1
|
Sadat Larijani M, Ramezani A, Mashhadi Abolghasem Shirazi M, Bolhassani A, Pouriayevali MH, Shahbazi S, Sadat SM. Evaluation of transduced dendritic cells expressing HIV-1 p24-Nef antigens in HIV-specific cytotoxic T cells induction as a therapeutic candidate vaccine. Virus Res 2021; 298:198403. [PMID: 33775753 DOI: 10.1016/j.virusres.2021.198403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Various approaches have been investigated to prevent or eliminate HIV-1 since 1981. However, the virus has been affecting human population worldwide with no effective vaccine yet. The conserved regions among the viral genes are suitable targets in mutable viruses to induce the immune responses via an effective delivery platform. In this study, we aimed at evaluation of p24 and nef in two forms of full and truncated genes as two fusion antigenic forms according to our previous bioinformatics analysis. The designed antigens were then transferred through ex vivo generated dendritic cells and also proteins in BALB/c to assess and compare immunogenicity. p24 and Nef amino acid sequences were aligned, then, the most conserved regions were selected and two fusion forms as the truncated (p24:80-231aa-Nef:120-150aa) and the full from (p24-Nef) were cloned and expressed in prokaryotic and eukaryotic systems. Lentiviral vectors were applied to generate recombinant virions harboring the genes of interest to transduce generated murine dendritic cells. BALB/c mice received the recombinant DCs or recombinant proteins according to the defined schedule. IgG development was assessed to determine humoral immune activity and cellular immune responses were evaluated by IL-5 and IFN-y induction. Granzyme B secretion was also investigated to determine CTL activity in different immunized groups. The data showed high induction of cellular immune responses in dendritic cell immunization specifically in immunized mice with the truncated form of the p24 and Nef by high secretion of IFN-y and strong CTL activity. Moreover, protein/ DC prime-boost formulation led to stronger Th1 pathway and strong CTL activation in comparison with other formulations. The generated recombinant dendritic cells expressing p24-Nef induced humoral and cellular immunity in a Th1 pathway specifically with the in silico predicted truncated antigen which could be of high value as a dendritic cell therapeutic vaccine candidate against HIV-1.
Collapse
Affiliation(s)
- Mona Sadat Larijani
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran; Hepatitis, AIDS and Blood borne diseases Department, Pasteur Institute of Iran, Tehran, Iran
| | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Azam Bolhassani
- Hepatitis, AIDS and Blood borne diseases Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hassan Pouriayevali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Sepideh Shahbazi
- Hepatitis, AIDS and Blood borne diseases Department, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Hepatitis, AIDS and Blood borne diseases Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Roy PK, Chatterjee AN, Li XZ. The effect of vaccination to dendritic cell and immune cell interaction in HIV disease progression. INT J BIOMATH 2015. [DOI: 10.1142/s1793524516500054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this research paper, our main objective is to find out the meticulous role of activated dendritic cells (DCs) during the human immunodeficiency virus (HIV) infection process. DCs play a dual role by enhancing both HIV infection progression, as well as antiviral immune response. To explore the implications of these dual roles, we have formulated our mathematical model and analyzed the model by both analytical and numerical approaches. By using an impulsive differential equation, we have studied the effect of DC-based vaccination. Analytically we have determined the threshold value of drug dosage and dosing interval for optimum levels of infection. We have also investigated the effect of perfect adherence of drug dose on the immune cell count in extreme cases and observed that, systematic drug dose of the immune cells leads to its maximum level.
Collapse
Affiliation(s)
- Priti Kumar Roy
- Center for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - Amar Nath Chatterjee
- Center for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - Xue-Zhi Li
- College of Mathematics and Information Science, Xinyang Normal University, Xinyang 464000, P. R. China
| |
Collapse
|
3
|
Hargadon KM. Murine and Human Model Systems for the Study of Dendritic Cell Immunobiology. Int Rev Immunol 2014; 35:85-115. [DOI: 10.3109/08830185.2014.952413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Egan MA. Towards the development of a therapeutic vaccine for the treatment of HIV-1 infection: are we closer than ever? Expert Rev Vaccines 2014; 6:289-91. [PMID: 17542741 DOI: 10.1586/14760584.6.3.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
García-Díaz D, Rodríguez I, Santisteban Y, Márquez G, Terrero Y, Brown E, Iglesias E. Th2-Th1 shift with the multiantigenic formulation TERAVAC-HIV-1 in Balb/c mice. Immunol Lett 2012. [PMID: 23183092 DOI: 10.1016/j.imlet.2012.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In chronic HIV infection a progressive Th1 to Th2/Th0 cytokine-profile shift is related to disease progression. One of the possible benefits of a therapeutic vaccination might be to counterbalance this phenomenon to allow viral replication control under a Th1-type immune response. TERAVAC-HIV-1 is a multiantigenic formulation vaccine candidate against HIV-1 which comprises the recombinant protein CR3 that contains T cell epitopes and the surface and nucleocapsid antigens of Hepatitis B Virus (HBV). Previous studies showed that such virus like particles of the HBV provide a Th1 adjuvant effect. The present studies examined the capacity of TERAVAC to elicit a Th1 response in the presence of an ongoing HIV-specific Th2-type response in Balb/c mice. To examine this issue, we injected subcutaneously the animals with CR3 or viral lysate in alum which resulted in a Th2-type response. The CR3-specific Th2-type response was verified by induction of IL-4 and IL-10 secretion in ex vivo stimulated splenocytes without secretion of IFN-γ and IgG2a antibodies in serum. Further subcutaneous and simultaneous subcutaneous-nasal immunizations of the same mice with TERAVAC promoted IFN-γ secretion and production of IgG2a antibodies in accordance with a Th1-type response. This result suggests a therapeutic benefit of this vaccine candidate in the restoration of the Th1-type HIV-specific cellular response in seropositive patients.
Collapse
Affiliation(s)
- Darien García-Díaz
- Centro de Ingeniería Genética y Biotecnología (CIGB), P.O. Box 6162, Havana 10600, Cuba
| | | | | | | | | | | | | |
Collapse
|
6
|
Posch W, Cardinaud S, Hamimi C, Fletcher A, Mühlbacher A, Loacker K, Eichberger P, Dierich MP, Pancino G, Lass-Flörl C, Moris A, Saez-Cirion A, Wilflingseder D. Antibodies attenuate the capacity of dendritic cells to stimulate HIV-specific cytotoxic T lymphocytes. J Allergy Clin Immunol 2012; 130:1368-74.e2. [PMID: 23063584 DOI: 10.1016/j.jaci.2012.08.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/07/2012] [Accepted: 08/17/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND Control of HIV is suggested to depend on potent effector functions of the virus-specific CD8(+) T-cell response. Antigen opsonization can modulate the capture of antigen, its presentation, and the priming of specific CD8(+) T-cell responses. OBJECTIVE We have previously shown that opsonization of retroviruses acts as an endogenous adjuvant for dendritic cell (DC)-mediated induction of specific cytotoxic T lymphocytes (CTLs). However, in some HIV-positive subjects, high levels of antibodies and low levels of complement fragments coat the HIV surface. METHODS Therefore we analyzed the effect of IgG opsonization on the antigen-presenting capacity of DCs by using CD8(+) T-cell proliferation assays after repeated prime boosting, by measuring the antiviral activity against HIV-infected autologous CD4(+) T cells, and by determining IFN-γ secretion from HIV-specific CTL clones. RESULTS We find that DCs exposed to IgG-opsonized HIV significantly decreased the HIV-specific CD8(+) T-cell response compared with the earlier described efficient CD8(+) T-cell activation induced by DCs loaded with complement-opsonized HIV. DCs exposed to HIV bearing high surface IgG levels after incubation in plasma from HIV-infected subjects acted as weak stimulators for HIV-specific CTL clones. In contrast, HIV opsonized with plasma from patients exhibiting high complement and low IgG deposition on the viral surface favored significantly higher activation of HIV-specific CD8(+) T-cell clones. CONCLUSION Our ex vivo and in vitro observations provide the first evidence that IgG opsonization of HIV is associated with a decreased CTL-stimulatory capacity of DCs.
Collapse
Affiliation(s)
- Wilfried Posch
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cools N, Petrizzo A, Smits E, Buonaguro FM, Tornesello ML, Berneman Z, Buonaguro L. Dendritic cells in the pathogenesis and treatment of human diseases: a Janus Bifrons? Immunotherapy 2012; 3:1203-22. [PMID: 21995572 DOI: 10.2217/imt.11.110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) represent the bridging cell compartment between a variety of nonself antigens (i.e., microbial, cancer and vaccine antigens) and adaptive immunity, orchestrating the quality and potency of downstream immune responses. Because of the central role of DCs in the generation and regulation of immunity, the modulation of DC function in order to shape immune responses is gaining momentum. In this respect, recent advances in understanding DC biology, as well as the required molecular signals for induction of T-cell immunity, have spurred many experimental strategies to use DCs for therapeutic immunological approaches for infections and cancer. However, when DCs lose control over such 'protective' responses - by alterations in their number, phenotype and/or function - undesired effects leading to allergy and autoimmune clinical manifestations may occur. Novel therapeutic approaches have been designed and currently evaluated in order to address DCs and silence these immunopathological processes. In this article we present recent concepts of DC biology and some medical implications in view of therapeutic opportunities.
Collapse
Affiliation(s)
- Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (Vaxinfectio), University of Antwerp, B-2610 Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
8
|
Wanjalla CN, Faul EJ, Gomme EA, Schnell MJ. Dendritic cells infected by recombinant rabies virus vaccine vector expressing HIV-1 Gag are immunogenic even in the presence of vector-specific immunity. Vaccine 2010; 29:130-40. [PMID: 20728525 DOI: 10.1016/j.vaccine.2010.08.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 08/02/2010] [Accepted: 08/06/2010] [Indexed: 11/28/2022]
Abstract
Dendritic cells (DC) are the most potent antigen presenting cells whose ability to interact with T cells, B cells and NK cells has led to their extensive use in vaccine design. Here, we designed a DC-based HIV-1 vaccine using an attenuated rabies virus vector expressing HIV-1 Gag (RIDC-Gag). To test this, BALB/c mice were immunized with RIDC-Gag, and the primary, secondary as well as humoral immune responses were monitored. Our results indicate that RIDC-Gag stimulated HIV-1 Gag-specific immune responses in mice. When challenged with vaccinia virus (VV) expressing HIV-1 Gag, they elicited a potent Gag-specific recall response characterized by CD8+ T cells expressing multiple cytokines that were capable of specifically lysing Gag-pulsed target cells. Moreover, RIDC-Gag also enhanced CD8+ T cell responses via a homologous prime-boost regimen. These results show that a DC-based vaccine using live RV is immunogenic and a potential candidate for a therapeutic HIV-1 vaccine.
Collapse
Affiliation(s)
- Celestine N Wanjalla
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
9
|
Cafaro A, Macchia I, Maggiorella MT, Titti F, Ensoli B. Innovative approaches to develop prophylactic and therapeutic vaccines against HIV/AIDS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 655:189-242. [PMID: 20047043 DOI: 10.1007/978-1-4419-1132-2_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The acquired immunodeficiency syndrome (AIDS) emerged in the human population in the summer of 1981. According to the latest United Nations estimates, worldwide over 33 million people are infected with human immunodeficiency virus (HIV) and the prevalence rates continue to rise globally. To control the alarming spread of HIV, an urgent need exists for developing a safe and effective vaccine that prevents individuals from becoming infected or progressing to disease. To be effective, an HIV/AIDS vaccine should induce broad and long-lasting humoral and cellular immune responses, at both mucosal and systemic level. However, the nature of protective immune responses remains largely elusive and this represents one of the major roadblocks preventing the development of an effective vaccine. Here we summarize our present understanding of the factors responsible for resistance to infection or control of progression to disease in human and monkey that may be relevant to vaccine development and briefly review recent approaches which are currently being tested in clinical trials. Finally, the rationale and the current status of novel strategies based on nonstructural HIV-1 proteins, such as Tat, Nef and Rev, used alone or in combination with modified structural HIV-1 Env proteins are discussed.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
10
|
Abstract
Among the microorganisms that cause diseases of medical or veterinary importance, the only group that is entirely dependent on the host, and hence not easily amenable to therapy via pharmaceuticals, is the viruses. Since viruses are obligate intracellular pathogens, and therefore depend a great deal on cellular processes, direct therapy of viral infections is difficult. Thus, modifying or targeting nonspecific or specific immune responses is an important aspect of intervention of ongoing viral infections. However, as a result of the unavailability of effective vaccines and the extended duration of manifestation, chronic viral infections are the most suitable for immunotherapies. We present an overview of various immunological strategies that have been applied for treating viral infections after exposure to the infectious agent.
Collapse
Affiliation(s)
- Nagendra R Hegde
- Bharat Biotech Foundation, Genome Valley, Turkapally, Shameerpet Mandal, Hyderabad 500078, India.
| | | | | | | |
Collapse
|
11
|
Repeated DNA therapeutic vaccination of chronically SIV-infected macaques provides additional virological benefit. Vaccine 2010; 28:1962-74. [PMID: 20188252 DOI: 10.1016/j.vaccine.2009.10.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that therapeutic immunization by intramuscular injection of optimized plasmid DNAs encoding SIV antigens effectively induces immune responses able to reduce viremia in antiretroviral therapy (ART)-treated SIVmac251-infected Indian rhesus macaques. We subjected such therapeutically immunized macaques to a second round of therapeutic vaccination using a combination of plasmids expressing SIV genes and the IL-15/IL-15 receptor alpha as molecular adjuvant, which were delivered by the more efficacious in vivo constant-current electroporation. A very strong induction of antigen-specific responses to Gag, Env, Nef, and Pol, during ART (1.2-1.6% of SIV-specific T cells in the circulating T lymphocytes) was obtained with the improved vaccination method. Immunological responses were characterized by the production of IFN-gamma, IL-2, and TNF-alpha either alone, or in combination as double or triple cytokine positive multifunctional T cells. A significant induction of CD4(+) T cell responses, mainly targeting Gag, Nef, and Pol, as well as of CD8(+) T cells, mainly targeting Env, was found in both T cells with central memory and effector memory markers. After release from ART, the animals showed a virological benefit with a further approximately 1 log reduction in viremia. Vaccination with plasmid DNAs has several advantages over other vaccine modalities, including the possibility for repeated administration, and was shown to induce potent, efficacious, and long-lasting recall immune responses. Therefore, these data support the concept of adding DNA vaccination to the HAART regimen to boost the HIV-specific immune responses.
Collapse
|
12
|
Izquierdo-Useros N, Naranjo-Gómez M, Erkizia I, Puertas MC, Borràs FE, Blanco J, Martinez-Picado J. HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLoS Pathog 2010; 6:e1000740. [PMID: 20360840 PMCID: PMC2845607 DOI: 10.1371/journal.ppat.1000740] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exosomes are secreted cellular vesicles that can induce specific CD4+ T cell responses in vivo when they interact with competent antigen-presenting cells like mature dendritic cells (mDCs). The Trojan exosome hypothesis proposes that retroviruses can take advantage of the cell-encoded intercellular vesicle traffic and exosome exchange pathway, moving between cells in the absence of fusion events in search of adequate target cells. Here, we discuss recent data supporting this hypothesis, which further explains how DCs can capture and internalize retroviruses like HIV-1 in the absence of fusion events, leading to the productive infection of interacting CD4+ T cells and contributing to viral spread through a mechanism known as trans-infection. We suggest that HIV-1 can exploit an exosome antigen-dissemination pathway intrinsic to mDCs, allowing viral internalization and final trans-infection of CD4+ T cells. In contrast to previous reports that focus on the ability of immature DCs to capture HIV in the mucosa, this review emphasizes the outstanding role that mature DCs could have promoting trans-infection in the lymph node, underscoring a new potential viral dissemination pathway.
Collapse
Affiliation(s)
| | - Mar Naranjo-Gómez
- Laboratory of Immunobiology for Research and Application to Diagnosis (LIRAD), Blood and Tissue Bank, Badalona, Spain
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | | | - Francesc E. Borràs
- Laboratory of Immunobiology for Research and Application to Diagnosis (LIRAD), Blood and Tissue Bank, Badalona, Spain
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Julià Blanco
- IrsiCaixa Foundation, Badalona, Spain
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa Foundation, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
13
|
Li Y, Xu M, Chen L, Zhu J, Ye J, Liu X, Sun Y, Chen H, Cao S. Evaluation of murine bone marrow-derived dendritic cells loaded with inactivated virus as a vaccine against Japanese encephalitis virus. Vaccine 2009; 27:6004-10. [PMID: 19665607 DOI: 10.1016/j.vaccine.2009.07.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 07/06/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
Abstract
Japanese encephalitis (JE) is a serious infectious disease in southern and eastern Asia. Design and development of safer and more efficacious vaccines against Japanese encephalitis virus (JEV) is a high-priority target in the world. Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs) playing a central and unique role in the generation of primary T-cell responses, and are considered attractive "live adjuvants" for vaccination and immunotherapy against cancer and infectious diseases. In this study, mouse bone marrow-derived dendritic cells (bmDCs were generated and stimulated with inactivated JEV in vitro. BALB/c mice were immunized with stimulated bmDCs and then challenged with JEV wild-type strain. The neutralization antibody, interferon gamma (IFN-gamma), tumor necrosis factors alpha (TNF-alpha) or interleukin-6 (IL-6), and virus-specific CD8+ cytotoxic T-lymphocyte (CTL) levels, as well as survival rates, were analyzed and compared with inactivated vaccine and DCs control groups. The results demonstrated that intravenous (i.v.) injection of 2 x 10(5) JEV-pulsed bmDCs into each mouse produced notable levels of JEV-specific neutralizing antibodies and higher levels of CD8+ CTL, IFN-gamma and TNF-alpha compared with JEV-inactivated vaccine. Furthermore, stimulated bmDCs could elicit a highly protective efficacy (90%) against JEV challenge. It suggests that stimulated bmDCs can be considered as an attractive "live adjuvant" for vaccination against JEV infection.
Collapse
Affiliation(s)
- Yaoming Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Although most viral infections cause minor, if any, symptoms, a certain number result in serious illness. Viral disease symptoms result both from direct viral replication within host cells and from indirect immunopathological consequences. Dendritic cells (DCs) are key determinants of viral disease outcome; they activate immune responses during viral infection and direct T cells toward distinct T helper type responses. Certain viruses are able to skew cytokine secretion by DCs inducing and/or downregulating the immune system with the aim of facilitating and prolonging release of progeny. Thus, the interaction of DCs with viruses most often results in the absence of disease or complete recovery when natural functions of DCs prevail, but may lead to chronic illness or death when these functions are outmanoeuvred by viruses in the exploitation of DCs.
Collapse
Affiliation(s)
- Giulia Freer
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy.
| | | |
Collapse
|
15
|
zur Megede J, Sanders-Beer B, Silvera P, Golightly D, Bowlsbey A, Hebblewaite D, Sites D, Nieves-Duran L, Srivastava R, Otten GR, Rabussay D, Zhang L, Ulmer JB, Barnett SW, Donnelly JJ. A therapeutic SIV DNA vaccine elicits T-cell immune responses, but no sustained control of viremia in SIVmac239-infected rhesus macaques. AIDS Res Hum Retroviruses 2008; 24:1103-16. [PMID: 18620495 DOI: 10.1089/aid.2008.0055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The immunologic and virologic outcome of therapeutic DNA-vaccines administered during antiretroviral therapy (ART) using electroporation with or without (interleukin) IL-2 treatment was evaluated in the SIVmac239/macaque model. Rhesus macaques inoculated with pathogenic SIVmac239 were treated with ART [(R(-9-(2-phosphonomethoxypropyl) adenine) (PMPA), FTC, Zerit] from weeks 13 to 41 postinfection (wpi). Group 1 (n = 7) received ART only, groups 2 and 3 (each n = 6) additionally received SIVmac239-derived gp140Env, GagPol, and TatRevNef plasmids by in vivo electroporation at 22, 26, 30, and 34 wpi, and group 3 also IL-2 for 14 days after each vaccination. Endpoints evaluated were viral load, Gag(181189)-specific CD8+ T-cell responses in MamuA01+ animals, lymphoproliferative responses, and CD4 T-cell counts. Viremia in all animals dropped below 200 RNA copies/ml during ART. Frequencies of Gag(181189)-specific CD8+ T cells prior to ART were detectable in all three groups (1.27-3.01%) and increased significantly (p < 0.01) postvaccination with maximum responses after the fourth immunization (0.2% versus 3.49-7.15%). Gag(181189)-specific CD8+ T-cell frequencies increased post-ART cessation in all groups and remained at significantly higher levels (p < 0.001) until the end of the study (75 wpi) in both groups of vaccinated animals. Lymphoproliferative responses were detected against Gag in a limited number of animals after vaccination and post-ART. However, plasma RNA viral loads rebounded after ART termination to similar levels in all three groups, but remained below 10(5) copies/ml until the end of the study, which could be a late effect of the triple drug therapy.
Collapse
Affiliation(s)
- Jan zur Megede
- Novartis Vaccines & Diagnostics Inc., Emeryville, California
| | - Brigitte Sanders-Beer
- Southern Research Institute, Frederick, Maryland
- Present address: BIOQUAL, Inc., Rockville, Maryland
| | | | | | | | | | | | | | | | - Gillis R. Otten
- Novartis Vaccines & Diagnostics Inc., Emeryville, California
| | | | - Lei Zhang
- Inovio Biomedical Corp., San Diego, California
| | | | | | | |
Collapse
|
16
|
Mutant Amyloid-beta-sensitized dendritic cells as Alzheimer's disease vaccine. J Neuroimmunol 2008; 200:1-10. [DOI: 10.1016/j.jneuroim.2008.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 05/20/2008] [Accepted: 05/20/2008] [Indexed: 12/29/2022]
|
17
|
Delipidated Retroviruses as Potential Autologous Therapeutic Vaccines—A Pilot Experiment. Exp Biol Med (Maywood) 2008; 233:732-40. [DOI: 10.3181/0712-rm-349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This pilot experiment in a simian immunodeficiency virus (SIV) chronic infection model aimed at extending our previous findings that vaccination with delipidated SIV resulted in more potent and diversified antiviral responses ( 1 ). Macaques chronically infected with SIVmac239 treated with antiretroviral therapy (ART) were vaccinated with autologous delipidated virus via consecutive lymph node targeted immunizations-1, 1 and 10 μg of virus spaced monthly. Results showed all animals had lasting viral load reduction approaching 1 log compared to set-point, and disease delay. Delipidation may enhance processing/ presentation of viral antigen eliciting potent antiviral control even at such late infection stage.
Collapse
|
18
|
Immunization with an HIV-1 immunogen induces CD4+ and CD8+ HIV-1-specific polyfunctional responses in patients with chronic HIV-1 infection receiving antiretroviral therapy. Vaccine 2008; 26:2738-45. [PMID: 18433946 DOI: 10.1016/j.vaccine.2008.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/29/2008] [Accepted: 03/12/2008] [Indexed: 11/23/2022]
Abstract
Development of polyfunctional T lymphocyte responses is critical in the immunological response against HIV-1. Fifty-four HIV-1 infected patients receiving antiretroviral treatment (ART) and immunization with an HIV-1 immunogen or placebo, periodically every 3 months throughout a period of 36 months, were evaluated for the purposes of analysing the development of HIV-1-specific CD4+ and CD8+ responses. A significant increase of proliferating and IFN-gamma producing CD8+ HIV-1-specific T cells, of HIV-1-specific precursor frequencies for CD8+ and for CD4+ T cells and of Gag/pol-specific memory CTL precursors (CTLp) was observed in the immunogen group in comparison to placebo. IL-2 intracellular expression and IFN-gamma and TNF-alpha co-expression in HIV-1-specific CD8+ T cells were also substantially increased in the immunized group. A negative correlation between viral load and CD3+CD4+CFSElow HIV-1-specific lymphoproliferative response and frequency of Gag/pol-specific CTLp was solely observed in the HIV-1 immunogen group. Long-term immunization in patients receiving ART helps to develop HIV-1-specific polyfunctional T cell responses.
Collapse
|
19
|
Campbell-Anson RE, Kentor D, Wang YJ, Bushnell KM, Li Y, Vence LM, Radvanyi LG. A new approach for the large-scale generation of mature dendritic cells from adherent PBMC using roller bottle technology. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2008; 6:1. [PMID: 18321390 PMCID: PMC2292722 DOI: 10.1186/1476-8518-6-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 03/06/2008] [Indexed: 12/21/2022]
Abstract
Background Human monocyte-derived DC (mDC) loaded with peptides, protein, tumor cell lysates, or tumor cell RNA, are being tested as vaccines against multiple human malignancies and viral infection with great promise. One of the factors that has limited more widespread use of these vaccines is the need to generate mDC in large scale. Current methods for the large-scale cultivation of mDC in static culture vessels are labor- and time- intensive, and also require many culture vessels. Here, we describe a new method for the large-scale generation of human mDC from human PBMC from leukopheresis or buffy coat products using roller bottles, never attempted before for mDC generation. We have tested this technology using 850 cm2 roller bottles compared to conventional T-175 flat-bottom static culture flasks. Methods DC were generated from adherent human PBMC from buffy coats or leukopherisis products using GM-CSF and IL-4 in T-175 static flasks or 850 cm2 roller bottles. The cells were matured over two days, harvested and analyzed for cell yield and mature DC phenotype by flow cytometry, and then functionally analyzed for their ability to activate allogeneic T-cell or recall antigen peptide-specific T-cell responses. Results Monocytes were found to adhere inside roller bottles to the same extent as in static culture flasks. The phenotype and function of the mDC harvested after maturation from both type of culture systems were similar. The yield of mDC from input PBMC in the roller bottle system was similar as in the static flask system. However, each 850 cm2 roller bottle could be seeded with 4–5 times more input PBMC and could yield 4–5 times as many mDC per culture vessel than the static flasks as a result. Conclusion Our results indicate that the roller bottle technology can generate similar numbers of mDC from adherent PBMC as traditional static flask methods, but with having to use fewer culture vessels. Thus, this may be a more practical method to generate mDC in large-scale cutting down on the amount of laboratory manipulations, and can save both time and labor costs.
Collapse
Affiliation(s)
- Ryan E Campbell-Anson
- Department of Melanoma Medical Oncology, University of Texas, M,D, Anderson Cancer Center, Houston, TX, 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Britton S. It is all about infection. J Intern Med 2007; 261:103-5. [PMID: 17241174 DOI: 10.1111/j.1365-2796.2006.01739.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The notion that most diseases are caused by or associated with infections has not penetrated sufficiently into the medical community nor to society at large. This was one of the reasons why a symposium entitled "It is all about infection" was held at the Karolinska Institute in Stockholm (9 and 10 June 2006). The other main reason for calling it was to demonstrate the width of the subject and the need for interaction between scientists from developing versus developed countries over common issues pertaining to infections.
Collapse
Affiliation(s)
- S Britton
- Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|