informations for an assessment of the intrinsic biodegradation potential that is present at a site. The method was applied to soil samples from different uncontaminated sites. alkB was highly abundant and redundant in all soils tested. Potential biodegradation of n-alkanes was also demonstrated for these soils with substrate utilization assays. Cell numbers of hydrocarbon degraders estimated as MPN varied from 10(3) to 10(6)g(-1) soil (dry weight) for the different soils. Gene copy numbers estimated with MPN-PCR ranged within 1-40*10(4)ng(-1) soil DNA. Analysis of the diversity of the alkB sequences obtained from a grassland and an agricultural soil indicated that the alkane degrading microbial populations occurring at these sites were rather diverse. Compared on protein level, three major clusters were distinguishable for both soils that showed highest similarities to AlkB from the Gram-positives Nocardioides and Mycobacterium, and the Gram-negative Alcanivorax. The majority of the cloned AlkB sequences were homologous to proteins from the Gram-positive bacteria. However, significant differences from published sequences were observed; homologies varied from 50% to 90% (identity of amino acids).
Collapse
Affiliation(s)
- Karin Kloos
- GSF--National Research Centre for Environment and Health, Institute for Soil Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| | | | | |
Collapse
|