1
|
Yılmaz S, Idris AB, Ayvaz A, Temizgül R, Çetin A, Hassan MA. Genome mining of Bacillus thuringiensis strain SY49.1 reveals novel candidate pesticidal and bioactive compounds. PEST MANAGEMENT SCIENCE 2025; 81:298-307. [PMID: 39324581 PMCID: PMC11632210 DOI: 10.1002/ps.8433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Bacillus thuringiensis SY49.1 (Bt SY49.1) strain has promising insecticidal and fungicidal activity against phytopathogens and pests. Therefore, we selected this strain for whole-genome sequencing (WGS), annotation and analysis, with the aim of identifying genes responsible for producing putative pesticidal toxins, antimicrobial metabolites and plant growth-promoting features. RESULTS Our results showed that the SY49.1 genome is 6. 32 Mbp long with a GC content of 34.68%. Genome mining revealed the presence of multiple gene inventories for the biosynthesis of bioactive compounds such as insecticidal delta endotoxins, secondary metabolites, and several plant growth-promoting proteins. Multiple sequence alignment revealed residue variations in the toxic core of Cry1Ab when compared with known Cry1Ab sequences from Bt nomenclature databases. This suggests that the cry1Ab of SY49.1 is a new kind of its group. Among the predicted secondary metabolites, we found a kurstakin with a predicted peptide that differs from the known kurstakin peptide available in the NORINE database. In addition, lipopeptides extracted from SY49.1 suppressed the growth of Verticillium dahliae and Fusarium oxysporum. CONCLUSION We anticipate that the complete genome of Bt SY49.1 may provide a model for properly understanding and studying antimicrobial compound mining, genetic diversity among the B. cereus group, and pathogenicity against insects. This is the first report on the WGS and mining of the Bt strain isolated from Turkey. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Semih Yılmaz
- Department of Agricultural Biotechnology, Faculty of AgricultureErciyes UniversityKayseriTurkey
| | - Abeer Babiker Idris
- Department of Agricultural Sciences and Technologies, Graduate School of Natural and Applied SciencesErciyes UniversityKayseriTurkey
| | - Abdurrahman Ayvaz
- Department of Biology, Faculty of ScienceErciyes UniversityKayseriTurkey
| | - Rıdvan Temizgül
- Department of Biology, Faculty of ScienceErciyes UniversityKayseriTurkey
| | - Aysun Çetin
- Department of Medical Biochemistry, Faculty of MedicineErciyes UniversityKayseriTurkey
| | - Mohammed A Hassan
- Department of BioinformaticsAfrica City of TechnologyKhartoumSudan
- Sanimed international lab and management l.l.CAbu DhabiUAE
| |
Collapse
|
2
|
Botcazon C, Ramos-Martín F, Rodríguez-Moraga N, Bergia T, Acket S, Sarazin C, Rippa S. Rhamnolipids and fengycins interact differently with biomimetic lipid membrane models of Botrytis cinerea and Sclerotinia sclerotiorum: Lipidomics profiles and biophysical studies. Biophys Chem 2024; 314:107305. [PMID: 39154582 DOI: 10.1016/j.bpc.2024.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
Rhamnolipids (RLs) and Fengycins (FGs) are biosurfactants with very promising antifungal properties proposed to reduce the use of synthetic pesticides in crops. They are amphiphilic molecules, both known to target the plasma membrane. They act differently on Botrytis cinerea and Sclerotinia sclerotiorum, two close Sclerotiniaceae phytopathogenic fungi. RLs are more efficient at permeabilizing S. sclerotiorum, and FGs are more efficient at permeabilizing B. cinerea mycelial cells. To study the link between the lipid membrane composition and the activity of RLs and FGs, we analyzed the lipid profiles of B. cinerea and S. sclerotiorum. We determined that unsaturated or saturated C18 and saturated C16 fatty acids are predominant in both fungi. We also showed that phosphatidylethanolamine (PE), phosphatidic acid (PA), and phosphatidylcholine (PC) are the main phospholipids (in this order) in both fungi, with more PA and less PC in S. sclerotiorum. The results were used to build biomimetic lipid membrane models of B. cinerea and S. sclerotiorum for all-atom molecular dynamic simulations and solid-state NMR experiments to more deeply study the interactions between RLs or FGs with different compositions of lipid bilayers. Distinctive effects are exerted by both compounds. RLs completely insert in all the studied model membranes with a fluidification effect. FGs tend to form aggregates out of the bilayer and insert individually more easily into the models representative of B. cinerea than those of S. sclerotiorum, with a higher fluidification effect. These results provide new insights into the lipid composition of closely related fungi and its impact on the mode of action of very promising membranotropic antifungal molecules for agricultural applications.
Collapse
Affiliation(s)
- Camille Botcazon
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Alliance Sorbonne Université, Université de technologie de Compiègne, Compiègne, France
| | - Francisco Ramos-Martín
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Université de Picardie Jules Verne, Amiens, France
| | - Nely Rodríguez-Moraga
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Université de Picardie Jules Verne, Amiens, France
| | - Thomas Bergia
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Alliance Sorbonne Université, Université de technologie de Compiègne, Compiègne, France
| | - Sébastien Acket
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Alliance Sorbonne Université, Université de technologie de Compiègne, Compiègne, France
| | - Catherine Sarazin
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Université de Picardie Jules Verne, Amiens, France.
| | - Sonia Rippa
- Unité Génie Enzymatique et Cellulaire, CNRS, UMR 7025, Alliance Sorbonne Université, Université de technologie de Compiègne, Compiègne, France.
| |
Collapse
|
3
|
Wang SY, Zhang YJ, Chen X, Shi XC, Herrera-Balandrano DD, Liu FQ, Laborda P. Biocontrol Methods for the Management of Sclerotinia sclerotiorum in Legumes: A Review. PHYTOPATHOLOGY 2024; 114:1447-1457. [PMID: 38669603 DOI: 10.1094/phyto-01-24-0006-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Sclerotinia sclerotiorum is an economically damaging fungal pathogen that causes Sclerotinia stem rot in legumes, producing enormous yield losses. This pathogen is difficult to control due to its wide host spectrum and ability to produce sclerotia, which are resistant bodies that can remain active for long periods under harsh environmental conditions. Here, the biocontrol methods for the management of S. sclerotiorum in legumes are reviewed. Bacillus strains, which synthesized lipopeptides and volatile organic compounds, showed high efficacies in soybean plants, whereas the highest efficacies for the control of the pathogen in alfalfa and common bean were observed when using Coniothyrium minitans and Streptomyces spp., respectively. The biocontrol efficacies in fields were under 65%, highlighting the lack of strategies to achieve a complete control. Overall, although most studies involved extensive screenings using different biocontrol agent concentrations and application conditions, there is a lack of knowledge regarding the specific antifungal mechanisms, which limits the optimization of the reported methods.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Yun-Jiao Zhang
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| | | | - Feng-Quan Liu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, People's Republic of China
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|
4
|
Liang M, Feng A, Wang C, Zhu X, Su J, Xu Z, Yang J, Wang W, Chen K, Chen B, Lin X, Feng J, Chen S. Bacillus amyloliquefaciens LM-1 Affects Multiple Cell Biological Processes in Magnaporthe oryzae to Suppress Rice Blast. Microorganisms 2024; 12:1246. [PMID: 38930628 PMCID: PMC11205629 DOI: 10.3390/microorganisms12061246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Magnaporthe oryzae, one of the most destructive rice pathogens, causes significant losses during the rice harvest every year. Bacillus amyloliquefaciens has been explored in many crops as a potential biocontrol agent. However, the mechanisms of B. amyloliquefaciens controled rice blast are not fully understood. Here, a biocontrol strain LM-1, isolated from a contaminated medium, was identified as B. amyloliquefaciens using morphological observation, physiological and biochemical tests, and 16S rDNA sequencing. LM-1 inhibited the growth and pathogenicity of M. oryzae and Bipolaris oryzae (Breda de Haan) Shoem. The mycelia of M. oryzae co-cultured with LM-1 were enlarged and broken by fluorescence microscopy using calcofluor white. LM-1 inhibited the mycelia of M. oryzae from producing conidia. Genes itu, srf, and fenB were detected in LM-1. Furthermore, the supernatant of LM-1 interfered with the appressorium formation of M. oryzae, blocked conidial cell death, and reduced autophagy degradation but did not affect the normal germination of rice seeds and seeding growth. Additionally, we observed hypersensitivity reactions, reactive oxygen species, and iron accumulation reduction in rice cells inoculated with supernatant. Our study reveals that LM-1 has a control effect on rice blast and affects cell wall integrity, sporulation, appressorium formation, cell death, and autophagy.
Collapse
Affiliation(s)
- Meiling Liang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Aiqing Feng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Congying Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Xiaoyuan Zhu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Jing Su
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Zihan Xu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China;
| | - Jianyuan Yang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Wenjuan Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Kailing Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Bing Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Xiaopeng Lin
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Jinqi Feng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| | - Shen Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.L.); (A.F.); (C.W.); (X.Z.); (J.S.); (J.Y.); (W.W.); (K.C.); (B.C.); (X.L.); (J.F.)
| |
Collapse
|
5
|
Khamsuk K, Dell B, Pathom-aree W, Pathaichindachote W, Suphrom N, Nakaew N, Jumpathong J. Screening Plant Growth-Promoting Bacteria with Antimicrobial Properties for Upland Rice. J Microbiol Biotechnol 2024; 34:1029-1039. [PMID: 38563101 PMCID: PMC11180919 DOI: 10.4014/jmb.2402.02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
This study explores beneficial bacteria isolated from the roots and rhizosphere soil of Khao Rai Leum Pua Phetchabun rice plants. A total of 315 bacterial isolates (KK001 to KK315) were obtained. Plant growth-promoting traits (phosphate solubilization and indole-3-acetic acid (IAA) production), and antimicrobial activity against three rice pathogens (Curvularia lunata NUF001, Bipolaris oryzae 2464, and Xanthomonas oryzae pv. oryzae) were assessed. KK074 was the most prolific in IAA production, generating 362.6 ± 28.0 μg/ml, and KK007 excelled in tricalcium phosphate solubilization, achieving 714.2 ± 12.1 μg/ml. In antimicrobial assays using the dual culture method, KK024 and KK281 exhibited strong inhibitory activity against C. lunata, and KK269 was particularly effective against B. oryzae. In the evaluation of antimicrobial metabolite production, KK281 and KK288 exhibited strong antifungal activities in cell-free supernatants. Given the superior performance of KK281, taxonomically identified as Bacillus sp. KK281, it was investigated further. Lipopeptide extracts from KK281 had significant antimicrobial activity against C. lunata and a minimum inhibitory concentration (MIC) of 3.1 mg/ml against X. oryzae pv. oryzae. LC-ESI-MS/MS analysis revealed the presence of surfactin in the lipopeptide extract. The crude extract was non-cytotoxic to the L-929 cell line at tested concentrations. In conclusion, the in vitro plant growth-promoting and disease-controlling attributes of Bacillus sp. KK281 make it a strong candidate for field evaluation to boost plant growth and manage disease in upland rice.
Collapse
Affiliation(s)
- Khammool Khamsuk
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Bernard Dell
- Centre for Crop and Food Innovation, Murdoch University, 90 South St., Murdoch WA, 6150 Australia
| | - Wasu Pathom-aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wanwarang Pathaichindachote
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Nungruthai Suphrom
- Center of Excellence in Biomaterials, Naresuan University, Phitsanulok 65000, Thailand
- Department of Chemistry, Faculty of Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Nareeluk Nakaew
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence in Fungal Research, Naresuan University, Phitsanulok 65000, Thailand
| | - Juangjun Jumpathong
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence in Fungal Research, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
6
|
Hussain S, Tai B, Ali M, Jahan I, Sakina S, Wang G, Zhang X, Yin Y, Xing F. Antifungal potential of lipopeptides produced by the Bacillus siamensis Sh420 strain against Fusarium graminearum. Microbiol Spectr 2024; 12:e0400823. [PMID: 38451229 PMCID: PMC10986469 DOI: 10.1128/spectrum.04008-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
Biological control is a more sustainable and environmentally friendly alternative to chemical fungicides for controlling Fusarium spp. infestations. In this work, Bacillus siamensis Sh420 isolated from wheat rhizosphere showed a high antifungal activity against Fusarium graminearum as a secure substitute for fungicides. Sh420 was identified as B. siamensis using phenotypic evaluation and 16S rDNA gene sequence analysis. An in vitro antagonistic study showed that Sh420's lipopeptide (LP) extract exhibited strong antifungal properties and effectively combated F. graminearum. Meanwhile, lipopeptides have the ability to decrease ergosterol content, which has an impact on the overall structure and stability of the plasma membrane. The PCR-based screening revealed the presence of antifungal LP biosynthetic genes in this strain's genomic DNA. In the crude LP extract of Sh420, we were able to discover several LPs such as bacillomycin, iturins, fengycin, and surfactins using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Microscopic investigations (fluorescent/transmission electron microscopy) revealed deformities and alterations in the morphology of the phytopathogen upon interaction with LPs. Sh420 LPs have been shown in grape tests to be effective against F. graminearum infection and to stimulate antioxidant activity in fruits by avoiding rust and gray lesions. The overall findings of this study highlight the potential of Sh420 lipopeptides as an effective biological control agent against F. graminearum infestations.IMPORTANCEThis study addresses the potential of lipopeptide (LP) extracts obtained from the strain identified as Bacillus siamensis Sh420. This Sh420 isolate acts as a crucial player in providing a sustainable and environmentally friendly alternative to chemical fungicides for suppressing Fusarium graminearum phytopathogen. Moreover, these LPs can reduce ergosterol content in the phytopathogen influencing the overall structure and stability of its plasma membrane. PCR screening provided confirmation regarding the existence of genes responsible for biosynthesizing antifungal LPs in the genomic DNA of Sh420. Several antibiotic lipopeptide compounds were identified from this bacterial crude extract using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Microscopic investigations revealed deformities and alterations in the morphology of F. graminearum upon interaction with LPs. Furthermore, studies on fruit demonstrated the efficacy of Sh420 LPs in mitigating F. graminearum infection and stimulating antioxidant activity in fruits, preventing rust and gray lesions.
Collapse
Affiliation(s)
- Sarfaraz Hussain
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Bowen Tai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maratab Ali
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Israt Jahan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suha Sakina
- Department of Agriculture and Food Technology, Karakoram International University, Gilgit-Baltistan, Pakistan
| | - Gang Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinlong Zhang
- Shandong Xinfurui Agriculture Science Co., Ltd, Liaocheng, Shandong, China
| | - Yixuan Yin
- Shandong Xinfurui Agriculture Science Co., Ltd, Liaocheng, Shandong, China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Ashajyothi M, Mahadevakumar S, Venkatesh YN, Sarma PVSRN, Danteswari C, Balamurugan A, Prakash G, Khandelwal V, Tarasatyavathi C, Podile AR, Mysore KS, Chandranayaka S. Comprehensive genomic analysis of Bacillus subtilis and Bacillus paralicheniformis associated with the pearl millet panicle reveals their antimicrobial potential against important plant pathogens. BMC PLANT BIOLOGY 2024; 24:197. [PMID: 38500040 PMCID: PMC10946124 DOI: 10.1186/s12870-024-04881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Plant microbiome confers versatile functional roles to enhance survival fitness as well as productivity. In the present study two pearl millet panicle microbiome member species Bacillus subtilis PBs 12 and Bacillus paralicheniformis PBl 36 found to have beneficial traits including plant growth promotion and broad-spectrum antifungal activity towards taxonomically diverse plant pathogens. Understanding the genomes will assist in devising a bioformulation for crop protection while exploiting their beneficial functional roles. RESULTS Two potential firmicute species were isolated from pearl millet panicles. Morphological, biochemical, and molecular characterization revealed their identities as Bacillus subtilis PBs 12 and Bacillus paralicheniformis PBl 36. The seed priming assays revealed the ability of both species to enhance plant growth promotion and seedling vigour index. Invitro assays with PBs 12 and PBl 36 showed the antibiosis effect against taxonomically diverse plant pathogens (Magnaporthe grisea; Sclerotium rolfsii; Fusarium solani; Alternaria alternata; Ganoderma sp.) of crops and multipurpose tree species. The whole genome sequence analysis was performed to unveil the genetic potential of these bacteria for plant protection. The complete genomes of PBs 12 and PBl 36 consist of a single circular chromosome with a size of 4.02 and 4.33 Mb and 4,171 and 4,606 genes, with a G + C content of 43.68 and 45.83%, respectively. Comparative Average Nucleotide Identity (ANI) analysis revealed a close similarity of PBs 12 and PBl 36 with other beneficial strains of B. subtilis and B. paralicheniformis and found distant from B. altitudinis, B. amyloliquefaciens, and B. thuringiensis. Functional annotation revealed a majority of pathway classes of PBs 12 (30) and PBl 36 (29) involved in the biosynthesis of secondary metabolites, polyketides, and non-ribosomal peptides, followed by xenobiotic biodegradation and metabolism (21). Furthermore, 14 genomic regions of PBs 12 and 15 of PBl 36 associated with the synthesis of RiPP (Ribosomally synthesized and post-translationally modified peptides), terpenes, cyclic dipeptides (CDPs), type III polyketide synthases (T3PKSs), sactipeptides, lanthipeptides, siderophores, NRPS (Non-Ribosomal Peptide Synthetase), NRP-metallophone, etc. It was discovered that these areas contain between 25,458 and 33,000 secondary metabolite-coding MiBiG clusters which code for a wide range of products, such as antibiotics. The PCR-based screening for the presence of antimicrobial peptide (cyclic lipopeptide) genes in PBs 12 and 36 confirmed their broad-spectrum antifungal potential with the presence of spoVG, bacA, and srfAA AMP genes, which encode antimicrobial compounds such as subtilin, bacylisin, and surfactin. CONCLUSION The combined in vitro studies and genome analysis highlighted the antifungal potential of pearl millet panicle-associated Bacillus subtilis PBs12 and Bacillus paralicheniformis PBl36. The genetic ability to synthesize several antimicrobial compounds indicated the industrial value of PBs 12 and PBl 36, which shed light on further studies to establish their action as a biostimulant for crop protection.
Collapse
Affiliation(s)
- Mushineni Ashajyothi
- Plant Protection Lab, ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Shivannegowda Mahadevakumar
- Botanical Survey of India, Andaman and Nicobar Regional Centre, Haddo, Port Blair, Andaman and Nicobar Islands, 744102, India
| | - Y N Venkatesh
- Plant Protection Lab, ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Pullabhotla V S R N Sarma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Chalasani Danteswari
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | | | - Ganesan Prakash
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vikas Khandelwal
- All India Coordinated Research Project On Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342304, India
| | - C Tarasatyavathi
- All India Coordinated Research Project On Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342304, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Kirankumar S Mysore
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Siddaiah Chandranayaka
- Department of Studies in Biotechnology, University of Mysore, Mysore, Karnataka, 570 006, India.
| |
Collapse
|
8
|
Sani A, Qin WQ, Li JY, Liu YF, Zhou L, Yang SZ, Mu BZ. Structural diversity and applications of lipopeptide biosurfactants as biocontrol agents against phytopathogens: A review. Microbiol Res 2024; 278:127518. [PMID: 37897841 DOI: 10.1016/j.micres.2023.127518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023]
Abstract
Amphipathic compounds known as biosurfactants are able to reduce surface and interfacial tensions. These substances produced by microbial organisms perform the same functions as chemical surfactants with several enhancements, the most significant of which is biocontrol activity. Lipopeptide is one of the five biosurfactants from natural resources and is identified as the best alternative for chemical surfactants and the major topic of interest for both scientific and industrial communities due to their increasingly growing potential applications in biological and commercial fields. These are the biological compounds with very less toxicity level that increase their importance in the pesticide industry. In this article we summarize the structural diversity of the microbial lipopeptide biosurfactants and focus on their applications as biocontrol agents in plants, covering (1) an intensive study of the structural diversity of lipopeptide biosurfactants originated primarily by the Bacillus, Pseudomonas, Cyanobacteria, and Actinomycetes species is presented, (2) the comparative study of advantages and disadvantages of characterization techniques and physicochemical properties which have a major role in biocontrol activity of microbial lipopeptides, and (3) their wide range biocontrol applications as systemic resistance inducers against different plant diseases, resistance against phytopathogens by alteration of wettability of plant surfaces and antimicrobial activities of important bioactive lipopeptides produced from Bacillus strains.
Collapse
Affiliation(s)
- Asma Sani
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Wan-Qi Qin
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jia-Yi Li
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center for Microbial Enhanced Oil Recovery, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
9
|
Masmoudi F, Pothuvattil NS, Tounsi S, Saadaoui I, Trigui M. Synthesis of silver nanoparticles using Bacillus velezensis M3-7 lipopeptides: Enhanced antifungal activity and potential use as a biocontrol agent against Fusarium crown rot disease of wheat seedlings. Int J Food Microbiol 2023; 407:110420. [PMID: 37783113 DOI: 10.1016/j.ijfoodmicro.2023.110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Bacillus velezensis M3-7 is a hyperactive mutant, 12-fold improved in its antifungal activity, obtained during a previous study from the wild strain BLB371 after a combination of random mutagenesis and medium component optimization. This study explores the use of this mutant in synthesizing silver nanoparticles (Ag-NPs) for the control of Fusarium crown rot disease (FCR) in wheat seedlings. LC-MS/MS analysis proved that both strains co-produced different families of lipopeptides and that mutagenesis caused the hyper-production of iturin A C14 and C15, the liberation of iturin A C10 and C12, and the inhibition of fengycin release. Our aim was a further improvement in the antifungal activity of the wild strain and the mutant M3-7 in order to control Fusarium crown rot disease (FCR) in wheat seedlings. Therefore, a nanotechnology approach was adopted, and different lipopeptide concentrations produced by the wild strain and the mutant M3-7 were used as capping agents to synthesize silver nanoparticles (Ag-NPs) with enhanced antifungal activity. Ag-NPs formed using 3 mg·mL-1 of the mutant lipopeptides were found to exhibit a good distribution, improved antifungal activity, a promising potential to be used as a biofortified agent for seed germination, and an effective compound to control FCR in wheat seedlings.
Collapse
Affiliation(s)
- Fatma Masmoudi
- Biotechnology Program, Center of Sustainable Development, College of Art and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | | | - Slim Tounsi
- Laboratory of Biopesticides (LBPES), Center of Biotechnology of Sfax, Sfax University, Sfax, Tunisia
| | - Imen Saadaoui
- Biotechnology Program, Center of Sustainable Development, College of Art and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biological and Environmental Sciences, College of Art and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohamed Trigui
- Laboratory of Environmental Sciences and Sustainable Development (LASED) Sfax Preparatory Engineering Institute, BP 1172-3018, University of Sfax, Tunisia
| |
Collapse
|
10
|
Medeot D, Sannazzaro A, Estrella MJ, Torres Tejerizo G, Contreras-Moreira B, Pistorio M, Jofré E. Unraveling the genome of Bacillus velezensis MEP 218, a strain producing fengycin homologs with broad antibacterial activity: comprehensive comparative genome analysis. Sci Rep 2023; 13:22168. [PMID: 38092837 PMCID: PMC10719345 DOI: 10.1038/s41598-023-49194-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Bacillus sp. MEP218, a soil bacterium with high potential as a source of bioactive molecules, produces mostly C16-C17 fengycin and other cyclic lipopeptides (CLP) when growing under previously optimized culture conditions. This work addressed the elucidation of the genome sequence of MEP218 and its taxonomic classification. The genome comprises 3,944,892 bp, with a total of 3474 coding sequences and a G + C content of 46.59%. Our phylogenetic analysis to determine the taxonomic position demonstrated that the assignment of the MEP218 strain to Bacillus velezensis species provides insights into its evolutionary context and potential functional attributes. The in silico genome analysis revealed eleven gene clusters involved in the synthesis of secondary metabolites, including non-ribosomal CLP (fengycins and surfactin), polyketides, terpenes, and bacteriocins. Furthermore, genes encoding phytase, involved in the release of phytic phosphate for plant and animal nutrition, or other enzymes such as cellulase, xylanase, and alpha 1-4 glucanase were detected. In vitro antagonistic assays against Salmonella typhimurium, Acinetobacter baumanii, Escherichia coli, among others, demonstrated a broad spectrum of C16-C17 fengycin produced by MEP218. MEP218 genome sequence analysis expanded our understanding of the diversity and genetic relationships within the Bacillus genus and updated the Bacillus databases with its unique trait to produce antibacterial fengycins and its potential as a resource of biotechnologically useful enzymes.
Collapse
Affiliation(s)
- Daniela Medeot
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CCT-CONICET-Córdoba, Universidad Nacional de Río Cuarto, 5800, Córdoba, Argentina
| | - Analía Sannazzaro
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín (UNSAM), 7130, Chascomús, Argentina
| | - María Julia Estrella
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín (UNSAM), 7130, Chascomús, Argentina
| | - Gonzalo Torres Tejerizo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | | | - Mariano Pistorio
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - Edgardo Jofré
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CCT-CONICET-Córdoba, Universidad Nacional de Río Cuarto, 5800, Córdoba, Argentina.
| |
Collapse
|
11
|
Xia L, Wen J. Available strategies for improving the biosynthesis of surfactin: a review. Crit Rev Biotechnol 2023; 43:1111-1128. [PMID: 36001039 DOI: 10.1080/07388551.2022.2095252] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
Surfactin is an excellent biosurfactant with a wide range of application prospects in many industrial fields. However, its low productivity and high cost have largely limited its commercial applications. In this review, the pathways for surfactin synthesis in Bacillus strains are summarized and discussed. Further, the latest strategies for improving surfactin production, including: medium optimization, genome engineering methods (rational genetic engineering, genome reduction, and genome shuffling), heterologous synthesis, and the use of synthetic biology combined with metabolic engineering approaches to construct high-quality artificial cells for surfactin production using xylose, are described. Finally, the prospects for improving surfactin synthesis are discussed in detail.
Collapse
Affiliation(s)
- Li Xia
- Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
- National Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, People's Republic of China
- Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
- National Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, People's Republic of China
- Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
12
|
Fei YC, Cheng Q, Zhang H, Han C, Wang X, Li YF, Li SQ, Zhao XH. Maleic acid and malonic acid reduced the pathogenicity of Sclerotinia sclerotiorum by inhibiting mycelial growth, sclerotia formation and virulence factors. STRESS BIOLOGY 2023; 3:45. [PMID: 37955738 PMCID: PMC10643788 DOI: 10.1007/s44154-023-00122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/07/2023] [Indexed: 11/14/2023]
Abstract
Sclerotinia sclerotiorum is a necrotrophic plant pathogenic fungus with broad distribution and host range. Bioactive compounds derived from plant extracts have been proven to be effective in controlling S. sclerotiorum. In this study, the mycelial growth of S. sclerotiorum was effectively inhibited by maleic acid, malonic acid, and their combination at a concentration of 2 mg/mL, with respective inhibition rates of 32.5%, 9.98%, and 67.6%. The treatment of detached leaves with the two acids resulted in a decrease in lesion diameters. Interestingly, maleic acid and malonic acid decreased the number of sclerotia while simultaneously increasing their weight. The two acids also disrupted the cell structure of sclerotia, leading to sheet-like electron-thin regions. On a molecular level, maleic acid reduced oxalic acid secretion, upregulated the expression of Ss-Odc2 and downregulated CWDE10, Ss-Bi1 and Ss-Ggt1. Differently, malonic acid downregulated CWDE2 and Ss-Odc1. These findings verified that maleic acid and malonic acid could effectively inhibit S. sclerotiorum, providing promising evidence for the development of an environmentally friendly biocontrol agent.
Collapse
Affiliation(s)
- Yu-Chen Fei
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fuqing, 350300, China
| | - Qin Cheng
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Zhang
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuang Han
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yan-Feng Li
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shi-Qian Li
- Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fuqing, 350300, China.
| | - Xiao-Hu Zhao
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Chen E, Chao S, Shi B, Liu L, Chen M, Zheng Y, Feng X, Wu H. Bacillus velezensis ZN-S10 Reforms the Rhizosphere Microbial Community and Enhances Tomato Resistance to TPN. PLANTS (BASEL, SWITZERLAND) 2023; 12:3636. [PMID: 37896099 PMCID: PMC10609795 DOI: 10.3390/plants12203636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Tomato pith necrosis (TPN) is a highly destructive disease caused by species of the Pseudomonas genus and other bacteria, resulting in a significant reduction in tomato yield. Members of the genus Bacillus are beneficial microorganisms extensively studied in the rhizosphere. However, in most cases, the potential of Bacillus members in controlling TPN and their impact on the rhizosphere microbial composition remain rarely studied. In this study, Bacillus velezensis ZN-S10 significantly inhibited the growth of Pseudomonas viridiflava ZJUP0398-2, and ZN-S10 controlled TPN with control efficacies of 60.31%. P. viridiflava ZJUP0398-2 significantly altered the richness and diversity of the tomato rhizobacterial community, but pre-inoculation with ZN-S10 mitigated these changes. The correlation analysis revealed that ZN-S10 maybe inhibits the growth of nitrogen-fixing bacteria and recruits beneficial bacterial communities associated with disease resistance, thereby suppressing the occurrence of diseases. In summary, the comparative analysis of the rhizosphere microbiome was conducted to explore the impact of ZN-S10 on the composition of rhizosphere microorganisms in the presence of pathogenic bacteria, aiming to provide insights for further research and the development of scientific and eco-friendly control strategies for this disease.
Collapse
Affiliation(s)
- Enlei Chen
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 310058, China
| | - Shufen Chao
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 310058, China
| | - Bin Shi
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 310058, China
| | - Lu Liu
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 310058, China
| | - Mengli Chen
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 310058, China
| | - Yongli Zheng
- Zhejiang Agricultural Products Green Development Center, Hangzhou 310003, China
| | - Xiaoxiao Feng
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Huiming Wu
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 310058, China
| |
Collapse
|
14
|
Liu JM, Liang YT, Wang SS, Jin N, Sun J, Lu C, Sun YF, Li SY, Fan B, Wang FZ. Antimicrobial activity and comparative metabolomic analysis of Priestia megaterium strains derived from potato and dendrobium. Sci Rep 2023; 13:5272. [PMID: 37002283 PMCID: PMC10066289 DOI: 10.1038/s41598-023-32337-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The growth of endophytic bacteria is influenced by the host plants and their secondary metabolites and activities. In this study, P. megaterium P-NA14 and P. megaterium D-HT207 were isolated from potato tuber and dendrobium stem respectively. They were both identified as Priestia megaterium. The antimicrobial activities and metabolites of both strains were explored. For antimicrobial activities, results showed that P. megaterium P-NA14 exhibited a stronger inhibition effect on the pathogen of dendrobium, while P. megaterium D-HT207 exhibited a stronger inhibition effect on the pathogen of potato. The supernatant of P. megaterium P-NA14 showed an inhibition effect only on Staphylococcus aureus, while the sediment of P. megaterium D-HT207 showed an inhibition effect only on Escherichia coli. For metabolomic analysis, the content of L-phenylalanine in P. megaterium P-NA14 was higher than that of P. megaterium D-HT207, and several key downstream metabolites of L-phenylalanine were associated with inhibition of S. aureus including tyrosine, capsaicin, etc. Therefore, we speculated that the different antimicrobial activities between P. megaterium P-NA14 and P. megaterium D-HT207 were possibly related to the content of L-phenylalanine and its metabolites. This study preliminarily explored why the same strains isolated from different hosts exhibit different activities from the perspective of metabolomics.
Collapse
Affiliation(s)
- Jia-Meng Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan-Tian Liang
- College of Pharmacy, Hunan University of Traditional Chinese Medicine, Hunan, China
| | - Shan-Shan Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nuo Jin
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Sun
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cong Lu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu-Feng Sun
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Ying Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Feng-Zhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
15
|
Suppression of Fusarium Wilt in Watermelon by Bacillus amyloliquefaciens DHA55 through Extracellular Production of Antifungal Lipopeptides. J Fungi (Basel) 2023; 9:jof9030336. [PMID: 36983504 PMCID: PMC10053319 DOI: 10.3390/jof9030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. niveum is one of the most devastating fungal diseases affecting watermelon (Citrullus lanatus L.). The present study aimed to identify potent antagonistic bacterial strains with substantial antifungal activity against F. oxysporum f. sp. niveum and to explore their potential for biocontrol of Fusarium wilt in watermelon. Out of 77 isolates from watermelon rhizosphere, six bacterial strains—namely, DHA4, DHA6, DHA10, DHA12, DHA41, and DHA55—exhibited significant antifungal activity against F. oxysporum f. sp. niveum, as well as other phytopathogenic fungi, including Didymella bryoniae, Sclerotinia sclerotiorum, Fusarium graminearum, and Rhizoctonia solani. These Gram-positive, rod-shaped, antagonistic bacterial strains were able to produce exo-enzymes (e.g., catalase, protease, and cellulase), siderophore, and indole-3-acetic acid and had the ability to solubilize phosphate. In greenhouse experiments, these antagonistic bacterial strains not only promoted plant growth but also suppressed Fusarium wilt in watermelon. Among these strains, DHA55 was the most effective, achieving the highest disease suppression of 74.9%. Strain DHA55 was identified as Bacillus amyloliquefaciens based on physiological, biochemical, and molecular characterization. B. amyloliquefaciens DHA55 produced various antifungal lipopeptides, including iturin, surfactin, and fengycin, that showed significant antifungal activities against F. oxysporum f. sp. niveum. Microscopic observations revealed that B. amyloliquefaciens DHA55 exhibited an inhibitory effect against F. oxysporum f. sp. niveum on the root surface of watermelon plants. These results demonstrate that B. amyloliquefaciens DHA55 can effectively promote plant growth and suppress the development of watermelon Fusarium wilt, providing a promising agent for the biocontrol of Fusarium wilt in watermelon.
Collapse
|
16
|
Supronienė S, Kadžienė G, Shamshitov A, Veršulienė A, Šneideris D, Ivanauskas A, Žvirdauskienė R. Soil Fungistasis against Fusarium Graminearum under Different tillage Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:966. [PMID: 36840316 PMCID: PMC9961288 DOI: 10.3390/plants12040966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The establishment of the harmful pathogen Fusarium graminearum in different agroecosystems may strongly depend on the ability of the soils to suppress its development and survival. This study aimed to evaluate the influence of different soil tillage systems (i.e., conventional tillage, reduced tillage and no-tillage) on soil fungistasis against F. graminearum. Soil samples were collected three times during the plant growing season in 2016 and 2017 from a long-term, 20-year soil tillage experiment. The F. graminearum in the soil samples was quantified by real-time qPCR. The soil fungistasis was evaluated by the reduction in the radial growth of F. graminearum in an in vitro assay. The antagonistic activity of the soil bacteria was tested using the dual culture method. The F. graminearum DNA contents in the soils were negatively correlated with soil fungistasis (r = -0.649 *). F. graminearum growth on the unfumigated soil was reduced by 70-87% compared to the chloroform fumigated soil. After the plant vegetation renewal, the soil fungistasis intensity was higher in the conventionally tilled fields than in the no-tillage. However, no significant differences were obtained among the tillage treatments at the mid-plant growth stage and after harvesting. 23 out of 104 bacteria isolated from the soil had a moderate effect, and only 1 had a strong inhibitory effect on the growth of F. graminearum. This bacterium was assigned 100% similarity to the Bacillus amyloliquefaciens Hy7 strain (gene bank no: JN382250) according to the sequence of the 16S ribosome subunit coding gene. The results of our study suggest that the presence of F. graminearum in soil is suppressed by soil fungistasis; however, the role of tillage is influenced by other factors, such as soil biological activity, type and quantity of plant residues and environmental conditions.
Collapse
Affiliation(s)
- Skaidrė Supronienė
- Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT−58344 Kedainiai Distr., Lithuania
| | - Gražina Kadžienė
- Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT−58344 Kedainiai Distr., Lithuania
| | - Arman Shamshitov
- Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT−58344 Kedainiai Distr., Lithuania
| | - Agnė Veršulienė
- Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT−58344 Kedainiai Distr., Lithuania
| | - Donatas Šneideris
- Nature Research Centre, Akademijos str. 2, LT−608412 Vilnius, Lithuania
| | | | - Renata Žvirdauskienė
- Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT−58344 Kedainiai Distr., Lithuania
| |
Collapse
|
17
|
Bartal A, Huynh T, Kecskeméti A, Vörös M, Kedves O, Allaga H, Varga M, Kredics L, Vágvölgyi C, Szekeres A. Identifications of Surfactin-Type Biosurfactants Produced by Bacillus Species Isolated from Rhizosphere of Vegetables. Molecules 2023; 28:molecules28031172. [PMID: 36770839 PMCID: PMC9919572 DOI: 10.3390/molecules28031172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Surfactins are cyclic lipopeptides consisting of a β-hydroxy fatty acid of variable chain length and a peptide ring of seven amino acids linked together by a lactone bridge, forming the cyclic structure of the peptide chain. These compounds are produced mainly by Bacillus species and are well regarded for their antibacterial, antifungal, and antiviral activities. For their surfactin production profiling, several Bacillus strains isolated from vegetable rhizospheres were identified by their fatty acid methyl ester profiles and were tested against phytopathogen bacteria and fungi. The isolates showed significant inhibition against of E. amylovora, X. campestris, B. cinerea, and F. culmorum and caused moderate effects on P. syringae, E. carotovora, A. tumefaciens, F. graminearum, F. solani, and C. gloeosporioides. Then, an HPLC-HESI-MS/MS method was applied to simultaneously carry out the quantitative and in-depth qualitative characterisations on the extracted ferment broths. More than half of the examined Bacillus strains produced surfactin, and the MS/MS spectra analyses of their sodiated precursor ions revealed a total of 29 surfactin variants and homologues, some of them with an extremely large number of peaks with different retention times, suggesting a large number of variations in the branching of their fatty acid chains.
Collapse
Affiliation(s)
- Attila Bartal
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Thu Huynh
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
- Department of Biotechnology, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 72607, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 71351, Vietnam
| | - Anita Kecskeméti
- Department of Biotechnology, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 72607, Vietnam
| | - Mónika Vörös
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Orsolya Kedves
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Henrietta Allaga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Mónika Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-544516
| |
Collapse
|
18
|
Sinha T, Malakar C, Talukdar NC. Mustard seed–associated endophytes suppress Sclerotinia sclerotiorum causing Sclerotinia rot in mustard crop. Int Microbiol 2022:10.1007/s10123-022-00314-0. [PMID: 36542232 DOI: 10.1007/s10123-022-00314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Mustard-rapeseed cultivation is affected by Sclerotinia sclerotiorum resulting in loss of oil yield and degradation of crop quality. This study adopted an environment friendly biocontrol approach of screening mustard endophytes against the pathogen. Two bacterial isolates, Bacillus safensis (TS46 bac4) and Bacillus australimaris (SM2) showed potential biocontrol activity under both in vitro and in vivo conditions. Dual culture assay reported 90% inhibition of fungal growth. The bacterial cell free supernatant of isolate SM2 showed 52.89% inhibition and the other isolate TS46 bac4 showed 57.97% inhibition. The crude (10 mg/ml) and purified (10 mg/ml) metabolite extract of SM2 showed 100% and 97% inhibition respectively. Both crude (10 mg/ml) and purified (7.5 mg/ml) metabolite extract of TS46 bac4 exhibited 99% inhibition of the pathogen. Antifungal lipopeptides: surfactin, iturin and fengycin were identified in bacterial metabolite extract of the isolates. Both strains promoted healthy germination and prevented the formation of any disease symptoms in seedling. The selected Bacillus strains applied by spray method showed better results against fungal infection on mustard leaf and stem. Microscopic studies revealed degradation of fungal mycelial growth by both isolates. These findings support the employment of the bacterial strains as potential biocontrol agents to reduce the effects of S. sclerotiorum in mustard-rapeseed.
Collapse
|
19
|
Li Q, Hou Z, Zhou D, Jia M, Lu S, Yu J. Antifungal Activity and Possible Mechanism of Bacillus amyloliquefaciens FX2 Against the Postharvest Apple Ring Rot Pathogen. PHYTOPATHOLOGY 2022; 112:2486-2494. [PMID: 35793153 DOI: 10.1094/phyto-02-22-0047-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Botryosphaeria dothidea-induced apple ring rot is one of the most serious postharvest diseases in apple production. In our preliminary work, we isolated a bacterial strain (FX2) from an infested apple orchard. Here, we confirmed the strong antifungal activity of FX2 on B. dothidea. Through phylogenetic analysis and morphological observations, we identified FX2 as a Bacillus amyloliquefaciens strain. We also found that 10% cell-free supernatant (CFS) of FX2 significantly affected mycelial growth and morphology and almost completely inhibited spore germination and germ tube elongation in B. dothidea. Furthermore, 10% CFS damaged the cell ultrastructure, resulting in a remarkable increase in cellular leakage in B. dothidea mycelia. Thus, CFS has the potential to effectively reduce in vivo B. dothidea infection, reduced lesion diameters to 64.7% compared with the control group, and reduced disease incidence by 15%. Finally, ultrafiltration, desalting chromatography, and anion exchange chromatography showed that the antifungal constituents in CFS are composed mainly of antifungal proteins. We further characterized these potential antifungal proteins via liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Herein, we provide novel insights into the antifungal mechanisms of B. amyloliquefaciens FX2, and we highlight its potential as a novel biocontrol agent for controlling postharvest apple ring rot.
Collapse
Affiliation(s)
- Qi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Zhaoqi Hou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Dongqin Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Mingyun Jia
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Shipeng Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jinping Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
20
|
Kang BR, Park JS, Ryu GR, Jung WJ, Choi JS, Shin HM. Effect of Chitosan Coating for Efficient Encapsulation and Improved Stability under Loading Preparation and Storage Conditions of Bacillus Lipopeptides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4189. [PMID: 36500812 PMCID: PMC9737214 DOI: 10.3390/nano12234189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
This study aims to evaluate the effect of chitosan coating on the formation and properties of Bacillus cyclic lipopeptide (CLP)-loaded liposomes. A nanoencapsulation strategy for a chitosan-coated liposomal system using lecithin phospholipids for the entrapment of antibiotic CLP prepared from Bacillus subtilis KB21 was developed. The produced chitosan-coated CLP liposome had mean size in the range of 118.47-121.67 nm. Transmission electron microscopy showed the spherical-shaped vesicles. Fourier transform infrared spectroscopy findings indicated the successful coating of the produced CLP-loaded liposomes by the used chitosan. Liposomes coated with 0.2% and 0.5% chitosan concentration decreased the surface tension by 7.3-12.1%, respectively, and increased the CLP content by 15.1-27.0%, respectively, compared to the uncoating liposomes. The coated concentration of chitosan influenced their CLP loading encapsulation efficiency and release kinetics. The physicochemical results of the dynamic light scattering, CLP capture efficiency and long-term storage capacity of nanocapsules increased with chitosan coating concentration. Furthermore, the chitosan-coated liposomes exhibited a significant enhancement in the stability of CLP loading liposomes. These results may suggest the potential application of chitosan-coated liposomes as a carrier of antibiotics in the development of the functional platform.
Collapse
Affiliation(s)
- Beom Ryong Kang
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joon Seong Park
- Gwangju Metropolitan City Agricultural Extension Center, Gwangju Metropolitan City 61945, Republic of Korea
| | - Gwang Rok Ryu
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Woo-Jin Jung
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jun-Seok Choi
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hye-Min Shin
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
21
|
Botcazon C, Bergia T, Lecouturier D, Dupuis C, Rochex A, Acket S, Nicot P, Leclère V, Sarazin C, Rippa S. Rhamnolipids and fengycins, very promising amphiphilic antifungal compounds from bacteria secretomes, act on Sclerotiniaceae fungi through different mechanisms. Front Microbiol 2022; 13:977633. [PMID: 36246282 PMCID: PMC9557291 DOI: 10.3389/fmicb.2022.977633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Rhamnolipids (RLs) and fengycins (FGs) are amphiphilic lipid compounds from bacteria secretomes proposed to replace synthetic pesticides for crop protection. They both display plant defense triggering properties and direct antimicrobial activities. In particular, they have well reported antifungal effects against phytopathogenic fungi. RLs and FGs are considered to act through a direct interaction with membrane lipids and a destabilization of microorganism plasma membrane, thereby limiting the risk of resistance emergence. The main objective of this work was to gain insights in the antimycelial mode of action of these metabolites to promote them as environment and human health friendly biocontrol solutions. Their biocidal effects were studied on two Sclerotiniaceae fungi responsible for diseases in numerous plant species worldwide. We show here that different strains of Botrytis cinerea and Sclerotinia sclerotiorum have opposite sensitivities to RLs and FGs on plate experiments. Overall, B. cinerea is more sensitive to FGs while S. sclerotiorum is more sensitive to RLs. Electron microscopy observations demonstrated that RLs induce mycelial destructuring by asperities emergence and hyphal fusions whereas FGs promote swelling and formation of vesicle-like structures due to vacuole fusions and autophagy. Permeability studies, phosphatidylserine externalization and reactive oxygen species production assessments showed a programmed cell death triggering by RLs at medium concentrations (until 50 μg mL−1) and necrosis characteristics at higher concentration. Programmed cell death was always observed on hyphae treated with FGs. Quantifications of mycelial ergosterol content indicated that a higher ergosterol rate in S. sclerotiorum correlates with increasing sensitivity to RLs. Oppositely, a lower ergosterol rate in B. cinerea correlates with increasing sensitivity to FGs, which was confirmed by ergosterol biosynthesis inhibition with tebuconazole. This gain of knowledge will help to better understand the mode of action of RLs and FGs to fight specific plant fungal diseases.
Collapse
Affiliation(s)
- Camille Botcazon
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne, France
| | - Thomas Bergia
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne, France
| | - Didier Lecouturier
- Charles Viollette Institute, UMRt BioEcoAgro 1158-INRAe, Métabolites Secondaires d’Origine Microbienne, Université de Lille, Université de Liège, Lille, France
| | - Chloé Dupuis
- Charles Viollette Institute, UMRt BioEcoAgro 1158-INRAe, Métabolites Secondaires d’Origine Microbienne, Université de Lille, Université de Liège, Lille, France
| | - Alice Rochex
- Charles Viollette Institute, UMRt BioEcoAgro 1158-INRAe, Métabolites Secondaires d’Origine Microbienne, Université de Lille, Université de Liège, Lille, France
| | - Sébastien Acket
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne, France
| | - Philippe Nicot
- Centre de Recherche PACA, Domaine Saint Maurice, Unité de Pathologie Végétale, INRAe, Avignon, France
| | - Valérie Leclère
- Charles Viollette Institute, UMRt BioEcoAgro 1158-INRAe, Métabolites Secondaires d’Origine Microbienne, Université de Lille, Université de Liège, Lille, France
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Université de Picardie Jules Verne, Amiens, France
| | - Sonia Rippa
- Unité de Génie Enzymatique et Cellulaire, CNRS UMR 7025, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne, France
- *Correspondence: Sonia Rippa,
| |
Collapse
|
22
|
Mahdi I, Allaoui A, Fahsi N, Biskri L. Bacillus velezensis QA2 Potentially Induced Salt Stress Tolerance and Enhanced Phosphate Uptake in Quinoa Plants. Microorganisms 2022; 10:microorganisms10091836. [PMID: 36144437 PMCID: PMC9505587 DOI: 10.3390/microorganisms10091836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Plant Growth-Promoting Rhizobacteria (PGPR) have attracted much attention in agriculture biotechnology as biological inputs to sustain crop production. The present study describes a halotolerant phosphate solubilizing bacterium associated with quinoa plant roots. Based on a metabolic screening, one bacterial isolate, named QA2, was selected and screened for PGPR traits. This isolate solubilized both inorganic phosphate and zinc, produced indole-3-acetic acid, ammonia, hydrogen cyanide, cellulase, and (to be deleted) protease, and induced biofilm formation. We demonstrated that QA2 exhibited both antimicrobial and ion metabolism activities and tolerated high salt concentration at up to 11% NaCl. Genotyping analyses, using 16S rRNA and chaperonin cpn60 genes, revealed that QA2 belongs to the species of Bacillus velezensis. Using the quinoa model cultivated under a saline condition, we demonstrated that QA2 promoted plant growth and mitigated the saline irrigation effects. Analysis of harvested plants revealed that QA2 induced a significant increase of both leaf chlorophyll index by 120.86% (p < 0.05) and P uptake by 41.17% (p < 0.05), while the content of Na+ was drastically decreased. Lastly, a bibliometric data analysis highlighted the panoramic view of studies carried out so far on B. velezensis strains. Our investigation presents a holistic view of the potential application of B. velezensis as a biological inoculant to promote plant growth, control pathogen attacks, and mitigate the salinity effect of quinoa plants. Further investigations are still needed to demonstrate these effects in field conditions.
Collapse
Affiliation(s)
- Ismail Mahdi
- Microbiology Laboratory, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abdelmounaaim Allaoui
- Microbiology Laboratory, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Nidal Fahsi
- Microbiology Laboratory, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Latefa Biskri
- Microbiology Laboratory, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
- African Genome Center (AGC), Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
- Correspondence: ; Tel.: +212-52502926
| |
Collapse
|
23
|
Chen YX, Li W, Zeng H, Zhou G, Cai Q. Transcriptome Analysis Reveals the Mechanism of dill Seed Essential oil Against Sclerotinia sclerotiorum. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221119910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sclerotinia sclerotiorum is a notorious fungal pathogen with a broad host range, including many important crops. A previous study showed dill seed essential oil (DSEO) could inhibit S sclerotiorum pathogenicity and protect canola production. However, the molecular basis of DSEO anti-fungal activity is still not well studied. To investigate the mechanism of DSEO anti-fungal activity, RNA-sequencing was employed to identify differentially expressed genes (DEGs) of S sclerotiorum in response to DSEO treatment. A total of 2470, 3218, and 3793 DEGs were identified in S sclerotiorum after being treated by DSEO for 0.5, 1, and 2 h, respectively. These genes that express changes in the early stage are more likely affected directly by DSEO. Gene Ontology (GO) analysis revealed that these genes were mainly related to transmembrane transport, cell membrane, ribosome biogenesis, and proteasome complex. DSEO treatment primarily affected the membrane part of the fungal cell, particularly the endoplasmic reticulum (ER) membrane at 0.5 and 1-hour treatment. In addition, a bunch of DEGs associated with the proteasome pathway was markedly enriched at 2 h of treatment. It is speculated that DSEO achieves antifungal effects by influencing these targets or pathways. The information obtained in this study expanded the understanding of the antifungal mechanism of DSEO and enriched the resources available for interpreting its mechanism at molecular level.
Collapse
Affiliation(s)
- Yu-Xin Chen
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, Xinjiang, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, Wuhan, PR China
| | - Wei Li
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| | - Hong Zeng
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, Xinjiang, China
| | - Gao Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, Wuhan, PR China
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
New Insights into Bacillus-Primed Plant Responses to a Necrotrophic Pathogen Derived from the Tomato- Botrytis Pathosystem. Microorganisms 2022; 10:microorganisms10081547. [PMID: 36013965 PMCID: PMC9416759 DOI: 10.3390/microorganisms10081547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Induced systemic resistance (ISR) is one of the most studied mechanisms of plant−microbe interaction and is considered a very promising alternative for integrated pest management programs. In our study, we explored the plant defense response induced by Bacillus velezensis BBC047 in relation to its application before or after Botrytis cinerea infection of tomato plants. The inoculation of BBC047 did not considerably alter the gene expression of the tomato tissues, whereas infection with B. cinerea in BBC047-primed plants induced expression of LRR and NBS-LRR receptors, which are highly related to the ISR response. As expected, B. cinerea infection generated molecular patterns typical of a defense response to pathogen infection as the overexpression of pathogenesis-related proteins (PRs) in leaflets distant to the point of infection. The curative treatment (P + F + B) allowed us to gain insights into plant response to an inverted priming. In this treatment, B. cinerea caused the m tissue damage, extending nearly entirely across the entire infected leaves. Additionally, genes generally associated with early SAR response (<16 h) were overexpressed, and apparently, the beneficial strain was not perceived as such. Therefore, we infer that the plant defense to the curative treatment represents a higher degree of biological stress triggered by the incorporation of strain BBC047 as second arriving microorganism. We highlight the importance the phytosanitary status of plants prior to inoculation of beneficial microorganism for the biocontrol of pathogens.
Collapse
|
25
|
Zhou L, Wang J, Wu F, Yin C, Kim KH, Zhang Y. Termite Nest Associated Bacillus siamensis YC-9 Mediated Biocontrol of Fusarium oxysporum f. sp. cucumerinum. Front Microbiol 2022; 13:893393. [PMID: 35722323 PMCID: PMC9198579 DOI: 10.3389/fmicb.2022.893393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
The antagonistic potential of bacteria obtained from the nest of Odontotermes formosanus was assessed against Fusarium oxysporum f. sp. cucumerinum (FOC). Of 30, seven termite nest-associated bacteria strains had biocontrol potential. Among them, the strain YC-9 showed the strongest antifungal activity toward FOC. Phylogenetic analysis of the 16S rRNA amplified product of YC-9 revealed its identification as Bacillus siamensis. The in vivo antifungal activity experiment showed that the application of YC-9 at 108 cfu/ml significantly reduced the cucumber wilt incidence with a control efficacy of 73.2%. Furthermore, plant growth parameters such as fresh weight, dry weight, plant height, and root height were significantly improved by 42.6, 53.0, 20.8, and 19.3%, respectively. We found that inoculation with B. siamensis YC-9 significantly increased the activity of defensive enzymes such as peroxidase (POD), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) in diseased cucumber roots, thereby raising the resistance. PCR using gene-specific primers revealed that B. siamensis YC-9 contains biosynthetic genes for known antibiotics, including bacillomycin, iturin, and surfactin. Chemical analysis of the cultivation of B. siamensis YC-9 resulted in the isolation of five metabolites, including hexadecanoic acid (1), cyclo-(L-phenylalanylglycine) (2), cyclo-(L-trans-Hyp-L-Leu) (3), C15-surfactin (4), and macrolactin A (5), the structures of which were identified by the analysis of NMR spectroscopic data and MS. Among them, the compound 4 showed significant antifungal activity against conidial germination of FOC with an IC50 value of 5.1 μg/ml, which was comparable to that of the positive control, cycloheximide (IC50 value of 2.6 μg/ml). Based on these findings, this study suggests that termite-nest associated B. siamensis YC-9 could be a potential biological control agent for integrated control of soil-borne diseases like cucumber Fusarium wilt.
Collapse
Affiliation(s)
- Lingfeng Zhou
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Junyong Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Fei Wu
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Caiping Yin
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Yinglao Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
26
|
Genome analysis uncovers the prolific antagonistic and plant growth-promoting potential of endophyte Bacillus velezensis K1. Gene 2022; 836:146671. [PMID: 35714801 DOI: 10.1016/j.gene.2022.146671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
Insights into the application of endophytic bacilli in sustainable agricultural practices have opened up new avenues for the inhibition of soil-borne pathogens and the improvement of plant health. Bacillus subtilis K1, an endophytic bacterium originally isolated from aerial roots of Ficus benghalensis is a potential biocontrol agent secreting a mixture of surfactins, iturins and fengycins. The current study extends the characterization of this bacterium through genomic and comparative genomics approaches. The sequencing of the bacterial genome at Illumina MiSeq platform revealed that it possessed a 4,103,502-bp circular chromosome with 45.98% GC content and 4325 predicted protein-coding sequences. Based on phylogenomics and whole-genome average nucleotide identity, the B. subtilis K1 was taxonomically classified as Bacillus velezensis. The formerly evaluated phenotypic traits viz. C-source utilization and lipopeptide-mediated fungal antagonism were correlated to their molecular determinants. The genome also harbored several genes associated with induced systemic resistance and plant growth promotion i.e, phytohormone production, nitrogen assimilation and reduction, siderophore production, phosphate solubilization, biofilm formation, swarming motility, acetoin and butanediol synthesis. The production of antifungal volatile organic compounds and plant growth promotion was experimentally demonstrated by volatile compound assay and seed germination assay on cumin and groundnut. The isolate also holds great prospects for application as a soil inoculant as indicated by enhancement in the growth of groundnut via in planta pot studies. Bacterial pan-genome analysis based on a comparison of whole genomes with eighteen other Bacillus strains was also conducted. Comparative examination of biosynthetic gene clusters across all genomes indicated that the largest number of gene clusters were harbored by the K1 genome. Based on the findings, we propose K1 as a model for scrutinizing non-ribosomally synthesized peptide synthetase and polyketide synthetase derived molecules.
Collapse
|
27
|
Genome mining of Burkholderia ambifaria strain T16, a rhizobacterium able to produce antimicrobial compounds and degrade the mycotoxin fusaric acid. World J Microbiol Biotechnol 2022; 38:114. [PMID: 35578144 DOI: 10.1007/s11274-022-03299-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Burkholderia ambifaria T16 is a bacterium isolated from the rhizosphere of barley plants that showed a remarkable antifungal activity. This strain was also able to degrade fusaric acid (5-Butylpyridine-2-carboxylic acid) and detoxify this mycotoxin in inoculated barley seedlings. Genes and enzymes responsible for fusaric acid degradation have an important biotechnological potential in the control of fungal diseases caused by fusaric acid producers, or in the biodegradation/bio catalysis processes of pyridine derivatives. In this study, the complete genome of B. ambifaria T16 was sequenced and analyzed to identify genes involved in survival and competition in the rhizosphere, plant growth promotion, fungal growth inhibition, and degradation of aromatic compounds. The genomic analysis revealed the presence of several operons for the biosynthesis of antimicrobial compounds, such as pyrrolnitrin, ornibactin, occidiofungin and the membrane-associated AFC-BC11. These compounds were also detected in bacterial culture supernatants by mass spectrometry analysis. In addition, this strain has multiple genes contributing to its plant growth-promoting profile, including those for acetoin, 2,3-butanediol and indole-3-acetic acid production, siderophores biosynthesis, and solubilisation of organic and inorganic phosphate. A pan-genomic analysis demonstrated that the genome of strain T16 possesses large gene clusters that are absent in the genomes of B. ambifaria reference strains. According to predictions, most of these clusters would be involved in aromatic compounds degradation. One genomic region, encoding flavin-dependent monooxygenases of unknown function, is proposed as a candidate responsible for fusaric acid degradation.
Collapse
|
28
|
Target Mechanism of Iturinic Lipopeptide on Differential Expression Patterns of Defense-Related Genes against Colletotrichum acutatum in Pepper. PLANTS 2022; 11:plants11091267. [PMID: 35567268 PMCID: PMC9102045 DOI: 10.3390/plants11091267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/02/2022]
Abstract
Bacillus subtilis KB21 is an isolate with broad spectrum antifungal activity against plant pathogenic fungi. Our aim was to produce and purify antifungal lipopeptides via fermentation using B. subtilis KB21 and verify their antifungal mechanism against pepper anthracnose. When the KB21 strain was cultured in tryptic soy broth medium, the antifungal activity against pepper anthracnose correlated with biosurfactant production. However, there was no antifungal activity when cultured in Luria-Bertani medium. KB21 filtrates showed the highest degree of inhibition of mycelia (91.1%) and spore germination (98.9%) of Colletotrichum acutatum via increases in the biosurfactant levels. Using liquid chromatography-mass spectrometry (LC-MS) and LC-tandem MS (LC-MS/MS) analyses, the component with antifungal activity in the fermentation medium of the KB21 strain was determined to be the cyclic lipopeptide (CLP) antibiotic, iturin A. When the iturin fractions were applied to pepper fruits inoculated with conidia of C. acutatum, the lesion diameter and hyphal growth on the fruit were significantly suppressed. In addition, iturin CLP elevated the gene expression of PAL, LOX, and GLU in the treatments both with and without following fungal pathogens. Overall, the results of this study show that iturin CLPs from B. subtilis KB21 may be potential biological control agents for plant fungal diseases.
Collapse
|
29
|
Zhou Y, Li Q, Peng Z, Zhang J, Li J. Biocontrol Effect of Bacillus subtilis YPS-32 on Potato Common Scab and Its Complete Genome Sequence Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5339-5348. [PMID: 35467346 DOI: 10.1021/acs.jafc.2c00274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Potato common scab is caused by Streptomyces, which resides in soil and has become a serious disease in potato planting areas worldwide. In this study, we obtained a Bacillus subtilis YPS-32 strain by natural screening, and atmospheric and room-temperature plasma (ARTP) mutagenesis and field trial results showed that B. subtilis YPS-32 has a control efficacy of 83.70% against potato common scab. The complete genome of B. subtilis YPS-32 was sequenced, and multiple genes related to the synthesis of antibiotics and plant growth promoters were detected. Based on the genomic information for B. subtilis YPS-32, the sfp gene-inactivated (related to the synthesis of secondary metabolites) mutant strain B. subtilis YPS-32Δsfp was constructed. Analysis of crude extract metabolites using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) techniques revealed that strain YPS-32 encodes antagonists, such as surfactin and fengycin, which have antimicrobial effects. This study clarifies the mode of action by which B. subtilis YPS-32 antagonizes Streptomyces scabies and provides a reference for further research on antibacterial genes in the future.
Collapse
Affiliation(s)
- Yingjun Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Qingdao Vland Biotech Group Co., Ltd., Qingdao 266000, China
| | - Qing Li
- Qingdao Vland Biotech Group Co., Ltd., Qingdao 266000, China
| | - Zheng Peng
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Juan Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
30
|
Zhang Y, Zhao M, Chen W, Yu H, Jia W, Pan H, Zhang X. Multi-Omics Techniques for Analysis Antifungal Mechanisms of Lipopeptides Produced by Bacillus velezensis GS-1 against Magnaporthe oryzae In Vitro. Int J Mol Sci 2022; 23:ijms23073762. [PMID: 35409115 PMCID: PMC8998706 DOI: 10.3390/ijms23073762] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Magnaporthe oryzae is a fungal pathogen that causes rice blast, a highly destructive disease. In the present study, the bacteria strain GS-1 was isolated from the rhizosphere soil of ginseng and identified as Bacillus velezensis through 16S rRNA gene sequencing, whole genome assembly, and average nucleotide identity analysis. B. velezensis strain GS-1 exhibited significant antagonistic activity to several plant fungal pathogens. Through whole genome sequencing, 92 Carbohydrate-Active Enzymes and 13 gene clusters that encoded for secondary metabolites were identified. In addition, strain GS-1 was able to produce the lipopeptide compounds, surfactin, fengycin, and plantazolicin. The inhibitory effects of lipopeptide compounds on M. oryzae were confirmed, and the antagonistic mechanism was explored using transcriptomics and metabolomics analysis. Differential expressed genes (DEGs) and differential accumulated metabolites (DAMs) revealed that the inhibition of M. oryzae by lipopeptide produced by GS-1 downregulated the expression of genes involved in amino acid metabolism, sugar metabolism, oxidative phosphorylation, and autophagy. These results may explain why GS-1 has antagonistic activity to fungal pathogens and revealed the mechanisms underlying the inhibitory effects of lipopeptides produced by GS-1 on fungal growth, which may provide a theoretical basis for the potential application of B. velezensis GS-1 in future plant protection.
Collapse
|
31
|
Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: an overview for its mechanisms. Microbiol Res 2022; 259:127016. [DOI: 10.1016/j.micres.2022.127016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
|
32
|
Characteristics changes on Applications of Antibiotics and Current Approaches to Enhance Productivity with Soil Microbiome. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The contamination of environmental sully with antibiotics is regarded as a major problem today and predictable to attain more recognition in near future. However, human intervention resulting in antibiotic consumption is being enhancing all around the world. Our review of literature revealed the role of microbiome in sully and how antibiotic resistant genes raised. The structure of antibiotics basically influenced by natural components such as biotic and abiotic push which shifts based on different soils. Therefore, management of microbiome in soil and their expression studies were distinctively revealed. The assessment of antibiotic resistance genes with help of next generation sequencing provided a clear comprehension on genome and transcriptome of the bacterial genes. Thus, interaction of microbiome with soil can also be well understood. The current findings in our study will guide every researcher to follow logical protocol in analyzing microbiota composition is covered as well and also to understand its metagenomic and sequenced with next-generation sequencer which helps to comprehend the diverse micro-flora present in soil and its operation. Finally, later progresses in bioinformatics computer program, flow of work, and applications for analyzing metagenomic information are put in a nutshell.
Collapse
|
33
|
Tsalgatidou PC, Thomloudi EE, Baira E, Papadimitriou K, Skagia A, Venieraki A, Katinakis P. Integrated Genomic and Metabolomic Analysis Illuminates Key Secreted Metabolites Produced by the Novel Endophyte Bacillus halotolerans Cal.l.30 Involved in Diverse Biological Control Activities. Microorganisms 2022; 10:microorganisms10020399. [PMID: 35208854 PMCID: PMC8877463 DOI: 10.3390/microorganisms10020399] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
The endophytic strain Cal.l.30, isolated from the medicinal plant Calendula officinalis, was selected among seven Bacillus strains with plant growth promoting activity and strong biological potential against the postharvest fungal pathogen Botrytis cinerea. Treatment by inoculating Cal.l.30 bacterial cell culture or cell free supernatant on harvested grapes and cherry tomato fruits, significantly reduced gray mold disease severity index and disease incidence. Based on 16S rRNA sequence analysis and whole genome phylogeny, Cal.l.30 was identified as Bacillus halotolerans. Genome mining revealed that B. halotolerans Cal.l.30 is endowed with a diverse arsenal of secondary metabolite biosynthetic gene clusters (SM-BGCs) responsible for metabolite production with antimicrobial properties. A sub-set of the identified SM-BGCs (mojavensin A, ‘bacillunoic acid’) appears to be the result of recent horizontal gene transfer events. Its genome was also mined for CAZymes associated with antifungal activity. Further UHPLC-HRMS analysis indicated that Cal.l.30 synthesizes and secretes secondary metabolites with antimicrobial activity, including the lipopeptides, fengycin, surfactin and mojavensin A, bacillaene isoforms, L-dihydroanticapsin and bacillibactin. Other compounds with known antimicrobial activity were also detected, such as azelaic acid, 15- hydroxypentadecanoid acid and 2-hydroxyphenylacetic acid. The genomic and metabolomic features of the B. halotolerans Cal.l.30 provided new perspectives on the exploitation of novel Bacillus sp. as a biocontrol agent.
Collapse
Affiliation(s)
- Polina C. Tsalgatidou
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Eirini-Evangelia Thomloudi
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
| | - Eirini Baira
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control and Phytopharmacy, Benaki Phytopathological Institute (BPI), Kifissia, 14561 Athens, Greece;
| | | | - Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
| | - Anastasia Venieraki
- Laboratory of Plant Pathology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence: (A.V.); (P.K.)
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
- Correspondence: (A.V.); (P.K.)
| |
Collapse
|
34
|
The Role of Surfactin Production by Bacillus velezensis on Colonization, Biofilm Formation on Tomato Root and Leaf Surfaces and Subsequent Protection (ISR) against Botrytis cinerea. Microorganisms 2021; 9:microorganisms9112251. [PMID: 34835375 PMCID: PMC8626045 DOI: 10.3390/microorganisms9112251] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Many aspects regarding the role of lipopeptides (LPs) in bacterial interaction with plants are not clear yet. Of particular interest is the LP family of surfactin, immunogenic molecules involved in induced systemic resistance (ISR) and the bacterial colonization of plant surfaces. We hypothesize that the concentration of surfactin produced by a strain correlates directly with its ability to colonize and persist on different plant surfaces, which conditions its capacity to trigger ISR. We used two Bacillus velezensis strains (BBC023 and BBC047), whose antagonistic potential in vitro is practically identical, but not on plant surfaces. The surfactin production of BBC047 is 1/3 higher than that of BBC023. Population density and SEM images revealed stable biofilms of BBC047 on leaves and roots, activating ISR on both plant surfaces. Despite its lower surfactin production, strain BBC023 assembled stable biofilms on roots and activated ISR. However, on leaves only isolated, unstructured populations were observed, which could not activate ISR. Thus, the ability of a strain to effectively colonize a plant surface is not only determined through its production of surfactin. Multiple aspects, such as environmental stressors or compensation mechanisms may influence the process. Finally, the importance of surfactin lies in its impacts on biofilm formation and stable colonization, which finally enables its activity as an elicitor of ISR.
Collapse
|
35
|
Gorai PS, Ghosh R, Mandal S, Ghosh S, Chatterjee S, Gond SK, Mandal NC. Bacillus siamensis CNE6- a multifaceted plant growth promoting endophyte of Cicer arietinum L. having broad spectrum antifungal activities and host colonizing potential. Microbiol Res 2021; 252:126859. [PMID: 34536676 DOI: 10.1016/j.micres.2021.126859] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/21/2021] [Accepted: 08/29/2021] [Indexed: 11/29/2022]
Abstract
Exploration of endophytic bacteria with multiple plant growth promoting (PGP) attributes is considered as an eco-friendly and cost-effective alternative to agricultural chemicals for increasing crop productivity. In the present endeavor, healthy chickpea plants (Cicer arietinum L.) collected from district Birbhum, West Bengal, India were subjected for the isolation of endophytic bacteria having multifarious PGP properties. One potent endophytic Gram positive bacterial strain CNE6 was isolated from the nodule of chickpea and was identified as Bacillus siamensis based on 16S rDNA sequence homologies. The isolate showed a number of PGP properties like phosphate solubilization, IAA production, nitrogen fixation, hydroxamate type of siderophore production and ACC deaminase activities. The isolate CNE6 produced 33.27 ± 2.16 μg/mL of IAA in the presence of tryptophan. Production of IAA was also confirmed by HPLC analysis and it was found effective for inducing lateral root branching in chickpea. In addition, the isolate displayed significant antagonistic activity against a number of plant pathogenic fungi when tested by dual culture overlay and agar well diffusion assay. 50 % cell free supernatant of CNE6 was found effective for 60-80 % inhibition of radial growth of pathogenic fungi tested. Scanning electron microscopic observation revealed massive degradation of pathogenic fungal mycelia by the antifungal metabolites of CNE6. LC-MS analysis of bacterial lipopeptides suggested the production of antifungal antibiotics like surfactin, fengycin and iturin by the isolate. The presence of genes encoding antifungal lipopeptides was also confirmed by PCR amplification using specific primers. Green fluorescent protein (GFP) tagging of CNE6 using broad host range plasmid vector (pDSK-GFPuv) followed by colonization study indicated very good host colonization potential of the isolate and its probable movement through xylem vessels. Enhanced shoot and root length and chlorophyll content upon treatment with CNE6 as observed in in vivo pot experiments also supported the positive role of the endophytic isolate on overall development and growth of the chickpea plants. This is the first report of Bacillus siamensis as an endophyte of Cicer arietinum L. which can be successfully applied for improving the productivity of this crop plant.
Collapse
Affiliation(s)
- Pralay Shankar Gorai
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, 731235, India
| | - Ranjan Ghosh
- Department of Botany, Bankura Sammilani College, Kenduadihi, Bankura, 722102, India
| | - Subhrangshu Mandal
- Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan, 731235, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Sumit Chatterjee
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Surendra Kumar Gond
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - Narayan Chandra Mandal
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, 731235, India.
| |
Collapse
|
36
|
Reverchon F, Contreras-Ramos SM, Eskalen A, Guerrero-Analco JA, Quiñones-Aguilar EE, Rios-Velasco C, Velázquez-Fernández JB. Microbial Biocontrol Strategies for Ambrosia Beetles and Their Associated Phytopathogenic Fungi. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.737977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ambrosia beetles and their symbiotic fungi are causing severe damage in natural and agro-ecosystems worldwide, threatening the productivity of several important tree crops such as avocado. Strategies aiming at mitigating their impact include the application of broad-spectrum agrochemicals and the incineration of diseased trees, but the increasing demand for environment-friendly strategies call for exploring biological control for the management of ambrosia beetles and their phytopathogenic fungal symbionts. The aim of this review is to examine the existing knowledge on biocontrol approaches using beneficial microorganisms and microbial natural products with entomopathogenic and antifungal activity against ambrosia beetles and fungi. We show that biocontrol has been mainly focused on the insect, using entomopathogenic fungi (EPF) such as Beauveria spp. or Metarhizium spp. However, recent studies have been integrating EPF with mycoparasitic fungi such as Trichoderma spp. to simultaneously challenge the vector and its fungal symbionts. Novel approaches also include the use of microbial natural products as insect lures or antifungal agents. Contrastingly, the potential of bacteria, including actinobacteria (actinomycetes), as biocontrol agents of ambrosia fungi has been little investigated. We thus suggest that future research should further examine the antifungal activity of bacterial strains, with an emphasis on harsh environments. We also suggest pursuing the isolation of more effective microbial strains with dual biocontrol effect, i.e., exhibiting fungicidal/insecticidal activities. Moreover, additional efforts should aim at determining the best application methods of biocontrol agents in the field to ensure that the positive effects detected in vitro are sustained. Finally, we propose the integration of microbiome studies in pest and disease management strategies as they could provide us with tools to steer the beneficial host plant microbiome and to manipulate the beetle microbiome in order to reduce insect fitness.
Collapse
|
37
|
Hu J, Zheng M, Dang S, Shi M, Zhang J, Li Y. Biocontrol Potential of Bacillus amyloliquefaciens LYZ69 Against Anthracnose of Alfalfa ( Medicago sativa). PHYTOPATHOLOGY 2021; 111:1338-1348. [PMID: 33325723 DOI: 10.1094/phyto-09-20-0385-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anthracnose is a destructive disease of alfalfa (Medicago sativa) that causes severe yield losses. Biological control can be an effective and eco-friendly approach to control this alfalfa disease. In the present study, Bacillus amyloliquefaciens LYZ69, previously isolated from healthy alfalfa roots, showed a strong in vitro antifungal activity against Colletotrichum truncatum, an important causal agent of anthracnose of alfalfa. The strain LYZ69 protected alfalfa plants (biocontrol efficacy of 82.59%) from anthracnose under greenhouse conditions. The cell-free culture (CFC) of LYZ69 (20%, vol/vol) caused 60 and 100% inhibition of mycelial growth and conidial germination, respectively. High-performance liquid chromatography tandem mass spectrometry separated and identified cyclic lipopeptides (LPs) such as bacillomycin D and fengycin in the CFC of LYZ69. Light microscopy and scanning electron microscopy revealed that the mixture of cyclic LPs produced by LYZ69 caused drastic changes in mycelial morphology. Fluorescence microscopy showed that the LPs induced reactive oxygen species accumulation and caused apoptosis-like cell death in C. truncatum hyphae. In summary, our findings provide evidence to support B. amyloliquefaciens LYZ69 as a promising candidate for the biological control of anthracnose in alfalfa.
Collapse
Affiliation(s)
- Jinling Hu
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Mingzhu Zheng
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Shuzhong Dang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Min Shi
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jinlin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yanzhong Li
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
- Gansu Tech Innovation Center of Western China Grassland Industry, Lanzhou University, Lanzhou 730020, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
38
|
Jasrotia S, Salgotra RK, Sharma M. Efficacy of bioinoculants to control of bacterial and fungal diseases of rice (Oryza sativa L.) in northwestern Himalaya. Braz J Microbiol 2021; 52:687-704. [PMID: 33782910 PMCID: PMC8105458 DOI: 10.1007/s42770-021-00442-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/02/2021] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Biological control holds great promise for environmentally friendly and sustainable management of the phytopathogens. The multi-function features of plant growth-promoting rhizobacteria (PGPR) enable to protect the plants from disease infections by replacing the chemical inputs. The interaction between the plant root exudates and the microbes stimulates the production of secondary metabolism and enzymes and induces systemic resistance in the plants. AIM The aim was to identify the potential PGPR which would show an antagonistic effect against basmati rice fungal and bacterial diseases. METHODS In the study, native originating microbes have been isolated, characterized using 16S rRNA sequencing, and used as potential antagonistic microbial isolates against diseases of rice plants. RESULTS Rhizobacteria isolated from rhizosphere, endo-rhizosphere, and bulk soil samples of Basmati 370 exhibited promising inhibitory activity against rice pathogens. Molecular characterization of bacterial isolates based on 16S rRNA sequencing classified the bacterial isolates into different genera such as Bacillus, Pseudomonas, Streptomyces, Exiguobacterium, Aeromonas, Chryseobacterium, Enterobacter, and Stenotrophomonas. PGPRs exhibited biocontrol activities against various rice diseases like bacterial leaf blight, leaf blast, brown spot, and sheath blight and boost the plant growth traits. CONCLUSION In the study, the potentially identified PGPRs isolates could be used as efficient bioinoculants as bio-fertilizers and biocontrol agents for sustainable rice crop production.
Collapse
Affiliation(s)
- Surabhi Jasrotia
- School for Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, Jammu, Jammu and Kashmir, 180009, India
| | - Romesh Kumar Salgotra
- School for Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, Jammu, Jammu and Kashmir, 180009, India.
| | - Manmohan Sharma
- School for Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, Jammu, Jammu and Kashmir, 180009, India
| |
Collapse
|
39
|
Genomic and Chemical Diversity of Bacillus subtilis Secondary Metabolites against Plant Pathogenic Fungi. mSystems 2021; 6:6/1/e00770-20. [PMID: 33622852 PMCID: PMC8573961 DOI: 10.1128/msystems.00770-20] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacillus subtilis produces a wide range of secondary metabolites providing diverse plant growth-promoting and biocontrol abilities. These secondary metabolites include nonribosomal peptides with strong antimicrobial properties, causing either cell lysis, pore formation in fungal membranes, inhibition of certain enzymes, or bacterial protein synthesis. However, the natural products of B. subtilis are mostly studied either in laboratory strains or in individual isolates, and therefore, a comparative overview of secondary metabolites from various environmental B. subtilis strains is missing. In this study, we isolated 23 B. subtilis strains from 11 sampling sites, compared the fungal inhibition profiles of wild types and their nonribosomal peptide mutants, followed the production of targeted lipopeptides, and determined the complete genomes of 13 soil isolates. We discovered that nonribosomal peptide production varied among B. subtilis strains coisolated from the same soil samples. In vitro antagonism assays revealed that biocontrol properties depend on the targeted plant pathogenic fungus and the tested B. subtilis isolate. While plipastatin alone is sufficient to inhibit Fusarium spp., a combination of plipastatin and surfactin is required to hinder growth of Botrytis cinerea Detailed genomic analysis revealed that altered nonribosomal peptide production profiles in specific isolates are due to missing core genes, nonsense mutation, or potentially altered gene regulation. Our study combines microbiological antagonism assays with chemical nonribosomal peptide detection and biosynthetic gene cluster predictions in diverse B. subtilis soil isolates to provide a broader overview of the secondary metabolite chemodiversity of B. subtilis IMPORTANCE Secondary or specialized metabolites with antimicrobial activities define the biocontrol properties of microorganisms. Members of the Bacillus genus produce a plethora of secondary metabolites, of which nonribosomally produced lipopeptides in particular display strong antifungal activity. To facilitate the prediction of the biocontrol potential of new Bacillus subtilis isolates, we have explored the in vitro antifungal inhibitory profiles of recent B. subtilis isolates, combined with analytical natural product chemistry, mutational analysis, and detailed genome analysis of biosynthetic gene clusters. Such a comparative analysis helped to explain why selected B. subtilis isolates lack the production of certain secondary metabolites.
Collapse
|
40
|
Chacón-López A, Guardado-Valdivia L, Bañuelos-González M, López-García U, Montalvo-González E, Arvizu-Gómez J, Stoll A, Aguilera S. Effect of Metabolites Produced by Bacillus atrophaeus and Brevibacterium frigoritolerans Strains on Postharvest Biocontrol of Alternaria alternata in Tomato (Solanum lycopersicum L.). Biocontrol Sci 2021; 26:67-74. [PMID: 34092716 DOI: 10.4265/bio.26.67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the present study, the antifungal activity of metabolites produced by Bacillus atrophaeus B5 and a new Brevibacterium strain against Alternaria alternata was evaluated. Assays in vitro and in vivo on tomato fruit during postharvest were made. Based on the 16S rDNA gene sequence analysis, the new strain (strain B7) was identified as Brevibacterium frigoritolerans. Metabolites produced by both bacterial strains reduced the spore germination of A. alternata in vitro and decreased the severity of the alternaria rot disease on tomato fruit during postharvest. This is the first report that demonstrates the potential of B. frigoritolerans B7 as a biocontrol agent against this fungal phytopathogen. The use of metabolites produced by B. atrophaeus B5 and B. frigoritolerans B7 represents a new approach to reduce the use of chemical pesticides and control fungal decay during the postharvest stage.
Collapse
Affiliation(s)
- Alejandra Chacón-López
- Laboratorio Integral de Investigación en Alimentos/Departamento de Química y Bioquímica, Tecnológico Nacional de México-Instituto de Tepic
| | - Lizeth Guardado-Valdivia
- Laboratorio Integral de Investigación en Alimentos/Departamento de Química y Bioquímica, Tecnológico Nacional de México-Instituto de Tepic
| | - Miriam Bañuelos-González
- Laboratorio Integral de Investigación en Alimentos/Departamento de Química y Bioquímica, Tecnológico Nacional de México-Instituto de Tepic
| | - Ulises López-García
- Laboratorio Integral de Investigación en Alimentos/Departamento de Química y Bioquímica, Tecnológico Nacional de México-Instituto de Tepic
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos/Departamento de Química y Bioquímica, Tecnológico Nacional de México-Instituto de Tepic
| | - Jackeline Arvizu-Gómez
- Centro Nayarita de Innovación y Transferencia de Tecnología, Universidad Autónoma de Nayarit
| | | | - Selene Aguilera
- Laboratorio Integral de Investigación en Alimentos/Departamento de Química y Bioquímica, Tecnológico Nacional de México-Instituto de Tepic
| |
Collapse
|
41
|
Kim YT, Kim SE, Lee WJ, Fumei Z, Cho MS, Moon JS, Oh HW, Park HY, Kim SU. Isolation and characterization of a high iturin yielding Bacillus velezensis UV mutant with improved antifungal activity. PLoS One 2020; 15:e0234177. [PMID: 33270634 PMCID: PMC7714226 DOI: 10.1371/journal.pone.0234177] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
To isolate Bacillus velezensis mutants with improved antifungal activity for use in the biological control of phytopathogenic fungi, wild-type Bacillus velezensis KRF-001 producing iturin, surfactin, and fengycin was irradiated by ultraviolet (UV) rays. The in vitro and in vivo antifungal activities of UV mutants and characterization of the cyclic lipopeptides produced by a selected mutant were examined. A mutant strain yielding high levels of iturin showed over 2-fold higher antifungal activity than the wild-type against Fusarium oxysporum. A potent suppressive effect of the mutant was also observed on spore germination of Botrytis cinerea, the causative agent of cucumber gray mold, at different butanol extract concentrations. Further analysis of the mutant by real-time PCR and high-performance liquid chromatography revealed increased expression of iturin and surfactin biosynthesis genes as well as enhanced production of iturin and surfactin metabolites. However, the amounts of fengycin obtained from the mutant strain BSM54 were significantly lesser than those of iturin and surfactin. Particularly, iturin A production by the mutant was 3.5-fold higher than that of the wild-type, suggesting that the higher antifungal activity of the mutant against F. oxysporum resulted from the increased expression of biosynthesis genes associated with iturin production. The commercial greenhouse experiment using soil naturally infested with Sclerotinia sclerotiorum (sclerotinia rot) and F. oxysporum (fusarium wilt) showed that the mutant strain reduced sclerotinia rot and fusarium wilt diseases (P = 0.05) more effectively than the wild-type and commercially available product Cillus® in Korea. These results suggest that the mutant with high iturin yield is a potential candidate for the development of a biological control agent in agriculture.
Collapse
Affiliation(s)
- Young Tae Kim
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sung Eun Kim
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Won Jung Lee
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Zhao Fumei
- Molecular Biofarming Research Center, KRIBB, Daejeon, Republic of Korea
| | | | - Jae Sun Moon
- Molecular Biofarming Research Center, KRIBB, Daejeon, Republic of Korea
| | - Hyun-Woo Oh
- Core Facility Management Center, KRIBB, Daejeon, Republic of Korea
| | - Ho-Yong Park
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sung Uk Kim
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
42
|
Kiesewalter HT, Lozano-Andrade CN, Strube ML, Kovács ÁT. Secondary metabolites of Bacillus subtilis impact the assembly of soil-derived semisynthetic bacterial communities. Beilstein J Org Chem 2020; 16:2983-2998. [PMID: 33335606 PMCID: PMC7722629 DOI: 10.3762/bjoc.16.248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
Secondary metabolites provide Bacillus subtilis with increased competitiveness towards other microorganisms. In particular, nonribosomal peptides (NRPs) have an enormous antimicrobial potential by causing cell lysis, perforation of fungal membranes, enzyme inhibition, or disruption of bacterial protein synthesis. This knowledge was primarily acquired in vitro when B. subtilis was competing with other microbial monocultures. However, our understanding of the true ecological role of these small molecules is limited. In this study, we have established soil-derived semisynthetic mock communities containing 13 main genera and supplemented them with B. subtilis P5_B1 WT, the NRP-deficient strain sfp, or single-NRP mutants incapable of producing surfactin, plipastatin, or bacillaene. Through 16S amplicon sequencing, it was revealed that the invasion of NRP-producing B. subtilis strains had no major impact on the bacterial communities. Still, the abundance of the two genera Lysinibacillus and Viridibacillus was reduced. Interestingly, this effect was diminished in communities supplemented with the NRP-deficient strain. Growth profiling of Lysinibacillus fusiformis M5 exposed to either spent media of the B. subtilis strains or pure surfactin indicated the sensitivity of this strain towards the biosurfactant surfactin. Our study provides a more in-depth insight into the influence of B. subtilis NRPs on semisynthetic bacterial communities and helps to understand their ecological role.
Collapse
Affiliation(s)
- Heiko T Kiesewalter
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Carlos N Lozano-Andrade
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikael L Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
43
|
Kang BR, Park JS, Jung WJ. Antifungal evaluation of fengycin isoforms isolated from Bacillus amyloliquefaciens PPL against Fusarium oxysporum f. sp. lycopersici. Microb Pathog 2020; 149:104509. [DOI: 10.1016/j.micpath.2020.104509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
|
44
|
Growth promotion and protection from drought in Eucalyptus grandis seedlings inoculated with beneficial bacteria embedded in a superabsorbent polymer. Sci Rep 2020; 10:18221. [PMID: 33106567 PMCID: PMC7588442 DOI: 10.1038/s41598-020-75212-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022] Open
Abstract
Eucalyptus grandis is a globally important tree crop. Greenhouse-grown tree seedlings often face water deficit after outplanting to the field, which can affect their survival and establishment severely. This can be alleviated by the application of superabsorbent hydrophilic polymers (SAPs). Growth promoting bacteria can also improve crop abiotic stress tolerance; however, their use in trees is limited, partly due to difficulties in the application and viability loss. In this work, we evaluated the improvement of drought tolerance of E. grandis seedlings by inoculating with two Pseudomonas strains (named M25 and N33), carried by an acrylic-hydrocellulosic SAP. We observed significant bacterial survival in the seedling rhizosphere 50 days after inoculation. Under gradual water deficit conditions, we observed a considerable increase in the water content and wall elasticity of M25-inoculated plants and a trend towards growth promotion with both bacteria. Under rapid water deficit conditions, which caused partial defoliation, both strains significantly enhanced the formation of new leaves, while inoculation with M25 reduced the transpiration rate. Co-inoculation with M25 and N33 substantially increased growth and photosynthetic capacity. We conclude that the selected bacteria can benefit E. grandis early growth and can be easily inoculated at transplant by using an acrylic-hydrocellulosic SAP.
Collapse
|
45
|
Chen M, Wang J, Liu B, Zhu Y, Xiao R, Yang W, Ge C, Chen Z. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC Microbiol 2020; 20:160. [PMID: 32539679 PMCID: PMC7296739 DOI: 10.1186/s12866-020-01851-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/09/2020] [Indexed: 01/25/2023] Open
Abstract
Background There is an urgent need to discover biocontrol agents to control bacterial wilt. This study reports on a new lipopeptide-producing biocontrol strain FJAT-46737 and explores its lipopeptidic compounds, and this study investigates the antagonistic effects of these compounds. Results Based on a whole genome sequence analysis, the new strain FJAT-46737 was identified as Bacillus velezensis, and seven gene clusters responsible for the synthesis of bioactive secondary metabolites in FJAT-46737 were predicted. The antimicrobial results demonstrated that FJAT-46737 exhibited broad-spectrum antimicrobial activities in vitro against three bacteria and three fungi. Pot experiments showed that the control efficiencies for tomato bacterial wilt of the whole cultures, the 2-fold diluted supernatants and the crude lipopeptide of FJAT-46737 were 66.2%, 82.0%, and 96.2%, respectively. The above results suggested that one of the antagonistic mechanisms of FJAT-46737 was the secretion of lipopeptides consisting of iturins, fengycins and surfactins. The crude lipopeptides had significant antagonistic activities against several pathogens (including Ralstonia solanacearum, Escherichia coli and Fusarium oxysporum) and fengycins were the major antibacterial components of the lipopeptides against R. solanacearum in vitro. Furthermore, the rich organic nitrogen sources (especially yeast extracts) in the media promoted the production of fengycin and surfactin by FJAT-46737. The secretion of these two lipopeptides was related to temperature fluctuations, with the fengycin content decreasing by 96.6% and the surfactins content increasing by 59.9% from 20 °C to 40 °C. The optimal temperature for lipopeptide production by FJAT-46737 varied between 20 °C and 25 °C. Conclusions The B. velezensis strain FJAT-46737 and its secreted lipopeptides could be used as new sources of potential biocontrol agents against several plant pathogens, and especially the bacterial wilt pathogen R. solanacearum.
Collapse
Affiliation(s)
- Meichun Chen
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Jieping Wang
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China.
| | - Bo Liu
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Yujing Zhu
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Rongfeng Xiao
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Wenjing Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350001, China
| | - Cibin Ge
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Zheng Chen
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| |
Collapse
|
46
|
Drought tolerant bacterial endophytes with potential plant probiotic effects from Ananas comosus. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00483-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Xu S, Xie X, Zhao Y, Shi Y, Chai A, Li L, Li B. Whole-genome analysis of bacillus velezensis ZF2, a biocontrol agent that protects cucumis sativus against corynespora leaf spot diseases. 3 Biotech 2020; 10:186. [PMID: 32257742 DOI: 10.1007/s13205-020-2165-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/11/2020] [Indexed: 12/17/2022] Open
Abstract
Bacillus spp. have been widely described for their potentials to protect plants against pathogens. Here, we reported the whole genome sequence of Bacillus velezensis ZF2, which was isolated from the stem of a healthy cucumber plant. Strain ZF2 showed a broad spectrum of antagonistic activities against many plant bacterial and fungal pathogens, including the cucumber leaf spot fungus Corynespora cassiicola. The complete genome of B. velezensis ZF2 contained a 3,931,418-bp circular chromosome, with an average G + C content of 46.50%. Genome comparison revealed closest similarity between ZF2 and other B. velezensis strains. Genes homologous to 14 gene clusters for biosynthesis of secondary metabolites were identified in the ZF2 genome. Also identified were a number of genes involved in bacterial colonization, including the genes for motility, biofilm formation, flagella biosynthesis, and capsular biosynthesis. Numerous genes associated with plant-bacteria interactions, including cellulase or protease biosynthesis, and plant growth promotion were also identified in the ZF2 genome. Overall, our data will aid future studies of the biocontrol mechanisms of B. velezensis ZF2 and promote its application in vegetable disease control.
Collapse
Affiliation(s)
- Shuai Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yurong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
48
|
Maksimov IV, Singh BP, Cherepanova EA, Burkhanova GF, Khairullin RM. Prospects and Applications of Lipopeptide-Producing Bacteria for Plant Protection (Review). APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820010135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041434. [PMID: 32102264 PMCID: PMC7068399 DOI: 10.3390/ijerph17041434] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
Abstract
Microorganisms area treasure in terms of theproduction of various bioactive compounds which are being explored in different arenas of applied sciences. In agriculture, microbes and their bioactive compounds are being utilized in growth promotion and health promotion withnutrient fortification and its acquisition. Exhaustive explorations are unraveling the vast diversity of microbialcompounds with their potential usage in solving multiferous problems incrop production. Lipopeptides are one of such microbial compounds which havestrong antimicrobial properties against different plant pathogens. These compounds are reported to be produced by bacteria, cyanobacteria, fungi, and few other microorganisms; however, genus Bacillus alone produces a majority of diverse lipopeptides. Lipopeptides are low molecular weight compounds which havemultiple industrial roles apart from being usedas biosurfactants and antimicrobials. In plant protection, lipopeptides have wide prospects owing totheirpore-forming ability in pathogens, siderophore activity, biofilm inhibition, and dislodging activity, preventing colonization bypathogens, antiviral activity, etc. Microbes with lipopeptides that haveall these actions are good biocontrol agents. Exploring these antimicrobial compounds could widen the vistasof biological pest control for existing and emerging plant pathogens. The broader diversity and strong antimicrobial behavior of lipopeptides could be a boon for dealing withcomplex pathosystems and controlling diseases of greater economic importance. Understanding which and how these compounds modulate the synthesis and production of defense-related biomolecules in the plants is a key question—the answer of whichneeds in-depth investigation. The present reviewprovides a comprehensive picture of important lipopeptides produced by plant microbiome, their isolation, characterization, mechanisms of disease control, behavior against phytopathogens to understand different aspects of antagonism, and potential prospects for future explorations as antimicrobial agents. Understanding and exploring the antimicrobial lipopeptides from bacteria and fungi could also open upan entire new arena of biopesticides for effective control of devastating plant diseases.
Collapse
|
50
|
Penha RO, Vandenberghe LPS, Faulds C, Soccol VT, Soccol CR. Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations. PLANTA 2020; 251:70. [PMID: 32086615 DOI: 10.1007/s00425-020-03357-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/05/2020] [Indexed: 05/27/2023]
Abstract
Lipopeptides could help to overcome a large concern in agriculture: resistance against chemical pesticides. These molecules have activity against various phytopathogens and a potential to be transformed by genetic engineering. The exponential rise of pest resistances to different chemical pesticides and the global appeal of consumers for a sustainable agriculture and healthy nutrition have led to the search of new solutions for pest control. Furthermore, new laws require a different stance of producers. Based on that, bacteria of the genus Bacillus present a great agricultural potential, producing lipopeptides (LPs) that have high activity against insects, mites, nematodes, and/or phytopathogens that are harmful to plant cultures. Biopesticide activity can be found mainly in three families of Bacillus lipopeptides: surfactin, iturin, and fengycin. These molecules have an amphiphilic nature, interfering with biological membrane structures. Their antimicrobial properties include activity against bacteria, fungi, oomycetes, and viruses. Recent studies also highlight the ability of these compounds to stimulate defense mechanisms of plants and biofilm formation, which is a key factor for the successful colonization of biocontrol organisms. The use of molecular biology has also recently been researched for continuous advances and discoveries of new LPs, avoiding possible future problems of resistance against these molecules. As a consequence of the properties and possibilities of LPs, numerous studies and developments as well as the attention of large companies in the field is expected in the near future.
Collapse
Affiliation(s)
- Rafaela O Penha
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Luciana P S Vandenberghe
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Craig Faulds
- Aix-Marseille Université, POLYTECH Marseille, UMR 1163 Biotechnologie Des Champignons Filamenteux, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Vanete T Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Carlos R Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil.
| |
Collapse
|