1
|
Wang W, Liu X, Zheng X, Jin HJ, Li X. Biomineralization: An Opportunity and Challenge of Nanoparticle Drug Delivery Systems for Cancer Therapy. Adv Healthc Mater 2020; 9:e2001117. [PMID: 33043640 DOI: 10.1002/adhm.202001117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/29/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization is a common process in organisms to produce hard biomaterials by combining inorganic ions with biomacromolecules. Multifunctional nanoplatforms are developed based on the mechanism of biomineralization in many biomedical applications. In the past few years, biomineralization-based nanoparticle drug delivery systems for the cancer treatment have gained a lot of research attention due to the advantages including simple preparation, good biocompatibility, degradability, easy modification, versatility, and targeting. In this review, the research trends of biomineralization-based nanoparticle drug delivery systems and their applications in cancer therapy are summarized. This work aims to promote future researches on cancer therapy based on biomineralization. Rational design of nanoparticle drug delivery systems can overcome the bottleneck in the clinical transformation of nanomaterials. At the same time, biomineralization has also provided new research ideas for cancer treatment, i.e., targeted therapy, which has significantly better performance.
Collapse
Affiliation(s)
- Weicai Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology Equipment and Diagnosis‐Therapy Integration in Universities of Shandong Shandong Province Key Laboratory of Detection Technology for Tumor Makers School of Chemistry and Chemical Engineering Linyi University Linyi Shandong 276005 China
| | - Xiaofan Liu
- Collaborative Innovation Center of Tumor Marker Detection Technology Equipment and Diagnosis‐Therapy Integration in Universities of Shandong Shandong Province Key Laboratory of Detection Technology for Tumor Makers School of Chemistry and Chemical Engineering Linyi University Linyi Shandong 276005 China
| | - Xiangjiang Zheng
- Collaborative Innovation Center of Tumor Marker Detection Technology Equipment and Diagnosis‐Therapy Integration in Universities of Shandong Shandong Province Key Laboratory of Detection Technology for Tumor Makers School of Chemistry and Chemical Engineering Linyi University Linyi Shandong 276005 China
| | - Hyung Jong Jin
- Department of Bioscience and Biotechnology The University of Suwon Hwaseong Gyeonggi‐Do 18323 Republic of Korea
| | - Xuemei Li
- Collaborative Innovation Center of Tumor Marker Detection Technology Equipment and Diagnosis‐Therapy Integration in Universities of Shandong Shandong Province Key Laboratory of Detection Technology for Tumor Makers School of Chemistry and Chemical Engineering Linyi University Linyi Shandong 276005 China
| |
Collapse
|
2
|
Werckmann J, Cypriano J, Lefèvre CT, Dembelé K, Ersen O, Bazylinski DA, Lins U, Farina M. Localized iron accumulation precedes nucleation and growth of magnetite crystals in magnetotactic bacteria. Sci Rep 2017; 7:8291. [PMID: 28811607 PMCID: PMC5557804 DOI: 10.1038/s41598-017-08994-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022] Open
Abstract
Many magnetotactic bacteria (MTB) biomineralize magnetite crystals that nucleate and grow inside intracellular membranous vesicles that originate from invaginations of the cytoplasmic membrane. The crystals together with their surrounding membranes are referred to magnetosomes. Magnetosome magnetite crystals nucleate and grow using iron transported inside the vesicle by specific proteins. Here we address the question: can iron transported inside MTB for the production of magnetite crystals be spatially mapped using electron microscopy? Cultured and uncultured MTB from brackish and freshwater lagoons were studied using analytical transmission electron microscopy in an attempt to answer this question. Scanning transmission electron microscopy was used at sub-nanometric resolution to determine the distribution of elements by implementing high sensitivity energy dispersive X-ray (EDS) mapping and electron energy loss spectroscopy (EELS). EDS mapping showed that magnetosomes are enmeshed in a magnetosomal matrix in which iron accumulates close to the magnetosome forming a continuous layer visually appearing as a corona. EELS, obtained at high spatial resolution, confirmed that iron was present close to and inside the lipid bilayer magnetosome membrane. This study provides important clues to magnetite formation in MTB through the discovery of a mechanism where iron ions accumulate prior to magnetite biomineralization.
Collapse
Affiliation(s)
- Jacques Werckmann
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.
| | - Jefferson Cypriano
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Christopher T Lefèvre
- CNRS/CEA/Aix-Marseille Université, UMR7265 Institut de biosciences et biotechnologies, Laboratoire de Bioénergétique Cellulaire, 13108, Saint Paul lez Durance, France
| | - Kassiogé Dembelé
- Institut de physique et chimie des matériaux de Strasbourg (IPCMS) UMR 7504 CNRS 23 rue du Lœss, BP 43 67034, Strasbourg Cedex 2, France
| | - Ovidiu Ersen
- Institut de physique et chimie des matériaux de Strasbourg (IPCMS) UMR 7504 CNRS 23 rue du Lœss, BP 43 67034, Strasbourg Cedex 2, France
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada, 89154-4004, USA
| | - Ulysses Lins
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Zhang H, Menguy N, Wang F, Benzerara K, Leroy E, Liu P, Liu W, Wang C, Pan Y, Chen Z, Li J. Magnetotactic Coccus Strain SHHC-1 Affiliated to Alphaproteobacteria Forms Octahedral Magnetite Magnetosomes. Front Microbiol 2017; 8:969. [PMID: 28611762 PMCID: PMC5447723 DOI: 10.3389/fmicb.2017.00969] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria (MTB) are morphologically and phylogenetically diverse prokaryotes. They can form intracellular chain-assembled magnetite (Fe3O4) or greigite (Fe3S4) nanocrystals each enveloped by a lipid bilayer membrane called a magnetosome. Magnetotactic cocci have been found to be the most abundant morphotypes of MTB in various aquatic environments. However, knowledge on magnetosome biomineralization within magnetotactic cocci remains elusive due to small number of strains that have been cultured. By using a coordinated fluorescence and scanning electron microscopy method, we discovered a unique magnetotactic coccus strain (tentatively named SHHC-1) in brackish sediments collected from the estuary of Shihe River in Qinhuangdao city, eastern China. It phylogenetically belongs to the Alphaproteobacteria class. Transmission electron microscopy analyses reveal that SHHC-1 cells formed many magnetite-type magnetosomes organized as two bundles in each cell. Each bundle contains two parallel chains with smaller magnetosomes generally located at the ends of each chain. Unlike most magnetotactic alphaproteobacteria that generally form magnetosomes with uniform crystal morphologies, SHHC-1 magnetosomes display a more diverse variety of crystal morphology even within a single cell. Most particles have rectangular and rhomboidal projections, whilst others are triangular, or irregular. High resolution transmission electron microscopy observations coupled with morphological modeling indicate an idealized model-elongated octahedral crystals, a form composed of eight {111} faces. Furthermore, twins, multiple twins and stack dislocations are frequently observed in the SHHC-1 magnetosomes. This suggests that biomineralization of strain SHHC-1 magnetosome might be less biologically controlled than other magnetotactic alphaproteobacteria. Alternatively, SHHC-1 is more sensitive to the unfavorable environments under which it lives, or a combination of both factors may have controlled the magnetosome biomineralization process within this unique MTB.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Life Science and Technology, Heilongjiang Bayi Agricultural UniversityDaqing, China.,Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| | - Nicolas Menguy
- France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China.,IMPMC, Centre National de la Recherche Scientifique, UMR 7590, Sorbonne Universités, MNHN, UPMC, IRD UMR 206Paris, France
| | - Fuxian Wang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| | - Karim Benzerara
- IMPMC, Centre National de la Recherche Scientifique, UMR 7590, Sorbonne Universités, MNHN, UPMC, IRD UMR 206Paris, France
| | - Eric Leroy
- France Chimie Me'tallurgique des Terres Rares, ICMPE, UMR 7182, Centre National de la Recherche ScientifiqueThiais, France
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| | - Wenqi Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| | - Chunli Wang
- Department of Life Science and Technology, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| | - Zhibao Chen
- Department of Life Science and Technology, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
4
|
Alphandéry E. Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Front Bioeng Biotechnol 2014; 2:5. [PMID: 25152880 PMCID: PMC4126476 DOI: 10.3389/fbioe.2014.00005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/26/2014] [Indexed: 11/30/2022] Open
Abstract
Magnetotactic bacteria belong to a group of bacteria that synthesize iron oxide nanoparticles covered by biological material that are called magnetosomes. These bacteria use the magnetosomes as a compass to navigate in the direction of the earth’s magnetic field. This compass helps the bacteria to find the optimum conditions for their growth and survival. Here, we review several medical applications of magnetosomes, such as those in magnetic resonance imaging (MRI), magnetic hyperthermia, and drug delivery. Different methods that can be used to prepare the magnetosomes for these applications are described. The toxicity and biodistribution results that have been published are summarized. They show that the magnetosomes can safely be used provided that they are prepared in specific conditions. The advantageous properties of the magnetosomes compared with those of chemically synthesized nanoparticles of similar composition are also highlighted.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Nanobacterie SARL , Paris , France † ; Institut de Minéralogie et de Physique des Milieux Condensés, Université Pierre et Marie Curie , Paris , France
| |
Collapse
|
5
|
Moisescu C, Ardelean II, Benning LG. The effect and role of environmental conditions on magnetosome synthesis. Front Microbiol 2014; 5:49. [PMID: 24575087 PMCID: PMC3920197 DOI: 10.3389/fmicb.2014.00049] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/23/2014] [Indexed: 12/14/2022] Open
Abstract
Magnetotactic bacteria (MTB) are considered the model species for the controlled biomineralization of magnetic Fe oxide (magnetite, Fe3O4) or Fe sulfide (greigite, Fe3S4) nanocrystals in living organisms. In MTB, magnetic minerals form as membrane-bound, single-magnetic domain crystals known as magnetosomes and the synthesis of magnetosomes by MTB is a highly controlled process at the genetic level. Magnetosome crystals reveal highest purity and highest quality magnetic properties and are therefore increasingly sought after as novel nanoparticulate biomaterials for industrial and medical applications. In addition, "magnetofossils," have been used as both past terrestrial and potential Martian life biosignature. However, until recently, the general belief was that the morphology of mature magnetite crystals formed by MTB was largely unaffected by environmental conditions. Here we review a series of studies that showed how changes in environmental factors such as temperature, pH, external Fe concentration, external magnetic fields, static or dynamic fluid conditions, and nutrient availability or concentrations can all affect the biomineralization of magnetite magnetosomes in MTB. The resulting variations in magnetic nanocrystals characteristics can have consequence both for their commercial value but also for their use as indicators for ancient life. In this paper we will review the recent findings regarding the influence of variable chemical and physical environmental control factors on the synthesis of magnetosome by MTB, and address the role of MTB in the global biogeochemical cycling of iron.
Collapse
Affiliation(s)
- Cristina Moisescu
- Department of Microbiology, Institute of Biology BucharestBucharest, Romania
| | - Ioan I. Ardelean
- Department of Microbiology, Institute of Biology BucharestBucharest, Romania
| | | |
Collapse
|
6
|
Baumgartner J, Faivre D. Magnetite biomineralization in bacteria. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 52:3-27. [PMID: 21877261 DOI: 10.1007/978-3-642-21230-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetotactic bacteria are able to biomineralize magnetic crystals in intracellular organelles, so-called "magnetosomes." These particles exhibit species- and strain-specific size and morphology. They are of great interest for biomimetic nanotechnological and biotechnological research due to their fine-tuned magnetic properties and because they challenge our understanding of the classical principles of crystallization. Magnetotactic bacteria use these highly optimized particles, which form chains within the bacterial cells, as a magnetic field actuator, enabling them to navigate. In this chapter, we discuss the current biological and chemical knowledge of magnetite biomineralization in these bacteria. We highlight the extraordinary properties of magnetosomes and some resulting potential applications.
Collapse
Affiliation(s)
- Jens Baumgartner
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | |
Collapse
|
7
|
Muxworthy AR, Williams W. Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: implications for magnetosome crystals. J R Soc Interface 2008; 6:1207-12. [PMID: 19091684 DOI: 10.1098/rsif.2008.0462] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Magnetotactic bacteria contain chains of magnetically interacting crystals (magnetosome crystals), which they use for navigation (magnetotaxis). To improve magnetotaxis efficiency, the magnetosome crystals (usually magnetite or greigite in composition) should be magnetically stable single-domain (SSD) particles. Smaller single-domain particles become magnetically unstable owing to thermal fluctuations and are termed superparamagnetic (SP). Previous calculations for the SSD/SP threshold size or blocking volume did not include the contribution of magnetic interactions. In this study, the blocking volume has been calculated as a function of grain elongation and separation for chains of identical magnetite grains. The inclusion of magnetic interactions was found to decrease the blocking volume, thereby increasing the range of SSD behaviour. Combining the results with previously published calculations for the SSD to multidomain threshold size in chains of magnetite reveals that interactions significantly increase the SSD range. We argue that chains of interacting magnetosome crystals found in magnetotactic bacteria have used this effect to improve magnetotaxis.
Collapse
Affiliation(s)
- Adrian R Muxworthy
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | | |
Collapse
|
8
|
Silva KT, Abreu F, Keim CN, Farina M, Lins U. Ultrastructure and cytochemistry of lipid granules in the many-celled magnetotactic prokaryote, ‘Candidatus Magnetoglobus multicellularis’. Micron 2008; 39:1387-92. [DOI: 10.1016/j.micron.2008.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/25/2008] [Accepted: 05/26/2008] [Indexed: 10/22/2022]
|
9
|
Affiliation(s)
- Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | | |
Collapse
|
10
|
Abstract
AbstractThe ability to respond to magnetic fields is ubiquitous among the five kingdoms of organisms. Apart from the mechanisms that are at work in bacterial magnetotaxis, none of the innumerable magnetobiological effects are as yet completely understood in terms of their underlying physical principles. Physical theories on magnetoreception, which draw on classical electrodynamics as well as on quantum electrodynamics, have greatly advanced during the past twenty years, and provide a basis for biological experimentation. This review places major emphasis on theories, and magnetobiological effects that occur in response to weak and moderate magnetic fields, and that are not related to magnetotaxis and magnetosomes. While knowledge relating to bacterial magnetotaxis has advanced considerably during the past 27 years, the biology of other magnetic effects has remained largely on a phenomenological level, a fact that is partly due to a lack of model organisms and model responses; and in great part also to the circumstance that the biological community at large takes little notice of the field, and in particular of the available physical theories. We review the known magnetobiological effects for bacteria, protists and fungi, and try to show how the variegated empirical material could be approached in the framework of the available physical models.
Collapse
|
11
|
Muxworthy AR, Williams W. Critical single-domain/multidomain grain sizes in noninteracting and interacting elongated magnetite particles: Implications for magnetosomes. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jb004588] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Wyn Williams
- Grant Institute of Earth Science; University of Edinburgh; Edinburgh UK
| |
Collapse
|
12
|
Taoka A, Asada R, Sasaki H, Anzawa K, Wu LF, Fukumori Y. Spatial localizations of Mam22 and Mam12 in the magnetosomes of Magnetospirillum magnetotacticum. J Bacteriol 2006; 188:3805-12. [PMID: 16707673 PMCID: PMC1482926 DOI: 10.1128/jb.00020-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetospirillum magnetotacticum possesses intracellular magnetite particles with a chain-like structure, termed magnetosomes. The bacterium expresses 22-kDa and 12-kDa magnetosome-associated proteins, termed Mam22 (MamA) and Mam12 (MamC), respectively. In this study, we investigated the structure of the purified magnetosomes with transmission electron microscopic techniques and found that the magnetosomes consisted of four compartments, i.e., magnetite crystal, magnetosomal membrane, interparticle connection, and magnetosomal matrix. Furthermore, we determined the precise localizations of Mam22 and Mam12 using immunogold staining of the purified magnetosomes and ultrathin sections of the bacterial cells. Interestingly, most Mam22 existed in the magnetosomal matrix, whereas Mam12 was strictly localized in the magnetosomal membrane. Moreover, the recombinant Mam22 was attached to the magnetosomal matrix of the Mam22-deficient magnetosomes prepared by alkaline treatment, such as 0.1 M Caps-NaOH buffer (pH 11.0). The spatial localization of the magnetosome-associated proteins in the magnetosomal chain provides useful information to elucidate the functional roles of these proteins.
Collapse
Affiliation(s)
- Azuma Taoka
- Department of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Characterization of Bacterial Magnetic Nanostructures Using High-Resolution Transmission Electron Microscopy and Off-Axis Electron Holography. MICROBIOLOGY MONOGRAPHS 2006. [DOI: 10.1007/7171_044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|