1
|
Jørgensen C, Domingo NDS, Tomicic B, Jørgensen ME, Hansen LT, Petersen HH, Clauson-Kaas J. Application of hydraulic modelling and quantitative microbial risk assessment (QMRA) for cloudburst management in cities with combined sewer systems. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:799-813. [PMID: 37651322 PMCID: wst_2023_239 DOI: 10.2166/wst.2023.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Urban cloudburst management may include the intentional temporary storage of flood water in green recreational areas. In cities with combined sewers, this will expose the population visiting the area to sewage and increase the risk of diarrhoeal disease. We present a unique approach to estimate the risk of diarrhoeal disease after urban flooding. The exposure scenario was: rainwater mixed with sewage flows into a park; sewage with pathogens deposit on the grass; after discharge, a baby plays on the grass and is exposed to the pathogens in the deposited sewage by hand-to-mouth transfer. The work included modelling the transport of sewage into four parks intended to be flooded during future cloudbursts. A flood simulation experiment was conducted to estimate the deposition of pathogens from sewage to grass and transfer from grass to hand. Hand-to-mouth transfer, based on literature values, was used to estimate the ingested dose of pathogens. The probability of illness was estimated by QMRA. The estimated average probability of illness varied between 0.03 and 17%. If the probability of illness is considered unacceptable, the cloudburst plans should be changed, or interventions, e.g. informing the public about the risk or restricting access to the flooded area, should be implemented.
Collapse
Affiliation(s)
| | | | | | - Morten E Jørgensen
- Municipality of Copenhagen, Environmental Protection Department, Njalsgade 13, Copenhagen S DK-2300, Denmark
| | | | - Heidi Huus Petersen
- Danish Veterinary and Food Administration, Stationsparken 31-33, Glostrup DK-2600, Denmark
| | | |
Collapse
|
2
|
Siddiqee MH, Henry R, Coleman RA, Deletic A, McCarthy DT. Campylobacter in an Urban Estuary: Public Health Insights from Occurrence, HeLa Cytotoxicity, and Caco-2 Attachment Cum Invasion. Microbes Environ 2019; 34:436-445. [PMID: 31735766 PMCID: PMC6934393 DOI: 10.1264/jsme2.me19088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aquatic recreation in urban estuaries worldwide is often restricted by fecal pollution. Variability in the occurrence of fecal pathogens and their differential virulence potentials within these estuaries may result in variable public health risks. To address this hypothesis, Campylobacter were isolated from the Yarra River estuary, Australia and then characterized via HeLa cell cytotoxicity and attachment to and the invasion of Caco-2 monolayers. Overall, 54% (n=216) of estuarine samples (water and sediment combined) yielded biochemically confirmed culturable Campylobacter; higher detection was recorded in water (92%, n=90) than in the bank and bed sediments combined (27%, n=126). The seasonality of occurrence was not significant. HeLa cell cytotoxicity revealed that estuarine Campylobacter had low cytotoxin titers; the 95% confidence interval (CI) ranged between 61 and 85, which was markedly lower than the mean value (~386) for the C. jejuni 11168 reference pathogenic strain. The Caco-2 attachment of estuarine Campylobacter isolates (n=189) revealed that the 95%CI for the attachment efficiency of the test strains ranged between 0.09 and 0.1%, with only 3.7% having a higher efficiency than the 5th percentile value for C. jejuni 11168. None of the estuarine strains exhibited Caco-2 invasion capabilities. In contrast to the common assumption during quantitative microbial/risk assessments (QMRAs) that all environmental strains are pathogenic, the present results revealed that Campylobacter within the Yarra River estuary had very low virulence potential. Since this is the first study to use human epithelial cell lines to characterize estuary-borne pathogens, these results generate valuable insights for a better understanding of the public health risks in urban estuaries that will underpin more robust QMRAs.
Collapse
Affiliation(s)
- Mahbubul H Siddiqee
- Environmental and Public Health Microbiology Laboratory EPHM Lab, Department of Civil Engineering, Monash University.,Molecular and Environmental Microbiology Laboratory MEM LAB, Department of Mathematics and Natural Sciences, BRAC University
| | - Rebekah Henry
- Environmental and Public Health Microbiology Laboratory EPHM Lab, Department of Civil Engineering, Monash University
| | | | - Ana Deletic
- Environmental and Public Health Microbiology Laboratory EPHM Lab, Department of Civil Engineering, Monash University
| | - David T McCarthy
- Environmental and Public Health Microbiology Laboratory EPHM Lab, Department of Civil Engineering, Monash University
| |
Collapse
|
3
|
CampylobacterSpecies. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Rahman H, King RM, Shewell LK, Semchenko EA, Hartley-Tassell LE, Wilson JC, Day CJ, Korolik V. Characterisation of a multi-ligand binding chemoreceptor CcmL (Tlp3) of Campylobacter jejuni. PLoS Pathog 2014; 10:e1003822. [PMID: 24391495 PMCID: PMC3879368 DOI: 10.1371/journal.ppat.1003822] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 10/28/2013] [Indexed: 01/17/2023] Open
Abstract
Campylobacter jejuni is the leading cause of human gastroenteritis worldwide with over 500 million cases annually. Chemotaxis and motility have been identified as important virulence factors associated with C. jejuni colonisation. Group A transducer-like proteins (Tlps) are responsible for sensing the external environment for bacterial movement to or away from a chemical gradient or stimulus. In this study, we have demonstrated Cj1564 (Tlp3) to be a multi-ligand binding chemoreceptor and report direct evidence supporting the involvement of Cj1564 (Tlp3) in the chemotaxis signalling pathway via small molecule arrays, surface plasmon and nuclear magnetic resonance (SPR and NMR) as well as chemotaxis assays of wild type and isogenic mutant strains. A modified nutrient depleted chemotaxis assay was further used to determine positive or negative chemotaxis with specific ligands. Here we demonstrate the ability of Cj1564 to interact with the chemoattractants isoleucine, purine, malic acid and fumaric acid and chemorepellents lysine, glucosamine, succinic acid, arginine and thiamine. An isogenic mutant of cj1564 was shown to have altered phenotypic characteristics of C. jejuni, including loss of curvature in bacterial cell shape, reduced chemotactic motility and an increase in both autoagglutination and biofilm formation. We demonstrate Cj1564 to have a role in invasion as in in vitro assays the tlp3 isogenic mutant has a reduced ability to adhere and invade a cultured epithelial cell line; interestingly however, colonisation ability of avian caeca appears to be unaltered. Additionally, protein-protein interaction studies revealed signal transduction initiation through the scaffolding proteins CheV and CheW in the chemotaxis sensory pathway. This is the first report characterising Cj1564 as a multi-ligand receptor for C. jejuni, we therefore, propose to name this receptor CcmL, Campylobacterchemoreceptor for multiple ligands. In conclusion, this study identifies a novel multifunctional role for the C. jejuni CcmL chemoreceptor and illustrates its involvement in the chemotaxis pathway and subsequent survival of this organism in the host. Bacterial chemotaxis is an important part in initiation of colonisation and subsequent pathogenicity. In this study, we report direct evidence supporting the involvement of C. jejuni transducer-like protein Cj1564 (Tlp3) in the chemotaxis signalling pathway via small molecule arrays, surface plasmon and nuclear magnetic resonance (SPR and NMR) as well as chemotaxis assays of wild type and isogenic mutants. We further demonstrate its ability to interact with chemoattractants isoleucine, purine, malic acid and fumaric acid and chemorepellents lysine, glucosamine, succinic acid, arginine and thiamine. This is the first report identifying Cj1564 as a multi-ligand receptor for Campylobacter jejuni and its signal transduction initiation through the CheV and CheW proteins. Finally, our characterisation of C. jejuni Cj1564 provides additional basis for elucidating the roles of other group A chemoreceptors and their importance in the chemotaxis signalling pathway.
Collapse
Affiliation(s)
- Hossinur Rahman
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Australia
| | - Rebecca M. King
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Australia
| | - Lucy K. Shewell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Australia
| | - Evgeny A. Semchenko
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Australia
| | | | - Jennifer C. Wilson
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Australia
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Australia
- * E-mail:
| |
Collapse
|
5
|
Gu G, Luo Z, Cevallos-Cevallos JM, Adams P, Vellidis G, Wright A, van Bruggen AHC. Occurrence and population density of Campylobacter jejuni in irrigation ponds on produce farms in the Suwannee River Watershed. Can J Microbiol 2013; 59:339-46. [PMID: 23647347 DOI: 10.1139/cjm-2013-0027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Campylobacter spp., especially Campylobacter jejuni, are common causal agents of gastroenteritis globally. Poultry, contaminated water, and fresh produce are considered to be the main sources for infection by this pathogen. In this study, occurrence and population density of C. jejuni from vegetable irrigation ponds in the Suwannee River watershed were investigated and the relationship to environmental factors was analyzed. Two water samples were collected from each of 10 ponds every month from January 2011 to February 2012. Campylobacter jejuni was detected by quantitative real-time PCR. Nine of the 10 ponds were positive for C. jejuni some of the time with an overall prevalence of 19.3%. The highest counts were obtained in spring 2011. Oxidation-reduction potential and total nitrogen concentration were positively correlated (P < 0.05) with mean population and occurrence of C. jejuni, while temperature and dissolved oxygen percent saturation (DO%) were negatively correlated with mean population (P < 0.05). Presence of this pathogen was related to bacterial community composition. No correlations were found between C. jejuni and fecal indicators. Increasing DO% of irrigation water and limiting nitrogen pollution in the ponds are suggested to reduce the contamination risk of C. jejuni in a major fruit and vegetable growing area.
Collapse
Affiliation(s)
- Ganyu Gu
- Emerging Pathogens Institute and Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Ikeda N, Karlyshev AV. Putative mechanisms and biological role of coccoid form formation in Campylobacter jejuni. Eur J Microbiol Immunol (Bp) 2012; 2:41-9. [PMID: 24611120 DOI: 10.1556/eujmi.2.2012.1.7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 01/09/2012] [Indexed: 01/09/2023] Open
Abstract
In certain conditions Campylobacter jejuni cells are capable of changing their cell shape from a typically spiral to a coccoid form (CF). By similarity to other bacteria, the latter was initially considered to be a viable but non-culturable form capable of survival in unfavourable conditions. However, subsequent studies with C. jejuni and closely related bacteria Helicobacter pylori suggested that CF represents a non-viable, degenerative form. Until now, the issue on whether the CF of C. jejuni is viable and infective is highly controversial. Despite some preliminary experiments on characterization of CF cells, neither biochemical mechanisms nor genetic determinants involved in C. jejuni cell shape changes have been characterized. In this review, we highlight known molecular mechanisms and genes involved in CF formation in other bacteria. Since orthologous genes are also present in C. jejuni, we suggest that CF formation in these bacteria is also a regulated and genetically determined process. A possible significance of CF in the lifestyle of this important bacterial pathogen is discussed.
Collapse
Affiliation(s)
- N Ikeda
- School of Life Sciences, Faculty of Science, Engineering and Computing, Kingston University Penrhyn Road, Kingston-upon Thames, KT1 2EE UK
| | - A V Karlyshev
- School of Life Sciences, Faculty of Science, Engineering and Computing, Kingston University Penrhyn Road, Kingston-upon Thames, KT1 2EE UK
| |
Collapse
|
7
|
Consumption of raw vegetables and fruits: A risk factor for Campylobacter infections. Int J Food Microbiol 2011; 144:406-12. [DOI: 10.1016/j.ijfoodmicro.2010.10.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/17/2010] [Accepted: 10/21/2010] [Indexed: 11/21/2022]
|
8
|
Murdoch LE, Maclean M, MacGregor SJ, Anderson JG. Inactivation ofCampylobacter jejuniby Exposure to High-Intensity 405-nm Visible Light. Foodborne Pathog Dis 2010; 7:1211-6. [DOI: 10.1089/fpd.2010.0561] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Lynne Elizabeth Murdoch
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, Scotland
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, Scotland
| | - Scott J. MacGregor
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, Scotland
| | - John G. Anderson
- The Robertson Trust Laboratory for Electronic Sterilisation Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
9
|
Pogačar MŠ, Klančnik A, Možina SS, Cencič A. Attachment, Invasion, and Translocation ofCampylobacter jejuniin Pig Small-Intestinal Epithelial Cells. Foodborne Pathog Dis 2010; 7:589-95. [DOI: 10.1089/fpd.2009.0301] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Maja Šikić Pogačar
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Avrelija Cencič
- Department of Microbiology, Biochemistry, Molecular Biology, and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Hoče, Slovenia
- Department of Biochemistry, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
10
|
HUGHES REBECCAAYME, COGAN TRISTAN, HUMPHREY TOM. Exposure of Campylobacter jejuni to 6°C: Effects on Heat Resistance and Electron Transport Activity. J Food Prot 2010; 73:729-33. [DOI: 10.4315/0362-028x-73.4.729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human infection with Campylobacter jejuni is frequently associated with the consumption of foods, especially chicken meat, which have been exposed to a range of temperatures during processing, storage, and cooking. Despite the public health importance of C. jejuni, little is known about the effects of cold exposure (refrigeration) on the subsequent ability of this pathogen to survive heat challenge. This work examined the effect of rapid exposure to 6°C for 24 h on the heat resistance at 52°Cof19 C. jejuni strains originally isolated from various sources. The resulting death curves were analyzed with the Weibull model. Unlike cold-exposed cells of Escherichia coli and Salmonella, which have been reported to show significant increased sensitivity to heat, such exposure had only a marginal effect on heat resistance of the C. jejuni strains in this study. A possible explanation for this effect is that rapid chilling renders C. jejuni cells unable to adapt to reduced temperatures in an active manner. This hypothesis is supported by the observation that exposure to 6°C for 24 h resulted in a significant and marked reduction in electron transport system activity when compared with controls at 37°C.
Collapse
Affiliation(s)
- REBECCA-AYME HUGHES
- Zoonotic Infections Group, Division of Veterinary Pathology, Infection and Immunity, School of Clinical Veterinary Science, University of Bristol, Bristol BS49 5DU, UK
| | - TRISTAN COGAN
- Zoonotic Infections Group, Division of Veterinary Pathology, Infection and Immunity, School of Clinical Veterinary Science, University of Bristol, Bristol BS49 5DU, UK
| | - TOM HUMPHREY
- Zoonotic Infections Group, Division of Veterinary Pathology, Infection and Immunity, School of Clinical Veterinary Science, University of Bristol, Bristol BS49 5DU, UK
| |
Collapse
|
11
|
Jackson DN, Davis B, Tirado SM, Duggal M, van Frankenhuyzen JK, Deaville D, Wijesinghe MAK, Tessaro M, Trevors JT. Survival mechanisms and culturability of Campylobacter jejuni under stress conditions. Antonie van Leeuwenhoek 2009; 96:377-94. [PMID: 19774483 DOI: 10.1007/s10482-009-9378-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 09/03/2009] [Indexed: 11/24/2022]
Abstract
Culture-based isolation and enumeration of bacterial human pathogens from environmental and human food samples has significant limitations.Many pathogens enter a viable but non-culturable(VBNC) state in response to stress, and cannot be detected via culturing methods. Favourable growth conditions with a source of energy and an ideal stoichiometric ratio of carbon to inorganic elements can reverse this VBNC state. This review will focus on the bacterium Campylobacter jejuni which is a leading cause of food borne illness in the developed world. C. jejuni can enter a VBNC state in response to extremes in: pH, moisture content, temperature,nutrient content and salinity. Once in a VBNC state,the organism must maintain an energy balance from substrate oxidation through respiration to grow,divide and remain viable. The goal of this review isa greater understanding of how abiotic stress and thermodynamics influence the viability of C. jejuni.
Collapse
Affiliation(s)
- D Nathan Jackson
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G2Wl, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Klančnik A, Guzej B, Jamnik P, Vučković D, Abram M, Možina SS. Stress response and pathogenic potential of Campylobacter jejuni cells exposed to starvation. Res Microbiol 2009; 160:345-52. [DOI: 10.1016/j.resmic.2009.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/30/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
|