1
|
Shartau RB, Turcotte LDM, Bradshaw JC, Ross ARS, Surridge BD, Nemcek N, Johnson SC. Dissolved Algal Toxins along the Southern Coast of British Columbia Canada. Toxins (Basel) 2023; 15:395. [PMID: 37368696 DOI: 10.3390/toxins15060395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Harmful algal blooms (HABs) in coastal British Columbia (BC), Canada, negatively impact the salmon aquaculture industry. One disease of interest to salmon aquaculture is Net Pen Liver Disease (NPLD), which induces severe liver damage and is believed to be caused by the exposure to microcystins (MCs). To address the lack of information about algal toxins in BC marine environments and the risk they pose, this study investigated the presence of MCs and other toxins at aquaculture sites. Sampling was carried out using discrete water samples and Solid Phase Adsorption Toxin Tracking (SPATT) samplers from 2017-2019. All 283 SPATT samples and all 81 water samples tested positive for MCs. Testing for okadaic acid (OA) and domoic acid (DA) occurred in 66 and 43 samples, respectively, and all samples were positive for the toxin tested. Testing for dinophysistoxin-1 (DTX-1) (20 samples), pectenotoxin-2 (PTX-2) (20 samples), and yessotoxin (YTX) (17 samples) revealed that all samples were positive for the tested toxins. This study revealed the presence of multiple co-occurring toxins in BC's coastal waters and the levels detected in this study were below the regulatory limits for health and recreational use. This study expands our limited knowledge of algal toxins in coastal BC and shows that further studies are needed to understand the risks they pose to marine fisheries and ecosystems.
Collapse
Affiliation(s)
- Ryan B Shartau
- Department of Biology, The University of Texas at Tyler, Tyler, TX 75799, USA
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Lenora D M Turcotte
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Julia C Bradshaw
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Andrew R S Ross
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2, Canada
| | | | - Nina Nemcek
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2, Canada
| | - Stewart C Johnson
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
2
|
Jones SRM, Low JC, Goodall A. Parvicapsula pseudobranchicola in the northeast Pacific Ocean is rare in farmed Atlantic salmon Salmo salar despite widespread occurrence and pathology in wild Pacific salmon Oncorhynchus spp. Parasit Vectors 2023; 16:138. [PMID: 37085914 PMCID: PMC10122293 DOI: 10.1186/s13071-023-05751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/21/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Infection with the myxozoan parasite Parvicapsula pseudobranchicola causes disease in wild and farmed salmonids in Norway. In the northeast Pacific Ocean, the parasite has been reported in Pacific salmon Oncorhynchus spp. without evidence of disease. The objectives of the present study were to confirm the identity of P. pseudobranchicola in the Pacific, document its host and geographic ranges, and describe associated pathological changes. METHODS Ocean-entry year wild pink salmon Oncorhynchus gorbuscha, chum salmon O. keta, Chinook salmon O. tshawytscha, coho salmon O. kisutch and sockeye salmon O. nerka were collected in summer and autumn surveys near Vancouver Island (VI) and from a winter survey in the Gulf of Alaska. Samples were also obtained from farmed Atlantic salmon Salmo salar and Chinook salmon near VI. Samples were analysed by qPCR and histology using conventional staining or in situ hybridisation. Parasite sequence was obtained from small subunit ribosomal RNA gene (SSU rDNA). RESULTS Identical 1525 base-pair SSU rDNA sequences from infected pink salmon, chum salmon and Chinook salmon shared 99.93% identity with a P. pseudobranchicola sequence from Norwegian Atlantic salmon. In autumn surveys, the prevalence was greatest in chum salmon (91.8%) and pink salmon (85.9%) and less so in Chinook salmon (68.8%) and sockeye salmon (8.3%). In farmed salmon, the prevalence was zero in Atlantic salmon (n = 967) and 41% in Chinook salmon (n = 118). Infections were preferentially sited in pseudobranch and visualised by in situ hybridisation. Heavy parasite burdens in all species of Pacific salmon were inconsistently associated with focal granulomatous pseudobranchitis. CONCLUSIONS In the northeast Pacific, widespread occurrence of P. pseudobranchicola in Pacific salmon together with its absence or sporadic occurrence in farmed Atlantic salmon differs from its epidemiology in Norway, despite similar pathological development in the pseudobranch. Consequences of the infections to the health of wild Pacific salmon, identity of the invertebrate host and the distribution and abundance of infective actinospores are unknown and remain high priorities for research.
Collapse
Affiliation(s)
- Simon R M Jones
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC, Canada.
| | - Jessica C Low
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC, Canada
| | - Aidan Goodall
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC, Canada
| |
Collapse
|
3
|
Polinski MP, Gross LA, Marty GD, Garver KA. Heart inflammation and piscine orthoreovirus genotype-1 in Pacific Canada Atlantic salmon net-pen farms: 2016-2019. BMC Vet Res 2022; 18:306. [PMID: 35948980 PMCID: PMC9364591 DOI: 10.1186/s12917-022-03409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Piscine orthoreovirus genotype-1 (PRV-1) is a virus commonly associated with Atlantic salmon aquaculture with global variability in prevalence and association with disease. From August 2016 to November 2019, 2,070 fish sampled at 64 Atlantic salmon net-pen farm sites during 302 sampling events from British Columbia, Canada, were screened for PRV-1 using real-time qPCR. Nearly all populations became PRV-1 positive within one year of seawater entry irrespective of location, time of stocking, or producer. Cohorts became infected between 100–300 days at sea in > 90% of repeatedly sampled sites and remained infected until harvest (typically 500–700 days at sea). Heart inflammation, which is sometimes attributed to PRV-1, was also assessed in 779 production mortalities from 47 cohorts with known PRV status. Mild heart inflammation was common in mortalities from both PRV + and PRV- populations (67% and 68% prevalence, respectively). Moderate and severe lymphoplasmacytic heart inflammation was rare (11% and 3% prevalence, respectively); however, mainly arose (66 of 77 occurrences) in populations with PRV-1. Detection of PRV-1 RNA was also accomplished in water and sediment for which methods are described. These data cumulatively identify that PRV-1 ubiquitously infects farmed Atlantic salmon in British Columbia during seawater production but only in rare instances correlates with heart inflammation.
Collapse
Affiliation(s)
- Mark P Polinski
- Fisheries and Oceans, Canada Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, V9T6N7, Canada. .,U.S. Department of Agriculture National Coldwater Marine Aquaculture Center, Portage Rd, Orono, ME, 04469, USA.
| | - Lynden A Gross
- Fisheries and Oceans, Canada Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, V9T6N7, Canada
| | - Gary D Marty
- Animal Health Centre, Ministry of Agriculture and Food, 1767 Angus Campbell Rd, Abbotsford, V3G2M3, Canada
| | - Kyle A Garver
- Fisheries and Oceans, Canada Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, V9T6N7, Canada
| |
Collapse
|
4
|
Shartau RB, Snyman HN, Turcotte L, McCarron P, Bradshaw JC, Johnson SC. Acute microcystin exposure induces reversible histopathological changes in Chinook Salmon (Oncorhynchus tshawytscha) and Atlantic Salmon (Salmo salar). JOURNAL OF FISH DISEASES 2022; 45:729-742. [PMID: 35235682 DOI: 10.1111/jfd.13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Atlantic Salmon (Salmo salar) and Chinook Salmon (Oncorhynchus tshawytscha) develop a severe liver disease called net-pen liver disease (NPLD), which is characterized by hepatic lesions that include megalocytosis and loss of gross liver structure. Based on studies where salmonids have been exposed to microcystin (MC) via intraperitoneal injection, NPLD is believed to be caused by MC exposure, a hepatotoxin produced by cyanobacteria. Despite the link between MC and NPLD, it remains uncertain if environmentally relevant MC exposure is responsible for NPLD. To determine if we could produce histopathology consistent with NPLD, we compared the response of Atlantic and Chinook Salmon sub-lethal MC exposure. Salmon were orally gavaged with saline or MC containing algal paste and sampled over 2 weeks post-exposure. Liver lesions appeared by 6 h but were resolved 2-weeks post-exposure; histopathological changes observed in other tissues were not as widespread, nor was their severity as great as those in the liver. There was no evidence for NPLD due to the absence of hepatic megalocytosis. These results indicate that the development of NPLD is not due to acute MC exposure but may be associated with higher MC concentration occurring in food, long-term exposure through drinking of contaminated seawater and/or interactions with other marine toxins.
Collapse
Affiliation(s)
- Ryan B Shartau
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Heindrich N Snyman
- Animal Health Laboratory, University of Guelph, Kemptville, Ontario, Canada
| | - Lenora Turcotte
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, Halifax, Nova Scotia, Canada
| | - Julia C Bradshaw
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Stewart C Johnson
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| |
Collapse
|
5
|
Jia B, Delphino MKVC, Awosile B, Hewison T, Whittaker P, Morrison D, Kamaitis M, Siah A, Milligan B, Johnson SC, Gardner IA. Review of infectious agent occurrence in wild salmonids in British Columbia, Canada. JOURNAL OF FISH DISEASES 2020; 43:153-175. [PMID: 31742733 DOI: 10.1111/jfd.13084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Wild Pacific salmonids (WPS) are economically and culturally important to the Pacific North region. Most recently, some populations of WPS have been in decline. Of hypothesized factors contributing to the decline, infectious agents have been postulated to increase the risk of mortality in Pacific salmon. We present a literature review of both published journal and unpublished data to describe the distribution of infectious agents reported in wild Pacific salmonid populations in British Columbia (BC), Canada. We targeted 10 infectious agents, considered to potentially cause severe economic losses in Atlantic salmon or be of conservation concern for wild salmon in BC. The findings indicated a low frequency of infectious hematopoietic necrosis virus, piscine orthoreovirus, viral haemorrhagic septicaemia virus, Aeromonas salmonicida, Renibacterium salmoninarum, Piscirickettsia salmonis and other Rickettsia-like organisms, Yersinia ruckeri, Tenacibaculum maritimum and Moritella viscosa. No positive results were reported for infestations with Paramoeba perurans in peer-reviewed papers and the DFO Fish Pathology Program database. This review synthesizes existing information, as well as gaps therein, that can support the design and implementation of a long-term surveillance programme of infectious agents in wild salmonids in BC.
Collapse
Affiliation(s)
- Beibei Jia
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Marina K V C Delphino
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Babafela Awosile
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Tim Hewison
- Grieg Seafood BC Ltd., Campbell River, BC, Canada
| | | | | | | | - Ahmed Siah
- British Columbia Centre for Aquatic Health Sciences, Campbell River, BC, Canada
| | | | - Stewart C Johnson
- Pacific Biological Station, Fisheries and Oceans Canada (DFO), Nanaimo, BC, Canada
| | - Ian A Gardner
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
6
|
Distinct seasonal infectious agent profiles in life-history variants of juvenile Fraser River Chinook salmon: An application of high-throughput genomic screening. PLoS One 2018; 13:e0195472. [PMID: 29672620 PMCID: PMC5908190 DOI: 10.1371/journal.pone.0195472] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/25/2018] [Indexed: 11/19/2022] Open
Abstract
Disease-causing infectious agents are natural components of ecosystems and considered a major selective force driving the evolution of host species. However, knowledge of the presence and abundance of suites of infectious agents in wild populations has been constrained by our ability to easily screen for them. Using salmon as a model, we contrasted seasonal pathogenic infectious agents in life history variants of juvenile Chinook salmon from the Fraser River system (N = 655), British Columbia (BC), through the application of a novel high-throughput quantitative PCR monitoring platform. This included freshwater hatchery origin fish and samples taken at sea between ocean entry in spring and over-winter residence in coastal waters. These variants currently display opposite trends in productivity, with yearling stocks generally in decline and sub-yearling stocks doing comparatively well. We detected the presence of 32 agents, 21 of which were at >1% prevalence. Variants carried a different infectious agent profile in terms of (1) diversity, (2) origin or transmission environment of infectious agents, and (3) prevalence and abundance of individual agents. Differences in profiles tended to reflect differential timing and residence patterns through freshwater, estuarine and marine habitats. Over all seasons, individual salmon carried an average of 3.7 agents. Diversity changed significantly, increasing upon saltwater entrance, increasing through the fall and decreasing slightly in winter. Diversity varied between life history types with yearling individuals carrying 1.3-times more agents on average. Shifts in prevalence and load over time were examined to identify agents with the greatest potential for impact at the stock level; those displaying concurrent decrease in prevalence and load truncation with time. Of those six that had similar patterns in both variants, five reached higher prevalence in yearling fish while only one reached higher prevalence in sub-yearling fish; this pattern was present for an additional five agents in yearling fish only.
Collapse
|
7
|
Purcell MK, Powers RL, Evered J, Kerwin J, Meyers TR, Stewart B, Winton JR. Molecular testing of adult Pacific salmon and trout (Oncorhynchus spp.) for several RNA viruses demonstrates widespread distribution of piscine orthoreovirus in Alaska and Washington. JOURNAL OF FISH DISEASES 2018; 41:347-355. [PMID: 29159930 DOI: 10.1111/jfd.12740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
This research was initiated in conjunction with a systematic, multiagency surveillance effort in the United States (U.S.) in response to reported findings of infectious salmon anaemia virus (ISAV) RNA in British Columbia, Canada. In the systematic surveillance study reported in a companion paper, tissues from various salmonids taken from Washington and Alaska were surveyed for ISAV RNA using the U.S.-approved diagnostic method, and samples were released for use in this present study only after testing negative. Here, we tested a subset of these samples for ISAV RNA with three additional published molecular assays, as well as for RNA from salmonid alphavirus (SAV), piscine myocarditis virus (PMCV) and piscine orthoreovirus (PRV). All samples (n = 2,252; 121 stock cohorts) tested negative for RNA from ISAV, PMCV, and SAV. In contrast, there were 25 stock cohorts from Washington and Alaska that had one or more individuals test positive for PRV RNA; prevalence within stocks varied and ranged from 2% to 73%. The overall prevalence of PRV RNA-positive individuals across the study was 3.4% (77 of 2,252 fish tested). Findings of PRV RNA were most common in coho (Oncorhynchus kisutch Walbaum) and Chinook (O. tshawytscha Walbaum) salmon.
Collapse
Affiliation(s)
- M K Purcell
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - R L Powers
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - J Evered
- U.S. Fish and Wildlife Service, Olympia Fish Health Center, Lacey, WA, USA
| | - J Kerwin
- Washington Department of Fish and Wildlife, Olympia, WA, USA
| | - T R Meyers
- Division of Commercial Fisheries, Alaska Department of Fish and Game, Juneau, AK, USA
| | - B Stewart
- Northwest Indian Fisheries Commission, Olympia, WA, USA
| | - J R Winton
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| |
Collapse
|
8
|
Morton A, Routledge R, Hrushowy S, Kibenge M, Kibenge F. The effect of exposure to farmed salmon on piscine orthoreovirus infection and fitness in wild Pacific salmon in British Columbia, Canada. PLoS One 2017; 12:e0188793. [PMID: 29236731 PMCID: PMC5728458 DOI: 10.1371/journal.pone.0188793] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/13/2017] [Indexed: 12/29/2022] Open
Abstract
The disease Heart and Skeletal Muscle Inflammation (HSMI) is causing substantial economic losses to the Norwegian salmon farming industry where the causative agent, piscine orthoreovirus (PRV), is reportedly spreading from farmed to wild Atlantic salmon (Salmo salar) with as yet undetermined impacts. To assess if PRV infection is epidemiologically linked between wild and farmed salmon in the eastern Pacific, wild Pacific salmon (Oncorhynchus sp.) from regions designated as high or low exposure to salmon farms and farmed Atlantic salmon reared in British Columbia (BC) were tested for PRV. The proportion of PRV infection in wild fish was related to exposure to salmon farms (p = 0.0097). PRV was detected in: 95% of farmed Atlantic salmon, 37-45% of wild salmon from regions highly exposed to salmon farms and 5% of wild salmon from the regions furthest from salmon farms. The proportion of PRV infection was also significantly lower (p = 0.0008) where wild salmon had been challenged by an arduous return migration into high-elevation spawning habitat. Inter-annual PRV infection declined in both wild and farmed salmon from 2012-2013 (p ≤ 0.002). These results suggest that PRV transfer is occurring from farmed Atlantic salmon to wild Pacific salmon, that infection in farmed salmon may be influencing infection rates in wild salmon, and that this may pose a risk of reduced fitness in wild salmon impacting their survival and reproduction.
Collapse
Affiliation(s)
- Alexandra Morton
- Raincoast Research Society, Sointula, British Columbia, Canada
- * E-mail:
| | - Richard Routledge
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stacey Hrushowy
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Molly Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Frederick Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
9
|
Braden LM, Barker DE, Koop BF, Jones SRM. Differential modulation of resistance biomarkers in skin of juvenile and mature pink salmon, Oncorhynchus gorbuscha by the salmon louse, Lepeophtheirus salmonis. FISH & SHELLFISH IMMUNOLOGY 2015; 47:7-14. [PMID: 26272636 DOI: 10.1016/j.fsi.2015.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 06/04/2023]
Abstract
Juvenile pink salmon larger than 0.7 g reject the sea louse, Lepeophtheirus salmonis, and are considered resistant to the infection. Robust innate defense responses in the skin contribute to the observed resistance. In contrast adult pink salmon captured at sea or shortly before spawning carry large numbers of the parasite, suggesting inability to control the infection. The purpose of this research is to better understand these apparently contradictory conclusions by comparing a suite of genetic and cellular markers of resistance to L. salmonis in the skin of juvenile and mature pink salmon. The expression of major histocompatibility factor II, C-reactive protein, interleukin-1β, interleukin-8 and cyclooxygenase-2 was down-regulated in mature but not juvenile pink salmon. Similarly, skin at the site of parasite attachment in juvenile salmon was highly populated with MHIIβ(+) and IL-1β(+) cells that were either absent, or at reduced levels at similar sites in mature salmon. In addition, mucocyte density was relatively low in the skin of mature salmon, irrespective of louse infection. In juveniles, the higher mucocyte density decreased following louse attachment. We show that in mature pink salmon, genetic and histological responses in skin are depressed and speculate that salmonid defense against L. salmonis is modulated by maturation.
Collapse
Affiliation(s)
- Laura M Braden
- Department of Biology, University of Victoria, Victoria, B.C., V8W 3N5, Canada
| | - Duane E Barker
- Fisheries & Aquaculture Department, Vancouver Island University, Nanaimo, B.C., V9R 5S5, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, B.C., V8W 3N5, Canada
| | - Simon R M Jones
- Department of Biology, University of Victoria, Victoria, B.C., V8W 3N5, Canada; Fisheries and Ocean Canada, Pacific Biological Station, Nanaimo, B.C., V9T 6N7, Canada.
| |
Collapse
|
10
|
Marty GD, Morrison DB, Bidulka J, Joseph T, Siah A. Piscine reovirus in wild and farmed salmonids in British Columbia, Canada: 1974-2013. JOURNAL OF FISH DISEASES 2015; 38:713-28. [PMID: 25048977 DOI: 10.1111/jfd.12285] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/28/2014] [Accepted: 06/05/2014] [Indexed: 05/18/2023]
Abstract
Piscine reovirus (PRV) was common among wild and farmed salmonids in British Columbia, western Canada, from 1987 to 2013. Salmonid tissues tested for PRV by real-time rRT-PCR included sections from archived paraffin blocks from 1974 to 2008 (n = 363) and fresh-frozen hearts from 2013 (n = 916). The earliest PRV-positive sample was from a wild-source steelhead trout, Oncorhynchus mykiss (Walbaum), from 1977. By histopathology (n = 404), no fish had lesions diagnostic for heart and skeletal muscle inflammation (HSMI). In some groups, lymphohistiocytic endocarditis affected a greater proportion of fish with PRV than fish without PRV, but the range of Ct values among affected fish was within the range of Ct values among unaffected fish. Also, fish with the lowest PRV Ct values (18.4-21.7) lacked endocarditis or any other consistent lesion. From 1987 to 1994, the proportion of PRV positives was not significantly different between farmed Atlantic salmon, Salmo salar L. (44% of 48), and wild-source salmonids (31% of 45). In 2013, the proportion of PRV positives was not significantly different between wild coho salmon, Oncorhynchus kisutch (Walbaum), sampled from British Columbia (5.0% of 60) or the reference region, Alaska, USA (10% of 58).
Collapse
Affiliation(s)
- G D Marty
- Animal Health Centre, Ministry of Agriculture, Abbotsford, BC, Canada
| | - D B Morrison
- Marine Harvest Canada, Campbell River, BC, Canada
| | - J Bidulka
- Animal Health Centre, Ministry of Agriculture, Abbotsford, BC, Canada
| | - T Joseph
- Animal Health Centre, Ministry of Agriculture, Abbotsford, BC, Canada
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - A Siah
- British Columbia Centre for Aquatic Health Sciences, Campbell River, BC, Canada
| |
Collapse
|
11
|
Colvin ME, Peterson JT, Kent ML, Schreck CB. Occupancy modeling for improved accuracy and understanding of pathogen prevalence and dynamics. PLoS One 2015; 10:e0116605. [PMID: 25738709 PMCID: PMC4349882 DOI: 10.1371/journal.pone.0116605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/11/2014] [Indexed: 11/19/2022] Open
Abstract
Most pathogen detection tests are imperfect, with a sensitivity < 100%, thereby resulting in the potential for a false negative, where a pathogen is present but not detected. False negatives in a sample inflate the number of non-detections, negatively biasing estimates of pathogen prevalence. Histological examination of tissues as a diagnostic test can be advantageous as multiple pathogens can be examined and providing important information on associated pathological changes to the host. However, it is usually less sensitive than molecular or microbiological tests for specific pathogens. Our study objectives were to 1) develop a hierarchical occupancy model to examine pathogen prevalence in spring Chinook salmon Oncorhynchus tshawytscha and their distribution among host tissues 2) use the model to estimate pathogen-specific test sensitivities and infection rates, and 3) illustrate the effect of using replicate within host sampling on sample sizes required to detect a pathogen. We examined histological sections of replicate tissue samples from spring Chinook salmon O. tshawytscha collected after spawning for common pathogens seen in this population: Apophallus/echinostome metacercariae, Parvicapsula minibicornis, Nanophyetus salmincola/ metacercariae, and Renibacterium salmoninarum. A hierarchical occupancy model was developed to estimate pathogen and tissue-specific test sensitivities and unbiased estimation of host- and organ-level infection rates. Model estimated sensitivities and host- and organ-level infections rates varied among pathogens and model estimated infection rate was higher than prevalence unadjusted for test sensitivity, confirming that prevalence unadjusted for test sensitivity was negatively biased. The modeling approach provided an analytical approach for using hierarchically structured pathogen detection data from lower sensitivity diagnostic tests, such as histology, to obtain unbiased pathogen prevalence estimates with associated uncertainties. Accounting for test sensitivity using within host replicate samples also required fewer individual fish to be sampled. This approach is useful for evaluating pathogen or microbe community dynamics when test sensitivity is <100%.
Collapse
Affiliation(s)
- Michael E. Colvin
- Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, Oregon, 97331, United States of America
| | - James T. Peterson
- Oregon Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey-Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, Oregon, 97331, United States of America
| | - Michael L. Kent
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, Oregon, 97331, United States of America
| | - Carl B. Schreck
- Oregon Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey-Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, Oregon, 97331, United States of America
| |
Collapse
|
12
|
Miller KM, Teffer A, Tucker S, Li S, Schulze AD, Trudel M, Juanes F, Tabata A, Kaukinen KH, Ginther NG, Ming TJ, Cooke SJ, Hipfner JM, Patterson DA, Hinch SG. Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines. Evol Appl 2014; 7:812-55. [PMID: 25469162 PMCID: PMC4227861 DOI: 10.1111/eva.12164] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/06/2014] [Indexed: 12/23/2022] Open
Abstract
Emerging diseases are impacting animals under high-density culture, yet few studies assess their importance to wild populations. Microparasites selected for enhanced virulence in culture settings should be less successful maintaining infectivity in wild populations, as once the host dies, there are limited opportunities to infect new individuals. Instead, moderately virulent microparasites persisting for long periods across multiple environments are of greatest concern. Evolved resistance to endemic microparasites may reduce susceptibilities, but as barriers to microparasite distributions are weakened, and environments become more stressful, unexposed populations may be impacted and pathogenicity enhanced. We provide an overview of the evolutionary and ecological impacts of infectious diseases in wild salmon and suggest ways in which modern technologies can elucidate the microparasites of greatest potential import. We present four case studies that resolve microparasite impacts on adult salmon migration success, impact of river warming on microparasite replication, and infection status on susceptibility to predation. Future health of wild salmon must be considered in a holistic context that includes the cumulative or synergistic impacts of multiple stressors. These approaches will identify populations at greatest risk, critically needed to manage and potentially ameliorate the shifts in current or future trajectories of wild populations.
Collapse
Affiliation(s)
- Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
- Forest and Conservation Sciences, University of British ColumbiaVancouver, BC, Canada
| | - Amy Teffer
- Biology Department, University of VictoriaVictoria, BC, Canada
| | - Strahan Tucker
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Angela D Schulze
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Marc Trudel
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
- Biology Department, University of VictoriaVictoria, BC, Canada
| | - Francis Juanes
- Biology Department, University of VictoriaVictoria, BC, Canada
| | - Amy Tabata
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Norma G Ginther
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimo, BC, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton UniverisyOttawa, ON, Canada
| | - J Mark Hipfner
- Environment Canada, Wildlife Research DivisionDelta, BC, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, School of Resource and Environmental Management, Simon Fraser University, Science BranchBurnaby, BC, Canada
| | - Scott G Hinch
- Forest and Conservation Sciences, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
13
|
Kibenge MJT, Iwamoto T, Wang Y, Morton A, Godoy MG, Kibenge FSB. Whole-genome analysis of piscine reovirus (PRV) shows PRV represents a new genus in family Reoviridae and its genome segment S1 sequences group it into two separate sub-genotypes. Virol J 2013; 10:230. [PMID: 23844948 PMCID: PMC3711887 DOI: 10.1186/1743-422x-10-230] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/05/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Piscine reovirus (PRV) is a newly discovered fish reovirus of anadromous and marine fish ubiquitous among fish in Norwegian salmon farms, and likely the causative agent of heart and skeletal muscle inflammation (HSMI). HSMI is an increasingly economically significant disease in Atlantic salmon (Salmo salar) farms. The nucleotide sequence data available for PRV are limited, and there is no genetic information on this virus outside of Norway and none from wild fish. METHODS RT-PCR amplification and sequencing were used to obtain the complete viral genome of PRV (10 segments) from western Canada and Chile. The genetic diversity among the PRV strains and their relationship to Norwegian PRV isolates were determined by phylogenetic analyses and sequence identity comparisons. RESULTS PRV is distantly related to members of the genera Orthoreovirus and Aquareovirus and an unambiguous new genus within the family Reoviridae. The Canadian and Norwegian PRV strains are most divergent in the segment S1 and S4 encoded proteins. Phylogenetic analysis of PRV S1 sequences, for which the largest number of complete sequences from different "isolates" is available, grouped Norwegian PRV strains into a single genotype, Genotype I, with sub-genotypes, Ia and Ib. The Canadian PRV strains matched sub-genotype Ia and Chilean PRV strains matched sub-genotype Ib. CONCLUSIONS PRV should be considered as a member of a new genus within the family Reoviridae with two major Norwegian sub-genotypes. The Canadian PRV diverged from Norwegian sub-genotype Ia around 2007 ± 1, whereas the Chilean PRV diverged from Norwegian sub-genotype Ib around 2008 ± 1.
Collapse
Affiliation(s)
- Molly JT Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PEI C1A 4P3, Canada
| | - Tokinori Iwamoto
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PEI C1A 4P3, Canada
| | - Yingwei Wang
- Department of Computer Science and Information Technology, University of Prince Edward Island, 550 University Ave., Charlottetown, PEI C1A 4P3, Canada
| | - Alexandra Morton
- Raincoast Research Society, Box 399, 390 1st Street, Sointula, BC V0N 3E0, Canada
| | - Marcos G Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Diego de Almagro Norte 1013, No. 10, Puerto Montt, Chile
- Universidad San Sebastián. Facultad de Ciencias, Lago Panguipulli 1390, Puerto Montt, Chile
- ETECMA, Diego de Almagro Norte 1013 No. 10, Sector Cardonal, Puerto Montt, X Región, Chile
| | - Frederick SB Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PEI C1A 4P3, Canada
| |
Collapse
|
14
|
Rogers LA, Peacock SJ, McKenzie P, DeDominicis S, Jones SRM, Chandler P, Foreman MGG, Revie CW, Krkošek M. Modeling parasite dynamics on farmed salmon for precautionary conservation management of wild salmon. PLoS One 2013; 8:e60096. [PMID: 23577082 PMCID: PMC3618109 DOI: 10.1371/journal.pone.0060096] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/22/2013] [Indexed: 11/24/2022] Open
Abstract
Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions.
Collapse
Affiliation(s)
- Luke A Rogers
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kent ML, Benda S, St-Hilaire S, Schreck CB. Sensitivity and specificity of histology for diagnoses of four common pathogens and detection of nontarget pathogens in adult Chinook salmon (Oncorhynchus tshawytscha) in fresh water. J Vet Diagn Invest 2013; 25:341-51. [DOI: 10.1177/1040638713482124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Histology is often underutilized in aquatic animal disease screening and diagnostics. The agreement between histological classifications of infection and results using diagnostic testing from the American Fisheries Society’s Blue Book was conducted with 4 common salmon pathogens: Aeromonas salmonicida, Renibacterium salmoninarum, Ceratomyxa shasta, and Nanophyetus salmincola. Adult Chinook salmon ( Oncorhynchus tshawytscha) in Oregon were evaluated, and agreement between tests was calculated. Live and dead (both pre- and postspawning) salmon were collected from the Willamette River, Oregon, its tributaries, the Willamette Hatchery, and after holding in cool, pathogen-free water during maturation at Oregon State University. Sensitivity and specificity of histology compared to Blue Book methods for all fish, live fish only, and dead (pre- and postspawned combined) fish only were, respectively, as follows: A. salmonicida ( n = 105): specificity 87.5%, 87.5%, 87.5% and sensitivity 38.6%, 14.8%, 60.0%; R. salmoninarum ( n = 111): specificity 91.9%, 85.7%, 97.7% and sensitivity 16.0%, 7.1%, 27.2%; C. shasta ( n = 136): specificity 56.0%, 63.3%, 28.6% and sensitivity 83.3%, 86.2%, 71.4%; N. salmincola ( n = 228): specificity 68.2%, 66.7%, not possible to calculate for dead fish and sensitivity 83.5%, 80.5%, 87.3%. The specificity was good for bacterial pathogens. This was not the case for C. shasta, likely due to detection of presporogenic forms only by histology. Sensitivity of histology for bacterial pathogens was low with the exception of dead fish with A. salmonicida. Kappa analysis for agreement between Blue Book and histology methods was poor to moderate. However, histological observations revealed the presence of other pathogens that would not be detected by other methods.
Collapse
Affiliation(s)
- Michael L. Kent
- Department of Microbiology (Kent), Oregon State University, Corvallis, OR
- Department of Fisheries and Wildlife (Benda, Schreck), Oregon State University, Corvallis, OR
- Department of Oregon Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey Department of Fisheries and Wildlife (Schreck), Oregon State University, Corvallis, OR
- Atlantic College of Veterinary Medicine, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada (St-Hilaire)
| | - Susan Benda
- Department of Microbiology (Kent), Oregon State University, Corvallis, OR
- Department of Fisheries and Wildlife (Benda, Schreck), Oregon State University, Corvallis, OR
- Department of Oregon Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey Department of Fisheries and Wildlife (Schreck), Oregon State University, Corvallis, OR
- Atlantic College of Veterinary Medicine, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada (St-Hilaire)
| | - Sophie St-Hilaire
- Department of Microbiology (Kent), Oregon State University, Corvallis, OR
- Department of Fisheries and Wildlife (Benda, Schreck), Oregon State University, Corvallis, OR
- Department of Oregon Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey Department of Fisheries and Wildlife (Schreck), Oregon State University, Corvallis, OR
- Atlantic College of Veterinary Medicine, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada (St-Hilaire)
| | - Carl B. Schreck
- Department of Microbiology (Kent), Oregon State University, Corvallis, OR
- Department of Fisheries and Wildlife (Benda, Schreck), Oregon State University, Corvallis, OR
- Department of Oregon Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey Department of Fisheries and Wildlife (Schreck), Oregon State University, Corvallis, OR
- Atlantic College of Veterinary Medicine, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada (St-Hilaire)
| |
Collapse
|