1
|
Chauhan R, Tall BD, Gopinath G, Azmi W, Goel G. Environmental risk factors associated with the survival, persistence, and thermal tolerance of Cronobacter sakazakii during the manufacture of powdered infant formula. Crit Rev Food Sci Nutr 2023; 63:12224-12239. [PMID: 35838158 DOI: 10.1080/10408398.2022.2099809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cronobacter sakazakii is an opportunistic foodborne pathogen of concern for foods having low water activity such as powdered infant formula (PIF). Its survival under desiccated stress can be attributed to its ability to adapt effectively to many different environmental stresses. Due to the high risk to neonates and its sporadic outbreaks in PIF, C. sakazakii received great attention among the scientific community, food industry and health care providers. There are many extrinsic and intrinsic factors that affect C. sakazakii survival in low-moisture foods. Moreover, short- or long-term pre-exposure to sub-lethal physiological stresses which are commonly encountered in food processing environments are reported to affect the thermal resistance of C. sakazakii. Additionally, acclimation to these stresses may render C. sakazakii resistance to antibiotics and other antimicrobial agents. This article reviews the factors and the strategies responsible for the survival and persistence of C. sakazakii in PIF. Particularly, studies focused on the influence of various factors on thermal resistance, antibiotic or antimicrobial resistance, virulence potential and stress-associated gene expression are reviewed.
Collapse
Affiliation(s)
- Rajni Chauhan
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | | | - Gopal Gopinath
- Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, USA
| | - Wamik Azmi
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | - Gunjan Goel
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahindra, India
| |
Collapse
|
2
|
Guillén S, Nadal L, Halaihel N, Mañas P, Cebrián G. Genotypic and phenotypic characterization of a Salmonella Typhimurium strain resistant to pulsed electric fields. Food Microbiol 2023; 113:104285. [PMID: 37098417 DOI: 10.1016/j.fm.2023.104285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
Pulsed Electric Fields (PEF) technology is regarded as one of the most interesting alternatives to current food preservation methods, due to its capability to inactivate vegetative microorganisms while leaving the product's organoleptic and nutritional properties mostly unchanged. However, many aspects regarding the mechanisms of bacterial inactivation by PEF are still not fully understood. The aim of this study was to obtain further insight into the mechanisms responsible for the increased resistance to PEF of a Salmonella Typhimurium SL1344 variant (SL1344-RS, Sagarzazu et al., 2013), and to quantify the impact that the acquisition of PEF resistance has on other aspects of S. enterica physiology, such as growth fitness, biofilm formation ability, virulence and antibiotic resistance. WGS, RNAseq and qRT-PCR assays indicated that the increased PEF resistance of the SL1344-RS variant is due to a higher RpoS activity caused by a mutation in the hnr gene. This increased RpoS activity also results in higher resistance to multiple stresses (acidic, osmotic, oxidative, ethanol and UV-C, but not to heat and HHP), decreased growth rate in M9-Gluconate (but not in TSB-YE or LB-DPY), increased ability to adhere to Caco-2 cells (but no significant change in invasiveness) and enhanced antibiotic resistance (to six out of eight agents). This study significantly contributes to the understanding of the mechanisms of the development of stress resistance in Salmonellae and underscores the crucial role played by RpoS in this process. Further studies are needed to determine whether this PEF-resistant variant would represent a higher, equal or lower associated hazard than the parental strain.
Collapse
Affiliation(s)
- S Guillén
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain
| | - L Nadal
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain
| | - N Halaihel
- Departamento I+D+i, Alquizvetek S.L, Zaragoza, 50013, Zaragoza, Spain
| | - P Mañas
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain
| | - G Cebrián
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain.
| |
Collapse
|
3
|
Effect of preliminary stresses on the induction of viable but non-culturable Escherichia coli O157:H7 NCTC 12900 and Staphylococcus aureus ATCC 6538. Food Res Int 2023; 167:112710. [PMID: 37087272 DOI: 10.1016/j.foodres.2023.112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
As a novel non-thermal pasteurization technology, high pressure carbon dioxide (HPCD) has been used in food processing. However, it could induce microorganisms into a viable but nonculturable (VBNC) state, posing a potential risk to food safety and public health. In this study, we attempted to investigate the effect of various preliminary stresses including cold, heat, osmosis, acidity and oxidation on HPCD-induced VBNC formation. The results indicated that there was no effect of preliminary stresses on VBNC Staphylococcus aureus induction. However, heat, acidity and long-term (24 h) cultivation preadaptation could significantly increase the VBNC E. coli production induced by HPCD. Transcriptome analysis revealed that genes involved in ATP production were significantly decreased in these three stress-treated cells, and further ATP levels determination revealed that the ATP levels of the cell were significantly decreased after heat, acidity and long-term cultivation preadaptation, implying the decrease of ATP level caused by these stresses might be the reason for increasing VBNC production. To further study the relationship between ATP level and VBNC cell ratios after preadaptation. We artificially decreased the ATP levels, and detect their VBNC ratios after HPCD treatment. We found that with the ATP concentration decreasing after exposure to carbonyl cyanide m-chlorophenyl hydrazine (CCCP), the VBNC ratios were increased after HPCD treatment, indicating that the ATP contents were highly negatively correlated with VBNC ratios. This study proved that the preadaptation of heat, acidity and long-term cultivation could promote VBNC induction by decreasing the intracellular ATP level. In general, the obtained result gave the instruction about the storage environment for food materials, helped to further develop and optimize the HPCD processing to prevent VBNC formation and accelerate the development of HPCD technology in food industry.
Collapse
|
4
|
Soni A, Bremer P, Brightwell G. A Comprehensive Review of Variability in the Thermal Resistance (D-Values) of Food-Borne Pathogens-A Challenge for Thermal Validation Trials. Foods 2022; 11:4117. [PMID: 36553859 PMCID: PMC9777713 DOI: 10.3390/foods11244117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The thermal processing of food relies heavily on determining the right time and temperature regime required to inactivate bacterial contaminants to an acceptable limit. To design a thermal processing regime with an accurate time and temperature combination, the D-values of targeted microorganisms are either referred to or estimated. The D-value is the time required at a given temperature to reduce the bacterial population by 90%. The D-value can vary depending on various factors such as the food matrix, the bacterial strain, and the conditions it has previously been exposed to; the intrinsic properties of the food (moisture, water activity, fat content, and pH); the method used to expose the microorganism to the thermal treatment either at the laboratory or commercial scale; the approach used to estimate the number of survivors; and the statistical model used for the analysis of the data. This review focused on Bacillus cereus, Cronobacter sakazakii, Escherichia coli, Listeria monocytogenes, and Clostridium perfringens owing to their pathogenicity and the availability of publications on their thermal resistance. The literature indicates a significant variation in D-values reported for the same strain, and it is concluded that when designing thermal processing regimes, the impact of multiple factors on the D-values of a specific microorganism needs to be considered. Further, owing to the complexity of the interactions involved, the effectiveness of regimes derived laboratory data must be confirmed within industrial food processing settings.
Collapse
Affiliation(s)
- Aswathi Soni
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Palmerston North 4414, New Zealand
| | - Phil Bremer
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- New Zealand Food Safety Science and Research Centre, Palmerston North 4474, New Zealand
| | - Gale Brightwell
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Palmerston North 4414, New Zealand
- New Zealand Food Safety Science and Research Centre, Palmerston North 4474, New Zealand
| |
Collapse
|
5
|
Chacha JS, Zhang L, Ofoedu CE, Suleiman RA, Dotto JM, Roobab U, Agunbiade AO, Duguma HT, Mkojera BT, Hossaini SM, Rasaq WA, Shorstkii I, Okpala COR, Korzeniowska M, Guiné RPF. Revisiting Non-Thermal Food Processing and Preservation Methods-Action Mechanisms, Pros and Cons: A Technological Update (2016-2021). Foods 2021; 10:1430. [PMID: 34203089 PMCID: PMC8234293 DOI: 10.3390/foods10061430] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/05/2022] Open
Abstract
The push for non-thermal food processing methods has emerged due to the challenges associated with thermal food processing methods, for instance, high operational costs and alteration of food nutrient components. Non-thermal food processing involves methods where the food materials receive microbiological inactivation without or with little direct application of heat. Besides being well established in scientific literature, research into non-thermal food processing technologies are constantly on the rise as applied to a wide range of food products. Due to such remarkable progress by scientists and researchers, there is need for continuous synthesis of relevant scientific literature for the benefit of all actors in the agro-food value chain, most importantly the food processors, and to supplement existing information. This review, therefore, aimed to provide a technological update on some selected non-thermal food processing methods specifically focused on their operational mechanisms, their effectiveness in preserving various kinds of foods, as revealed by their pros (merits) and cons (demerits). Specifically, pulsed electric field, pulsed light, ultraviolet radiation, high-pressure processing, non-thermal (cold) plasma, ozone treatment, ionizing radiation, and ultrasound were considered. What defines these techniques, their ability to exhibit limited changes in the sensory attributes of food, retain the food nutrient contents, ensure food safety, extend shelf-life, and being eco-friendly were highlighted. Rationalizing the process mechanisms about these specific non-thermal technologies alongside consumer education can help raise awareness prior to any design considerations, improvement of cost-effectiveness, and scaling-up their capacity for industrial-level applications.
Collapse
Affiliation(s)
- James S. Chacha
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Liyan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Chigozie E. Ofoedu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri 460114, Nigeria
| | - Rashid A. Suleiman
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Joachim M. Dotto
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447 Arusha, Tanzania;
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Adedoyin O. Agunbiade
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Technology, University of Ibadan, Ibadan 200284, Nigeria
| | - Haile Tesfaye Duguma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Post-Harvest Management, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 378 Jimma, Ethiopia
| | - Beatha T. Mkojera
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Sayed Mahdi Hossaini
- DIL German Institute of Food Technologies, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
| | - Waheed A. Rasaq
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Ivan Shorstkii
- Department of Technological Equipment and Life-Support Systems, Kuban State Technological University, 350072 Krasnodar, Russia;
| | - Charles Odilichukwu R. Okpala
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Malgorzata Korzeniowska
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
6
|
Cao Y, Li L, Zhang Y, Liu F, Xiao X, Li X, Yu Y. SdiA plays a crucial role in stress tolerance of C. sakazakii CICC 21544. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Chauhan R, Bansal S, Azmi W, Goel G. Increased thermal tolerance in
Cronobacter sakazakii
strains in reconstituted milk powder due to cross protection by physiological stresses. J Food Saf 2020. [DOI: 10.1111/jfs.12810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rajni Chauhan
- Department of BiotechnologyHimachal Pradesh University Shimla India
| | - Saurabh Bansal
- Department of Biotechnology and BioinformaticsJaypee University of Information Technology Solan India
| | - Wamik Azmi
- Department of BiotechnologyHimachal Pradesh University Shimla India
| | - Gunjan Goel
- Department of Biotechnology and BioinformaticsJaypee University of Information Technology Solan India
- Department of Microbiology, School of Interdisciplinary and Applied Life SciencesCentral University of Haryana Mahendergarh India
| |
Collapse
|
8
|
Bahrami A, Moaddabdoost Baboli Z, Schimmel K, Jafari SM, Williams L. Efficiency of novel processing technologies for the control of Listeria monocytogenes in food products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Effect of thermal and non-thermal techniques for microbial safety in food powder: Recent advances. Food Res Int 2019; 126:108654. [DOI: 10.1016/j.foodres.2019.108654] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022]
|
10
|
Influence of ethanol adaptation on Salmonella enterica serovar Enteritidis survival in acidic environments and expression of acid tolerance-related genes. Food Microbiol 2018; 72:193-198. [DOI: 10.1016/j.fm.2017.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/18/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022]
|
11
|
|
12
|
Fernández A, Cebrián G, Álvarez-Ordóñez A, Prieto M, Bernardo A, López M. Influence of acid and low-temperature adaptation on pulsed electric fields resistance of Enterococcus faecium in media of different pH. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Effect of preliminary stresses on the resistance of Escherichia coli and Staphylococcus aureus toward non-thermal plasma (NTP) challenge. Food Res Int 2017; 105:178-183. [PMID: 29433205 DOI: 10.1016/j.foodres.2017.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/05/2017] [Accepted: 11/13/2017] [Indexed: 11/27/2022]
Abstract
As the development of hurdle technology, cross-protection of various stresses for pathogens posed the potential risk to food safety and public health. This study tried to explore various preliminary stresses including acidity, osmosis, oxidation, heat and cold on the resistance of microbial cells toward the non-thermal plasma (NTP) exposure. The results indicated that short-term (4h) exposure of Staphylococcus aureus and Escherichia coli to acidity, osmosis, oxidation, heat and cold stresses did not lead to the resistance to the subsequent NTP treatment. On the contrary, acidity, osmosis and heat preadaptation increased the vulnerability of E. coli cells to NTP treatment. After exposing S. aureus to osmosis, oxidation, heat and cold stress for longer period (24h), the reduction level showed significantly (P<0.05) higher. Interestingly, long-term (24h) preliminary exposure of acidic stress exhibited protective effect for S. aureus against the following NTP exposure with less damage in cell membrane integrity, membrane potential and intracellular enzyme activity. It might be due to the protein production for oxidative stress response during preliminary acidic adaptation. In general, the obtained result helped to grasp better understanding of the microbial stress response to NTP treatment and provided insight for the future research in order to accelerate the development of NTP technology in food industry.
Collapse
|
14
|
Lang E, Iaconelli C, Zoz F, Guyot S, Alvarez-Martin P, Beney L, Perrier-Cornet JM, Gervais P. Drying parameters greatly affect the destruction of Cronobacter sakazakii and Salmonella Typhimurium in standard buffer and milk. Food Microbiol 2016; 62:82-91. [PMID: 27889170 DOI: 10.1016/j.fm.2016.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/08/2016] [Accepted: 10/02/2016] [Indexed: 02/07/2023]
Abstract
Salmonella Typhimurium and Cronobacter sakazakii are two foodborne pathogens involved in neonatal infections from milk powder and infant formula. Their ability to survive in low-moisture food and during processing from the decontamination to the dried state is a major issue in food protection. In this work, we studied the effects of the drying process on Salmonella Typhimurium and Cronobacter sakazakii, with the aim of identifying the drying parameters that could promote greater inactivation of these two foodborne pathogens. These two bacteria were dried under different atmospheric relative humidities in milk and phosphate-buffered saline, and the delays in growth recovery and cultivability were followed. We found that water activity was related to microorganism resistance. C. sakazakii was more resistant to drying than was S. Typhimurium, and milk increased the cultivability and recovery of these two species. High drying rates and low final water activity levels (0.11-0.58) had a strong negative effect on the growth recovery and cultivability of these species. In conclusion, we suggest that effective use of drying processes may provide a complementary tool for food decontamination and food safety during the production of low-moisture foods.
Collapse
Affiliation(s)
- Emilie Lang
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 1, Esplanade Erasme, 21000 Dijon, France; Novolyze, 50 Rue de Dijon, 21121 Daix, France
| | - Cyril Iaconelli
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 1, Esplanade Erasme, 21000 Dijon, France
| | - Fiona Zoz
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 1, Esplanade Erasme, 21000 Dijon, France
| | - Stéphane Guyot
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 1, Esplanade Erasme, 21000 Dijon, France
| | | | - Laurent Beney
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 1, Esplanade Erasme, 21000 Dijon, France
| | - Jean-Marie Perrier-Cornet
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 1, Esplanade Erasme, 21000 Dijon, France
| | - Patrick Gervais
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 1, Esplanade Erasme, 21000 Dijon, France.
| |
Collapse
|
15
|
Santo D, Graça A, Nunes C, Quintas C. Survival and growth of Cronobacter sakazakii on fresh-cut fruit and the effect of UV-C illumination and electrolyzed water in the reduction of its population. Int J Food Microbiol 2016; 231:10-5. [DOI: 10.1016/j.ijfoodmicro.2016.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
|
16
|
Cebrián G, Mañas P, Condón S. Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation. Front Microbiol 2016; 7:734. [PMID: 27242749 PMCID: PMC4873515 DOI: 10.3389/fmicb.2016.00734] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/02/2016] [Indexed: 11/13/2022] Open
Abstract
In this paper the resistance of bacterial foodborne pathogens to manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could also be exploited in order to design combined processes. Further work would be required in order to fully elucidate the mechanisms of action of these technologies and to exhaustively characterize the influence of all the factors acting before, during, and after treatment. This would be very useful in the areas of process optimization and combined process design.
Collapse
Affiliation(s)
| | | | - Santiago Condón
- Tecnología de los Alimentos, Facultad de Veterinaria de Zaragoza, Instituto Agroalimentario de Aragón – IA2 – (Universidad de Zaragoza-CITA), ZaragozaSpain
| |
Collapse
|
17
|
He S, Zhou X, Shi C, Shi X. Ethanol adaptation induces direct protection and cross-protection against freezing stress in Salmonella enterica serovar Enteritidis. J Appl Microbiol 2016; 120:697-704. [PMID: 26743544 DOI: 10.1111/jam.13042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/01/2022]
Abstract
AIMS Salmonella enterica serovar Enteritidis (Salm. Enteritidis) encounters mild ethanol stress during its life cycle. However, adaptation to a stressful condition may affect bacterial resistance to subsequent stresses. Hence, this work was undertaken to investigate the influences of ethanol adaptation on stress tolerance of Salm. Enteritidis. METHODS AND RESULTS Salmonella Enteritidis was subjected to different ethanol adaptation treatments (2·5-10% ethanol for 1 h). Cellular morphology and tolerance to subsequent environmental stresses (15% ethanol, -20°C, 4°C, 50°C and 10% NaCl) were evaluated. It was found that 10% was the maximum ethanol concentration that allowed growth of the target bacteria. Ethanol adaptation did not cause cell-surface damage in Salm. Enteritidis as revealed by membrane permeability measurements and electron micrograph analysis. Salmonella Enteritidis adapted with 2·5-10% ethanol displayed an enhanced resistance to a 15%-ethanol challenge compared with an unchallenged control. The maximum ethanol resistance was observed when ethanol concentration used for ethanol adaptation was increased to 5·0%. Additionally, pre-adaptation to 5·0% ethanol cross-protected Salm. Enteritidis against -20°C, but not against 4°C, 50°C or 10% NaCl. CONCLUSIONS Ethanol adaptation provided Salm. Enteritidis direct protection from a high level ethanol challenge and cross-protection from freezing, but not other stresses tested (low temperature, high salinity or high temperature). SIGNIFICANCE AND IMPACT OF THE STUDY The results are valuable in developing adequate and efficient control measures for Salm. Enteritidis in foods.
Collapse
Affiliation(s)
- S He
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - X Zhou
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - C Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - X Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Transcriptomic analysis of Escherichia coli MG1655 cells exposed to pulsed electric fields. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2014.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Nonthermal Inactivation ofCronobacter sakazakiiin Infant Formula Milk: A Review. Crit Rev Food Sci Nutr 2015; 56:1620-9. [DOI: 10.1080/10408398.2013.781991] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Joshi SS, Howell AB, D'Souza DH. Cronobacter sakazakii reduction by blueberry proanthocyanidins. Food Microbiol 2014; 39:127-31. [DOI: 10.1016/j.fm.2013.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 10/28/2013] [Accepted: 11/02/2013] [Indexed: 11/28/2022]
|
21
|
|
22
|
Esteban MD, Aznar A, Fernández PS, Palop A. Combined effect of nisin, carvacrol and a previous thermal treatment on the growth of Salmonella enteritidis and Salmonella senftenberg. FOOD SCI TECHNOL INT 2013; 19:357-64. [PMID: 23729416 DOI: 10.1177/1082013212455185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to evaluate the combined effect of a previous mild heat treatment (15 min at 55 ) with the use of antimicrobials, nisin and carvacrol, on the growth of Salmonella enteritidis and Salmonella senftenberg. Natural antimicrobials, alone or combined with a previous mild heat treatment, affected the growth of these two serovars in Tryptone Soy Broth at 37 . Increasing concentrations of carvacrol had a significant effect on both growth rate and lag phase duration of both strains. The time to reach stationary phase was almost doubled in the case of S. enteritidis when a concentration of 0.77 mM in carvacrol was added. For S. senftenberg the effect was smaller. The effect of nisin and of heat, applied individually, was lower for both microorganisms. A combination of 1.2 µM nisin with 0.77 mM carvacrol significantly delayed the growth of heat treated cells, compared to the control without antimicrobials, showing additive effects.
Collapse
Affiliation(s)
- María-Dolores Esteban
- Departamento Ingeniería de Alimentos y del Equipamiento Agrícola, Universidad Politécnica de Cartagena, Spain
| | | | | | | |
Collapse
|