1
|
Poma N, Bonini A, Vivaldi F, Biagini D, Di Luca M, Bottai D, Di Francesco F, Tavanti A. Biosensing systems for the detection and quantification of methane gas. Appl Microbiol Biotechnol 2023; 107:5627-5634. [PMID: 37486352 PMCID: PMC10439851 DOI: 10.1007/s00253-023-12629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023]
Abstract
Climate change due to the continuous increase in the release of green-house gasses associated with anthropogenic activity has made a significant impact on the sustainability of life on our planet. Methane (CH4) is a green-house gas whose concentrations in the atmosphere are on the rise. CH4 measurement is important for both the environment and the safety at the industrial and household level. Methanotrophs are distinguished for their unique characteristic of using CH4 as the sole source of carbon and energy, due to the presence of the methane monooxygenases that oxidize CH4 under ambient temperature conditions. This has attracted interest in the use of methanotrophs in biotechnological applications as well as in the development of biosensing systems for CH4 quantification and monitoring. Biosensing systems using methanotrophs rely on the use of whole microbial cells that oxidize CH4 in presence of O2, so that the CH4 concentration is determined in an indirect manner by measuring the decrease of O2 level in the system. Although several biological properties of methanotrophic microorganisms still need to be characterized, different studies have demonstrated the feasibility of the use of methanotrophs in CH4 measurement. This review summarizes the contributions in methane biosensing systems and presents a prospective of the valid use of methanotrophs in this field. KEY POINTS: • Methanotroph environmental relevance in methane oxidation • Methanotroph biotechnological application in the field of biosensing • Methane monooxygenase as a feasible biorecognition element in biosensors.
Collapse
Affiliation(s)
- Noemi Poma
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56127, Pisa, Italy
| | - Andrea Bonini
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56127, Pisa, Italy
- Groningen Biomolecular Sciences and Biotechnology, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Federico Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
- Metitech S.R.L., Via Livornese 835, 56122, Pisa, Italy
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Mariagrazia Di Luca
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56127, Pisa, Italy
| | - Daria Bottai
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56127, Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
- Metitech S.R.L., Via Livornese 835, 56122, Pisa, Italy
| | - Arianna Tavanti
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56127, Pisa, Italy.
| |
Collapse
|
2
|
He R, Ma RC, Yao XZ, Wei XM. Response of methanotrophic activity to extracellular polymeric substance production and its influencing factors. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 69:289-297. [PMID: 28803765 DOI: 10.1016/j.wasman.2017.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/25/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
The accumulation of extracellular polymeric substance (EPS) is speculated to be related with the decrease of CH4 oxidation rate after a peak in long-term laboratory landfill covers and biofilters. However, few data have been reported about EPS production of methanotrophs and its feedback effects on methanotrophic activity. In this study, Methylosinus sporium was used asa model methanotroph to investigate EPS production and its influencing factors during CH4 oxidation. The results showed that methanotrophs could secret EPS into the habits during CH4 oxidation and had a negative feedback effect on CH4 oxidation. The EPS amount fitted well with the CH4 oxidation activity with the exponential model. The environmental factors such as pH, temperature, CH4, O2, NO3--N and NH4+-N could affect the EPS production of methanotrophs. When pH, temperature, CH4, O2 and N concentrations (including NO3--N and NH4+-N) were 6.5-7.5, 30-40°C, 10-15%, 10% and 20-140mgL-1, respectively, the high cell growth rate and CH4 oxidation activity of Methylosinus sporium occurred in the media with the low EPS production, which was beneficial to sustainable and efficient CH4 oxidation. In practice, O2-limited condition such as the O2 concentration of 10% might be a good way to control EPS production and enhance CH4 oxidation to mitigate CH4 emission from landfills.
Collapse
Affiliation(s)
- Ruo He
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Ruo-Chan Ma
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xing-Zhi Yao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Meng Wei
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Pasco NF, Weld RJ, Hay JM, Gooneratne R. Development and applications of whole cell biosensors for ecotoxicity testing. Anal Bioanal Chem 2011; 400:931-45. [DOI: 10.1007/s00216-011-4663-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
|
4
|
Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells. Appl Microbiol Biotechnol 2010; 87:383-90. [DOI: 10.1007/s00253-010-2604-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 03/31/2010] [Accepted: 04/04/2010] [Indexed: 10/19/2022]
|
5
|
Isolation of a Methylobacterium organophilium strain, and its application to a methanol biosensor. Mikrochim Acta 2009. [DOI: 10.1007/s00604-009-0214-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|