1
|
Wang J, Jiao D, Yuan S, Chen H, Dai J, Wang X, Guo Y, Qiu D. Comparative analysis of microbial community under acclimation of linear alkylbenzene sulfonate (LAS) surfactants and degradation mechanisms of functional strains. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135370. [PMID: 39088956 DOI: 10.1016/j.jhazmat.2024.135370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
Linear alkylbenzene sulfonate (LAS) is one of the most widely used anionic surfactants and a common toxic pollutant in wastewater. This study employed high throughput sequencing to explore the microbial community structure within activated sludge exposed to a high concentration of LAS. Genera such as Pseudomonas, Aeromonas, Thauera and Klebsiella exhibited a significant positive correlation with LAS concentrations. Furthermore, Comamonas and Klebsiella were significantly enriched under the stress of LAS. Moreover, bacterial strains with LAS-degrading capability were isolated and characterized to elucidate the degradation pathways. The Klebsiella pneumoniae isolate L1 could effectively transform more than 60 % of 25 mg/L of LAS within 72 h. Chemical analyses revealed that L1 utilized the LAS sulfonyl group as a sulfur source to support its growth. Genomic and transcriptomic analyses suggested that strain L1 may uptake LAS through the sulfate ABC transport system and remove sulfonate with sulfate and sulfite reductases.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dian Jiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siliang Yuan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Han Chen
- Jingchu University of Technology, Jingmen 448000, China
| | - Jingcheng Dai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Guo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dongru Qiu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
2
|
Naqvi SNH, Bibi I, Niazi NK, Tahseen R, Al-Misned F, Shahid M, Naqvi SA, Ashraf W, Shabir G, Iqbal S, Ali F, Afzal M. Exploring the potential of bacterial-augmented floating treatment wetlands for the remediation of detergent-contaminated water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:882-893. [PMID: 37933838 DOI: 10.1080/15226514.2023.2275725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Due to industrialization and urbanization, the use of detergents inadvertently led to contamination of aquatic environments, thus posing potential threat to aquatic organisms and human health. One of the main components of detergents is linear alkylbenzene sulfonate (LAS), which can cause toxic effects on living organisms, particularly aquatic life in the environment. In this study, floating treatment wetlands (FTWs) mesocosms were developed and augmented with LAS-degrading bacteria. The plant species, Brachiaria mutica (Para grass), was vegetated to establish FTWs and bacterial consortium (1:1:1:1) of Pseudomonas aeruginosa strain PJRS20, Bacillus sp. BRRH60, Acinetobacter sp. strain CYRH21, and Burkholderia phytofirmans Ps.JN was augmented (free or immobilized) in these mesocosms. Results revealed that the FTWs removed LAS from the contaminated water and their augmentation with bacteria slightly increased LAS removal during course of the experiment. Maximum reduction in LAS concentration (94%), chemical oxygen demand (91%), biochemical oxygen demand (93%), and total organic carbon (91%) was observed in the contaminated water having FTWs augmented with bacterial consortium immobilized on polystyrene sheet. This study highlights that the FTWs supported with immobilized bacteria on polystyrene sheets can provide an eco-friendly and sustainable solution for the remediation of LAS-bearing water, especially for developing countries like Pakistan.
Collapse
Affiliation(s)
- Syed Najaf Hasan Naqvi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Razia Tahseen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | | | | | - Ghulam Shabir
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| | - Samina Iqbal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| | - Fawad Ali
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus (4111), Brisbane, QLD, Australia
- Queensland Department of Agriculture and Fisheries, Mareeba (4880), QLD, Australia
| | - Muhammad Afzal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C PIEAS), Faisalabad, Pakistan
| |
Collapse
|
3
|
Motteran F, Varesche MBA, Lara-Martin PA. Assessment of the aerobic and anaerobic biodegradation of contaminants of emerging concern in sludge using batch reactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84946-84961. [PMID: 35789461 DOI: 10.1007/s11356-022-21819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
This work explores the degradation of xenobiotic compounds in aerobic and anaerobic batch reactors. Different inoculums were spiked with nine emerging contaminants at nominal concentrations ranging between 1 to 2 mg/L (ibuprofen, diclofenac, naproxen, acesulfame, sucralose, aspartame, cyclamate, linear alkylbenzene sulfonates, and secondary alkyl sulfonates). Ethanol was used as co-substrate in the anaerobic reactors. We found that the kinetic decay was faster in the aerobic reactors inoculated with a Spanish (Spn) inoculum compared to a Brazilian (Brz) inoculum, resulting in rection rates for LAS and SAS of 2.67 ± 3.6 h-1 and 5.09 ± 6 h-1 for the Brz reactors, and 1.3 ± 0.1 h-1 and 1.5 ± 0.2 h-1 for the Spn reactors, respectively. There was no evidence of LAS and SAS degradation under anaerobic conditions within 72 days; nonetheless, under aerobic conditions, these surfactants were removed by both the Brz and Spn inoculums (up to 86.2 ± 9.4% and 74.3 ± 0.7%, respectively) within 10 days. The artificial sweeteners were not removed under aerobic conditions, whereas we could observe a steady decrease in the anaerobic reactors containing the Spn inoculum. Ethanol aided in the degradation of surfactants in anaerobic environments. Proteiniphilum, Paraclostridium, Arcobacter, Proteiniclasticum, Acinetobacter, Roseomonas, Aquamicrobium, Moheibacter, Leucobacter, Synergistes, Cyanobacteria, Serratia, and Desulfobulbus were the main microorganisms identified in this study.
Collapse
Affiliation(s)
- Fabricio Motteran
- Geosciences Technology Center, Department of Civil and Environmental Engineering, Environmental Sanitation Laboratory and Laboratory of Molecular Biology and Environmental Technology, Federal University of Pernambuco, Ave. Arquitetura, s/n, Cidade Universitária, Recife, PA, Zipcode 50740-550, Brazil.
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, n°. 400, São Carlos, São Paulo, Zipcode 13566-590, Brazil
| | - Pablo A Lara-Martin
- Department of Physical Chemistry, Faculty of Environmental and Marine Sciences, University of Cadiz (UCA), Campus Río San Pedro, 11510, Puerto Real (Cádiz), Andalusia, Spain
| |
Collapse
|
4
|
Trivedi SP, Singh S, Trivedi A, Kumar M. Mercuric chloride-induced oxidative stress, genotoxicity, haematological changes and histopathological alterations in fish Channa punctatus (Bloch, 1793). JOURNAL OF FISH BIOLOGY 2022; 100:868-883. [PMID: 35195905 DOI: 10.1111/jfb.15019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The present study was undertaken to investigate the adverse effects of mercuric chloride (HgCl2 ) overload in the fish Channa punctatus. Two sublethal test concentrations of HgCl2 (1/20th and 1/10th of 96 h LC50 i.e., 0.03 mg l-1 (low concentration) and 0.07 mg l-1 (high concentration), respectively, were used for exposure. Blood, liver and kidney tissues of the control and exposed specimens were sampled at intervals of 15, 30, and 45 days to assess alterations in oxidative stress, genotoxicity haematological parameters and histopathology. Significant changes in Hb%, RBC count, WBC count, antioxidant enzyme activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and glutathione reductase (GR), were recorded. Micronuclei (MN) induction, nuclear abnormalities (NAs) and histopathological alterations were also observed in the exposed fish. Significant (P < 0.05) increase in the activities of SOD, CAT, GSH and GR was observed. After 45 days, a decrease in the level of GSH and GR was noticed which suggests an undermined anti-oxidative defence system in the fish exposed to HgCl2 . Histological examination of the liver and kidney showed serious tissue injury and histological alterations. Significant increases in MN and NA frequencies reveal the DNA damage in erythrocytes of fish, and haematological changes show the toxicological potential of HgCl2 . The observed changes in the antioxidant defence system, genotoxicity and haematological and histological changes in the present study provide the most extensive insight into HgCl2 stress in C. punctatus.
Collapse
Affiliation(s)
- Sunil P Trivedi
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Shefalee Singh
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Abha Trivedi
- Department of Animal Sciences, M.J.P. Rohilkhand University, Bareilly, India
| | - Manoj Kumar
- Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
5
|
The identification and performance assessment of dominant bacterial species during linear alkylbenzene sulfonate (LAS)-biodegradation in a bioelectrochemical system. Bioprocess Biosyst Eng 2021; 44:2579-2590. [PMID: 34490522 DOI: 10.1007/s00449-021-02629-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
The anionic surfactant linear alkylbenzene sulfonate (LAS) is a major chemical constituent of detergent formulation. Regarding the recalcitrant nature of sulfonoaromatic compounds, discharging these substances into wastewater collection systems is a real environmental issue. A study on LAS biodegradation based on bioelectrochemical treatment and in the form of developing a single-chamber microbial fuel cell with air cathode is reported in the present work. Pretreatment study showed LAS concentration of 60 ppm resulted in the highest anaerobic LAS removal of 57%; so, this concentration was chosen to run the MFC. After the sustained anodic biofilm was formed, LAS degradation rate during 4 days in MFC was roughly 76% higher than that in the serum bottle, which indicated the role of the bioelectrochemical process in improving anaerobic LAS removal. Additionally, through 16S rRNA gene sequencing, the dominant bacterial species in the biofilm was identified as Pseudomonas zhaodongensis NEAU-ST5-21(T) with about 98.9% phylogenetic similarity and then a pathway was proposed for LAS anaerobic biodegradation. The MFC characteristics were assessed by pH monitoring as well as scanning electron microscopy and current density evolution.
Collapse
|
6
|
Han SF, Jin W, Tu R, Ding B, Zhou X, Gao SH, Feng X, Yang Q, Wang Q. Screening and mutagenesis of high-efficient degrading bacteria of linear alkylbenzene sulfonates. CHEMOSPHERE 2020; 245:125559. [PMID: 31841794 DOI: 10.1016/j.chemosphere.2019.125559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
As a widely used detergent, anionic surfactant linear alkylbenzene sulfonates (LAS) is a common toxic pollutant in wastewater. In this study, Pseudomonas sp. strain H6 was isolated from activated sludge and municipal wastewater, which had good degradation effect on LAS. The results showed that strain H6 could grow with LAS as the sole carbon source. When the concentration of LAS was less than 100 mg/L, strain H6 could degrade more than 80% of the LAS within 24 h. Meanwhile, the growth of strain H6 increased with the increase of LAS concentration, reaching the maximum growth at the presence of 100 mg/L LAS. When the concentration of LAS was over 100 mg/L, strain H6's cell growth and degradation of LAS showed a downward trend due to the strong toxicity of LAS, and the degradation rate of LAS almost tended to zero with 500 mg/L LAS. Further mutagenesis analysis of strain H6 showed that positive mutation occurred under ultraviolet and nitrite mutagenesis with using ampicillin to increase the screening pressure, and the degradation rate of LAS was 44.91% higher than that of original strain.
Collapse
Affiliation(s)
- Song-Fang Han
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Renjie Tu
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Binbin Ding
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China.
| | - Shu-Hong Gao
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Xiaochi Feng
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Qinhui Yang
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| | - Qing Wang
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), 518055, Shenzhen, China
| |
Collapse
|
7
|
Dolganova I, Ivanchina E, Dolganov I, Ivashkina E, Solopova A. Modeling the multistage process of the linear alkylbenzene sulfonic acid manufacturing. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.05.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Izzo SA, Quintana S, Espinosa M, Babay PA, Peressutti SR. First Characterization of PAH-degrading bacteria from Río de la Plata and high-resolution melting: an encouraging step toward bioremediation. ENVIRONMENTAL TECHNOLOGY 2019; 40:1250-1261. [PMID: 29261428 DOI: 10.1080/09593330.2017.1420104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
The Río de la Plata, one of the most important estuarine environments in South America that sustains valuable fisheries, is affected by PAH contamination associated with oil industry and port activities. A total of 95 bacteria with potential to degrade phenanthrene were obtained from water samples using traditional culture methods. PCR-RFLP analysis of 16S rDNA partial fragments was used as a screening tool for reducing the number of isolates during diversity studies, obtaining 42 strains with different fingerprint patterns. Phylogenetic analysis indicated that they were affiliated to 19 different genera of Gamma- and Alpha-Proteobacteria, and Actinobacteria. Some of them showed an efficient phenanthrene degradation by HPLC (between 83% and 97%) and surfactant production (between 40% and 55%). They could be an alternative for microbial selection in the degradation of PAHs in this estuarine system. In order to detect and monitor PAH-degrading bacteria in this highly productive area, rDNA amplicons of the 33 isolates, produced by PCR real time, were tested by the high-resolution melting (HRM) technique. After analyzing the generated melting curves, it was possible to accurately distinguish nine patterns corresponding to eight different genera. HRM analysis allowed a differentiation at the species level for genera Pseudomonas, Halomonas and Vibrio. The implementation of this method as a fast and sensitive scanning approach to identify PAH-degrading bacteria, avoiding the sequencing step, would mean an advance in bioremediation technologies.
Collapse
Affiliation(s)
- Silvina A Izzo
- a Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP) , Mar del Plata, Buenos Aires , Argentina
| | - Silvina Quintana
- b Área de Biología Molecular de Fares Taie , Instituto de Análisis , Rivadavia, Mar del Plata , Argentina
- c Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Mariela Espinosa
- d Comisión Nacional de Energía Atómica , Buenos Aires , Argentina
| | - Paola A Babay
- d Comisión Nacional de Energía Atómica , Buenos Aires , Argentina
| | - Silvia R Peressutti
- a Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP) , Mar del Plata, Buenos Aires , Argentina
| |
Collapse
|
9
|
Ahmari H, Zeinali Heris S, Khayyat MH. Experimental investigation of new photocatalytic continuous coaxial cylinder reactor for elimination of linear alkylbenzene sulfonic acid from waste water using nanotechnology. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Wang Y, Jin X, He L, Zhang W. Inhibitory effect of thiourea on biological nitrification process and its eliminating method. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:2900-2907. [PMID: 28659530 DOI: 10.2166/wst.2017.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thiourea is a typical nitrification inhibitor that shows a strong inhibitory effect against the biological nitrification process. The 50% inhibitory concentration (IC50) of thiourea on nitrification was determined to be 0.088 mg g VSS-1, and nitrifiers recovered from the thiourea inhibition after it was completely degraded. The thiourea-degrading ability of the sludge system was improved to 3.06 mg gVSS-1 h-1 through cultivation of thiourea-degrading bacteria by stepwise increasing the influent thiourea concentration. The dominant thiourea-degrading bacteria strain that used thiourea as the sole carbon and nitrogen source in the sludge system was identified as Pseudomonas sp. NCIMB. The results of this study will facilitate further research of the biodegradation characteristics of thiourea and similar pollutants.
Collapse
Affiliation(s)
- Yuan Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control of Chemical Processes, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Xibiao Jin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control of Chemical Processes, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Lijun He
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control of Chemical Processes, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control of Chemical Processes, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| |
Collapse
|
11
|
Photo catalytic degradation of linear alkylbenzene sulfonic acid. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2483-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Okada DY, Esteves AS, Delforno TP, Hirasawa JS, Duarte ICS, Varesche MBA. Influence of co-substrates in the anaerobic degradation of an anionic surfactant. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2013. [DOI: 10.1590/s0104-66322013000300008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|