1
|
Smith EM, Papadimas A, Gabor C, Cooney C, Wu T, Rasko D, Barry EM. The role of the minor colonization factor CS14 in adherence to intestinal cell models by geographically diverse ETEC isolates. mSphere 2023; 8:e0030223. [PMID: 37787523 PMCID: PMC10597352 DOI: 10.1128/msphere.00302-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/15/2023] [Indexed: 10/04/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a primary causative agent of diarrhea in travelers and young children in low- to middle-income countries. ETEC adheres to small intestinal epithelia via colonization factors (CFs) and secretes heat-stable toxin and/or heat-labile toxin, causing dysregulated ion transport and water secretion. There are over 30 CFs identified, including major CFs associated with moderate-to-severe diarrhea (MSD) and minor CFs for which a role in pathogenesis is less clear. The Global Enteric Multicenter Study identified CS14, a class 5a fimbriae, as the only minor CF significantly associated with MSD and was recommended for inclusion in ETEC vaccines. Despite detection of CS14 in ETEC isolates, the sequence conservation of the CS14 operon, its role in adherence, and functional cross-reactivity to other class 5a fimbriae like CFA/I and CS4 are not understood. Sequence analysis determined that the CS14 operon is >99.9% identical among seven geographically diverse isolates with expanded sequence analysis demonstrating SNPs exclusively in the gene encoding the tip adhesin CsuD. Western blots and electron microscopy demonstrated that CS14 expression required the growth of isolates on CFA agar with the iron chelator deferoxamine mesylate. CS14 expression resulted in significantly increased adherence to cultured intestinal cells and human enteroids. Anti-CS14 antibodies and anti-CS4 antibodies, but not anti-CFA/I antibodies, inhibited the adherence of a subset of ETEC isolates, demonstrating CS14-specific inhibition with partial cross-reactivity within the class 5a fimbrial family. These data provide support for CS14 as an important fimbrial CF and its consideration as a vaccine antigen in future strategies. IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) infection causes profuse watery diarrhea in adults and children in low- to middle-income countries and is a leading cause of traveler's diarrhea. Despite increased use of rehydration therapies, young children especially can suffer long-term effects including gastrointestinal dysfunction as well as stunting and malnutrition. As there is no licensed vaccine for ETEC, there remains a need to identify and understand specific antigens for inclusion in vaccine strategies. This study investigated one adhesin named CS14. This adhesin is expressed on the bacterial surface of ETEC isolates and was recently recognized for its significant association with diarrheal disease. We demonstrated that CS14 plays a role in bacterial adhesion to human target cells, a critical first step in the disease process, and that adherence could be blocked by CS14-specific antibodies. This work will significantly impact the ETEC field by supporting inclusion of CS14 as an antigen for ETEC vaccines.
Collapse
Affiliation(s)
- Emily M. Smith
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Antonia Papadimas
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Caitlin Gabor
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ceanna Cooney
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tao Wu
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eileen M. Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Kipkirui E, Koech M, Ombogo A, Kirera R, Ndonye J, Kipkemoi N, Kirui M, Philip C, Roth A, Flynn A, Odundo E, Kombich J, Daud I. Molecular characterization of enterotoxigenic Escherichia coli toxins and colonization factors in children under five years with acute diarrhea attending Kisii Teaching and Referral Hospital, Kenya. Trop Dis Travel Med Vaccines 2021; 7:31. [PMID: 34906250 PMCID: PMC8670869 DOI: 10.1186/s40794-021-00157-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of infectious diarrhea in children. There are no licensed vaccines against ETEC. This study aimed at characterizing Escherichia coli for ETEC enterotoxins and colonization factors from children < 5 years with acute diarrhea and had not taken antibiotics prior to seeking medical attention at the hospital.
Methods
A total of 225 randomly selected archived E. coli strains originally isolated from 225 children with acute diarrhea were cultured. DNA was extracted and screened by multiplex polymerase chain reaction (PCR) for three ETEC toxins. All positives were then screened for 11 colonization factors by PCR.
Results
Out of 225 E. coli strains tested, 23 (10.2%) were ETEC. Heat-stable toxin (ST) gene was detected in 16 (69.6%). ETEC isolates with heat-stable toxin of human origin (STh) and heat-stable toxin of porcine origin (STp) distributed as 11 (68.8%) and 5 (31.2%) respectively. Heat-labile toxin gene (LT) was detected in 5 (21.7%) of the ETEC isolates. Both ST and LT toxin genes were detected in 2 (8.7%) of the ETEC isolates. CF genes were detected in 14 (60.9%) ETEC strains with a majority having CS6 6 (42.9%) gene followed by a combination of CFA/I + CS21 gene detected in 3 (21.4%). CS14, CS3, CS7 and a combination of CS5 + CS6, CS2 + CS3 genes were detected equally in 1 (7.1%) ETEC isolate each. CFA/I, CS4, CS5, CS2, CS17/19, CS1/PCFO71 and CS21 genes tested were not detected. We did not detect CF genes in 9 (39.1%) ETEC isolates. More CFs were associated with ETEC strains with ST genes.
Conclusion
ETEC strains with ST genes were the most common and had the most associated CFs. A majority of ETEC strains had CS6 gene. In 9 (39.1%) of the evaluated ETEC isolates, we did not detect an identifiable CF.
Collapse
|
3
|
Bhakat D, Debnath A, Naik R, Chowdhury G, Deb A, Mukhopadhyay A, Chatterjee N. Identification of common virulence factors present in enterotoxigenicEscherichia coliisolated from diarrhoeal patients in Kolkata, India. J Appl Microbiol 2018; 126:255-265. [DOI: 10.1111/jam.14090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 07/17/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022]
Affiliation(s)
- D. Bhakat
- Division of Biochemistry; ICMR-National Institute of Cholera and Enteric Diseases; Kolkata India
| | - A. Debnath
- Division of Biochemistry; ICMR-National Institute of Cholera and Enteric Diseases; Kolkata India
| | - R. Naik
- Division of Biochemistry; ICMR-National Institute of Cholera and Enteric Diseases; Kolkata India
| | - G. Chowdhury
- Division of Bacteriology; ICMR-National Institute of Cholera and Enteric Diseases; Kolkata India
| | - A.K. Deb
- Division of Epidemiology; ICMR-National Institute of Cholera and Enteric Diseases; Kolkata India
| | - A.K. Mukhopadhyay
- Division of Bacteriology; ICMR-National Institute of Cholera and Enteric Diseases; Kolkata India
| | - N.S. Chatterjee
- Division of Biochemistry; ICMR-National Institute of Cholera and Enteric Diseases; Kolkata India
| |
Collapse
|
4
|
Molecular characterization of enterotoxigenic Escherichia coli isolates recovered from children with diarrhea during a 4-year period (2007 to 2010) in Bolivia. J Clin Microbiol 2013; 51:1219-25. [PMID: 23390275 DOI: 10.1128/jcm.02971-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of childhood diarrhea. This study aimed to characterize ETEC strains isolated from Bolivian children aged <5 years according to enterotoxin profile, colonization factors (CFs), suggested virulence genes, and severity of disease. A total of 299 ETEC isolates recovered from children with diarrhea and 55 ETEC isolates from children without diarrhea (controls) were isolated over a period of 4 years. Strains expressing heat-labile toxin (LT) or heat-stable toxin (ST) alone were about equally common and twice as common as ETEC producing both toxins (20%). ETEC strains expressing human ST (STh) were more common in children aged <2 years, while ETEC strains expressing LT plus STh (LT/STh) were more frequent in 2- to 5-year-old children. Severity of disease was not related to the toxin profile of the strains. CF-positive isolates were more frequently identified in diarrheal samples than in control samples (P = 0.02). The most common CFs were CFA/I and CS14. CFA/I ETEC strains were more frequent in children aged <2 years than CS1+CS3 isolates and CS14 isolates, which were more prevalent in 2- to 5-year-old children. The presence of suggested ETEC virulence genes (clyA, eatA, tia, tibC, leoA, and east-1) was not associated with disease. However, east-1 was associated with LT/STh strains (P < 0.001), eatA with STh strains (P < 0.001), and tia with LT/STh strains (P < 0.001). A minor seasonal peak of ETEC infections was identified in May during the cold-dry season and coincided with the peak of rotavirus infections; this pattern is unusual for ETEC and may be important for vaccination strategies in Bolivia.
Collapse
|