1
|
Orsoni N, Degola F, Nerva L, Bisceglie F, Spadola G, Chitarra W, Terzi V, Delbono S, Ghizzoni R, Morcia C, Jamiołkowska A, Mielniczuk E, Restivo FM, Pelosi G. Double Gamers-Can Modified Natural Regulators of Higher Plants Act as Antagonists against Phytopathogens? The Case of Jasmonic Acid Derivatives. Int J Mol Sci 2020; 21:ijms21228681. [PMID: 33213072 PMCID: PMC7698523 DOI: 10.3390/ijms21228681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022] Open
Abstract
As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae,F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani,Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi.
Collapse
Affiliation(s)
- Nicolò Orsoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (N.O.); (F.B.); (G.S.); (F.M.R.); (G.P.)
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (N.O.); (F.B.); (G.S.); (F.M.R.); (G.P.)
- Correspondence:
| | - Luca Nerva
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy; (L.N.); (W.C.)
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (N.O.); (F.B.); (G.S.); (F.M.R.); (G.P.)
| | - Giorgio Spadola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (N.O.); (F.B.); (G.S.); (F.M.R.); (G.P.)
| | - Walter Chitarra
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy; (L.N.); (W.C.)
- Institute for Sustainable Plant Protection, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Valeria Terzi
- Council for Agricultural Research and Economics—Research Centre for Genomics and Bioinformatics CREA-GB, Via San Protaso 302, 29017 Fiorenzuola d’Arda (PC), Italy; (V.T.); (S.D.); (R.G.); (C.M.)
| | - Stefano Delbono
- Council for Agricultural Research and Economics—Research Centre for Genomics and Bioinformatics CREA-GB, Via San Protaso 302, 29017 Fiorenzuola d’Arda (PC), Italy; (V.T.); (S.D.); (R.G.); (C.M.)
| | - Roberta Ghizzoni
- Council for Agricultural Research and Economics—Research Centre for Genomics and Bioinformatics CREA-GB, Via San Protaso 302, 29017 Fiorenzuola d’Arda (PC), Italy; (V.T.); (S.D.); (R.G.); (C.M.)
| | - Caterina Morcia
- Council for Agricultural Research and Economics—Research Centre for Genomics and Bioinformatics CREA-GB, Via San Protaso 302, 29017 Fiorenzuola d’Arda (PC), Italy; (V.T.); (S.D.); (R.G.); (C.M.)
| | - Agnieszka Jamiołkowska
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20069 Lublin, Poland; (A.J.); (E.M.)
| | - Elżbieta Mielniczuk
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20069 Lublin, Poland; (A.J.); (E.M.)
| | - Francesco M. Restivo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (N.O.); (F.B.); (G.S.); (F.M.R.); (G.P.)
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (N.O.); (F.B.); (G.S.); (F.M.R.); (G.P.)
| |
Collapse
|
2
|
Atallah O, Yassin S. Aspergillus spp. eliminate Sclerotinia sclerotiorum by imbalancing the ambient oxalic acid concentration and parasitizing its sclerotia. Environ Microbiol 2020; 22:5265-5279. [PMID: 32844537 DOI: 10.1111/1462-2920.15213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/23/2020] [Indexed: 12/29/2022]
Abstract
Sclerotinia sclerotiorum, a pathogen of more than 600 host plants, secretes oxalic acid to regulate the ambient acidity and provide conducive environment for pathogenicity and reproduction. Few Aspergillus spp. were previously proposed as potential biocontrol agents for S. sclerotiorum as they deteriorate sclerotia and prevent pathogen's overwintering and initial infections. We studied the nature of physical and biochemical interactions between Aspergillus and Sclerotinia. Aspergillus species inhibited sclerotial germination as they colonized its rind layer. However, Aspergillus-infested sclerotia remain solid and viable for vegetative and carpogenic germination, indicating that Aspergillus infestation is superficial. Aspergillus spp. of section Nigri (Aspergillus japonicus and Aspergillus niger) were also capable of suppressing sclerotial formation by S. sclerotiorum on agar plates. Their culture filtrate contained high levels of oxalic, citric and glutaric acids comparing to the other Aspergillus spp. tested. Exogenous supplementation of oxalic acid altered growth and reproduction of S. sclerotiorum at low concentrations. Inhibitory concentrations of oxalic acid displayed lower pH values comparing to their parallel concentrations of other organic acids. Thus, S. sclerotiorum growth and reproduction are sensitive to the ambient oxalic acid fluctuations and the environmental acidity. Together, Aspergillus species parasitize colonies of Sclerotinia and prevent sclerotial formation through their acidic secretions.
Collapse
Affiliation(s)
- Osama Atallah
- Department of Plant Pathology, Zagazig University, Zagazig, 44519, Egypt
| | - Sherene Yassin
- Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| |
Collapse
|
3
|
Zhang X, Xu J, Muhayimana S, Xiong H, Liu X, Huang Q. Antifungal effects of 3-(2-pyridyl)methyl-2-(4-chlorphenyl) iminothiazolidine against Sclerotinia sclerotiorum. PEST MANAGEMENT SCIENCE 2020; 76:2978-2985. [PMID: 32246520 DOI: 10.1002/ps.5843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/16/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum threatens oilseed rape cultivation, and the emergence of fungicide-resistant strains has led to control failures worldwide. Identifying novel chemical alternatives with different modes of action and high antifungal activities is thus crucial. Herein we evaluated the antifungal effects of 3-(2-pyridyl)methyl-2-(4-chlorphenyl)imino- thiazolidine (PMAS) on S. sclerotiorum to determine its efficacy for SSR management. RESULTS PMAS had an inhibitory effect on mycelial growth; the EC50 values were 17.83 and 21.15 μg mL-1 for the carbendazim-susceptible strain Ss01 and carbendazim-resistant strain Hm25, respectively. PMAS treatment changed the color of inhibited mycelia to green, and the hyphae were sustained in the undifferentiated stage. Cysteine supplementation made this green color disappear, whereas methionine enhanced the color. Moreover, PMAS treatment markedly inhibited oxalic acid biogenesis, increased free thiol content in mycelia, and weakened the activities of oxaloacetase and malate dehydrogenase, but had little effect on the activity of glyoxylate dehydrogenase. Cysteine could reverse the inhibitory effects of PMAS on mycelial morphogenesis and biochemical constituents, except thiol production. In the pot-culture experiment, PMAS showed a good protective effect, with the control efficacy being >91% on SSR. CONCLUSION PMAS appears to be an effective fungicide for SSR management. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xianfei Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jiuyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Solange Muhayimana
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Hui Xiong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xuefeng Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Qingchun Huang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Song Z. Fungal microsclerotia development: essential prerequisites, influencing factors, and molecular mechanism. Appl Microbiol Biotechnol 2018; 102:9873-9880. [PMID: 30255231 DOI: 10.1007/s00253-018-9400-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 11/26/2022]
Abstract
Microsclerotia (MS) consist of an outer layer of pigment parenchyma cells and an inner layer of colorless medulla cells. In nature, MS are formed as overwintering and spreading structures in phytopathogenic fungi. For biological applications, MS can be induced in artificial liquid medium. To understand the complicated structure of MS and molecular mechanism of MS development in entomopathogenic and phytopathogenic fungi, data from different studies can be integrated. In this review, the essential prerequisites, environmental cues, and internal stimulating factors for MS development are explored. Emerging knowledges about the association between transcriptional regulatory circuits and signaling pathways involved in MS development in entomopathogenic and phytopathogenic fungi is also highlighted.
Collapse
Affiliation(s)
- Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
5
|
Song Z, Yin Y, Jiang S, Liu J, Chen H, Wang Z. Comparative transcriptome analysis of microsclerotia development in Nomuraea rileyi. BMC Genomics 2013; 14:411. [PMID: 23777366 PMCID: PMC3698084 DOI: 10.1186/1471-2164-14-411] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/07/2013] [Indexed: 12/02/2022] Open
Abstract
Background Nomuraea rileyi is used as an environmental-friendly biopesticide. However, mass production and commercialization of this organism are limited due to its fastidious growth and sporulation requirements. When cultured in amended medium, we found that N. rileyi could produce microsclerotia bodies, replacing conidiophores as the infectious agent. However, little is known about the genes involved in microsclerotia development. In the present study, the transcriptomes were analyzed using next-generation sequencing technology to find the genes involved in microsclerotia development. Results A total of 4.69 Gb of clean nucleotides comprising 32,061 sequences was obtained, and 20,919 sequences were annotated (about 65%). Among the annotated sequences, only 5928 were annotated with 34 gene ontology (GO) functional categories, and 12,778 sequences were mapped to 165 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) database. Furthermore, we assessed the transcriptomic differences between cultures grown in minimal and amended medium. In total, 4808 sequences were found to be differentially expressed; 719 differentially expressed unigenes were assigned to 25 GO classes and 1888 differentially expressed unigenes were assigned to 161 KEGG pathways, including 25 enrichment pathways. Subsequently, we examined the up-regulation or uniquely expressed genes following amended medium treatment, which were also expressed on the enrichment pathway, and found that most of them participated in mediating oxidative stress homeostasis. To elucidate the role of oxidative stress in microsclerotia development, we analyzed the diversification of unigenes using quantitative reverse transcription-PCR (RT-qPCR). Conclusion Our findings suggest that oxidative stress occurs during microsclerotia development, along with a broad metabolic activity change. Our data provide the most comprehensive sequence resource available for the study of N. rileyi. We believe that the transcriptome datasets will serve as an important public information platform to accelerate studies on N. rileyi microsclerotia.
Collapse
Affiliation(s)
- Zhangyong Song
- Genetic Engineering Research Centre, School of Life Science, Chongqing University, Chongqing 400030, China
| | | | | | | | | | | |
Collapse
|