1
|
Wani FA, Behera K, Patel R. Amphiphilic Micelles as Superior Nanocarriers in Drug Delivery: from Current Preclinical Surveys to Structural Frameworks. ChemistrySelect 2022. [DOI: 10.1002/slct.202201928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Farooq Ahmad Wani
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia (A Central University) New Delhi 110025 India
- Department of Chemistry Jamia Millia Islamia (A Central University) New Delhi 110025 India
| | - Kamalakanta Behera
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia (A Central University) New Delhi 110025 India
| | - Rajan Patel
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia (A Central University) New Delhi 110025 India
| |
Collapse
|
2
|
Ephrem E, Najjar A, Charcosset C, Greige-Gerges H. Bicelles as a carrier for bioactive compounds in beverages: application to nerolidol, an active sesquiterpene alcohol. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1030-1039. [PMID: 35185207 PMCID: PMC8814254 DOI: 10.1007/s13197-021-05107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/25/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022]
Abstract
ABSTRACT Nerolidol is a natural sesquiterpene alcohol with promising but limited application in food and pharmaceutical fields due to several factors including low photostability and low aqueous solubility. Recently, several carriers loading nerolidol were prepared and tested in fresh orange juice. Lipid vesicles loading nerolidol did not exhibit satisfactory organoleptic properties in this beverage. Hence, DMPC/DHPC bicelles were prepared as a new phospholipid-based carrier for nerolidol at different molar ratios. The bicelle suspensions were characterized in terms of homogeneity, particles size, and morphology. The optimal formulation (phospholipid:nerolidol molar ratio 100:1) was selected based on transparent appearance, homogeneity, and particle size (~ 45 nm). Besides, it showed a high encapsulation efficiency of nerolidol and a high incorporation rate of phospholipids. Transmission electron microscopy analysis demonstrated the formation of bicelles. The bicelles membrane fluidity was assessed by 1,6-diphenyl-1,3,5-hexatriene fluorescence anisotropy and differential scanning calorimetry analysis. The membrane fluidity of bicelles appeared to increase in the presence of nerolidol in a concentration dependent manner. To our knowledge this is the first study dealing with the encapsulation of an essential oil component in bicelles. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Elissa Ephrem
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Section II, Lebanese University, Jdaidet El-Matn, B.P. 90656, Beirut, Lebanon ,LAGEP UMR 5007, CNRS, Univ Lyon, Université Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, 69100 Villeurbanne, France
| | - Amal Najjar
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Section II, Lebanese University, Jdaidet El-Matn, B.P. 90656, Beirut, Lebanon
| | - Catherine Charcosset
- LAGEP UMR 5007, CNRS, Univ Lyon, Université Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, 69100 Villeurbanne, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Section II, Lebanese University, Jdaidet El-Matn, B.P. 90656, Beirut, Lebanon
| |
Collapse
|
3
|
Ceramide liposomes for skin barrier recovery: A novel formulation based on natural skin lipids. Int J Pharm 2021; 596:120264. [DOI: 10.1016/j.ijpharm.2021.120264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/22/2020] [Accepted: 01/10/2021] [Indexed: 01/10/2023]
|
4
|
Ceramide Domains in Health and Disease: A Biophysical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:79-108. [DOI: 10.1007/978-3-030-21162-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Altering the edge chemistry of bicelles with peptoids. Chem Phys Lipids 2018; 217:43-50. [PMID: 30391486 DOI: 10.1016/j.chemphyslip.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/10/2018] [Accepted: 10/23/2018] [Indexed: 01/23/2023]
Abstract
Cell function is tied to the interactions that occur within and across the cell membrane. Therefore, understanding membrane-affiliated interactions is important to many biomedical applications. Advancing the body of knowledge about these interactions will lead to discoveries in biomarker detection and therapeutic targets for disease detection and treatment. Model membrane systems are an effective way to study membrane proteins for such discoveries, allowing for stable protein structure and maintaining native activity. Bicelles, disc-shaped lipid bilayers created by combining long- and short-chain phospholipids, are the model membrane system of focus in this study. Bicelles are accessible from both sides and have a wide size range, which makes them attractive for studying membrane interactions without affecting function. In this work, bicelles were functionalized with peptoids to alter the edge chemistry. Peptoids are suitable for this application because of the large diversity of available side chain chemistries that can be easily incorporated in a sequence-specific manner. The peptoid sequence consists of three functional regions to promote insertion into the edge of bicelles. The insertion sequence at the C-terminus contains two alkyl chains and two hydrophobic, chiral aromatic groups that anchor into the bicelle edge. The facially amphipathic helix contains chiral aromatic groups on one side that interact with the lipid tails and positively charged groups on the other side, which interact with the lipid head groups. Thiol groups are included at the N-terminus to allow for visualization of peptoid location in the bicelle. Bicelle morphology and size were assessed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Peptoid location in the bicelle was determined by attachment of gold nanoparticles, which confirmed preferential incorporation of the peptoid into the bicelle edge with 82% specificity. Additionally, the peptoid-functionalized bicelles are of similar size and morphology to non-functionalized bicelles. Results from this study show that peptoid-functionalized bicelles are a promising model membrane system with potential applications in biosensors or bioseparations.
Collapse
|
6
|
Castro BM, Prieto M, Silva LC. Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res 2014; 54:53-67. [PMID: 24513486 DOI: 10.1016/j.plipres.2014.01.004] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023]
Abstract
Ceramides are involved in a variety of cellular processes and in disease. Their biological functions are thought to depend on ceramides' unique biophysical properties, which promote strong alterations of cell membrane properties and consequent triggering of signaling events. Over the last decades, efforts were made to understand the impact of ceramide on membrane biophysical features. Several studies, performed in a multitude of membrane models, address ceramides' specific interactions, the effect of their acyl chain structure and the influence of membrane lipid composition and properties on ceramide biophysical outcome. In this review, a rationale for the multiple and complex changes promoted by ceramide is provided, highlighting, on a comprehensive and critical manner, the interactions between ceramides and specific lipids and/or lipid phases. Focus is also given to the interplay between ceramide and cholesterol, particularly in lipid raft-mimicking mixtures, an issue of intense debate due to the urgent need to understand the biophysical impact of ceramide formation in models resembling the cell membrane. The implications of ceramide-induced biophysical changes on lipid-protein interactions and cell signaling are also discussed, together with the emerging evidence for the existence of ceramide-gel like domains in cellular membranes.
Collapse
Affiliation(s)
- Bruno M Castro
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Complexo I, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Manuel Prieto
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Complexo I, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Liana C Silva
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
7
|
Bicellar systems as vehicle for the treatment of impaired skin. Eur J Pharm Biopharm 2014; 86:212-8. [DOI: 10.1016/j.ejpb.2013.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 11/23/2022]
|
8
|
Zhang W, Sun J, He Z. The application of open disk-like structures as model membrane and drug carriers. Asian J Pharm Sci 2013. [DOI: 10.1016/j.ajps.2013.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
9
|
Rubio L, Alonso C, Rodríguez G, Cócera M, López-Iglesias C, Coderch L, De la Maza A, Parra J, López O. Bicellar systems as new delivery strategy for topical application of flufenamic acid. Int J Pharm 2013; 444:60-9. [DOI: 10.1016/j.ijpharm.2013.01.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 11/25/2022]
|
10
|
Dürr UH, Soong R, Ramamoorthy A. When detergent meets bilayer: birth and coming of age of lipid bicelles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 69:1-22. [PMID: 23465641 PMCID: PMC3741677 DOI: 10.1016/j.pnmrs.2013.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/30/2012] [Indexed: 05/12/2023]
|
11
|
Rubio L, Rodríguez G, Barbosa-Barros L, Alonso C, Cócera M, de la Maza A, Parra J, López O. Bicellar systems as a new colloidal delivery strategy for skin. Colloids Surf B Biointerfaces 2012; 92:322-6. [DOI: 10.1016/j.colsurfb.2011.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/07/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
|
12
|
Agah S, Faham S. Crystallization of membrane proteins in bicelles. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 914:3-16. [PMID: 22976019 DOI: 10.1007/978-1-62703-023-6_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structural biology of membrane proteins remains a challenging field, partly due to the difficulty in obtaining high-quality crystals. We developed the bicelle method as a tool to aid with the production of membrane protein crystals. Bicelles are bilayer discs that are formed by a mixture of a detergent and a lipid. They combine the ease of use of detergents with the benefits of a lipidic medium. Bicelles maintain membrane proteins in a bilayer milieu, which is more similar to their native environment than detergent micelles. At the same time, bicelles are liquid at certain temperatures and they can be integrated into standard crystallization techniques without the need for specialized equipment.
Collapse
Affiliation(s)
- Sayeh Agah
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
13
|
Structural Versatility of Bicellar Systems and Their Possibilities as Colloidal Carriers. Pharmaceutics 2011; 3:636-64. [PMID: 24310601 PMCID: PMC3857087 DOI: 10.3390/pharmaceutics3030636] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/21/2011] [Accepted: 09/05/2011] [Indexed: 11/17/2022] Open
Abstract
Bicellar systems are lipid nanostructures formed by long- and short-chained phospholipids dispersed in aqueous solution. The morphological transitions of bicellar aggregates due to temperature, composition and time variations have been revised in this work. To this end, two bicellar systems have been considered; one formed by dimyristoyl-phosphatidylcholine (DMPC) and dihexanoyl- phosphatidylcholine (DHPC) and another formed by dipalmitoyl-phosphatidylcholine (DPPC) and DHPC. The relationship between the magnetic alignment, the morphology of the aggregates and the phase transition temperature (Tm) of lipids is discussed. In general terms, the non-alignable samples present rounded objects at temperature below the Tm. Above this temperature, an increase of viscosity is followed by the formation of large elongated aggregates. Alignable samples presented discoidal objects below the Tm. The best alignment was achieved above this temperature with large areas of lamellar stacked bilayers and some multilamellar vesicles. The effect of the inclusion of ceramides with different chain lengths in the structure of bicelles is also revised in the present article. A number of physical techniques show that the bicellar structures are affected by both the concentration and the type of ceramide. Systems are able to incorporate 10% mol of ceramides that probably are organized forming domains. The addition of 20% mol of ceramides promotes destabilization of bicelles, promoting the formation of mixed systems that include large structures. Bicellar systems have demonstrated to be morphologically stable with time, able to encapsulate different actives and to induce specific effects on the skin. These facts make bicellar systems good candidates as colloidal carriers for dermal delivery. However, water dilution induces structural changes and formation of vesicular structures in the systems; stabilization strategies have been been explored in recent works and are also updated here.
Collapse
|
14
|
Faham S, Ujwal R, Abramson J, Bowie JU. Chapter 5 Practical Aspects of Membrane Proteins Crystallization in Bicelles. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)63005-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
BARBOSA-BARROS L, MAZA ADELA, WALTHER P, LINARES A, FELIZ M, ESTELRICH J, LÓPEZ OLGA. Use of high-pressure freeze fixation and freeze fracture electron microscopy to study the influence of the phospholipid molar ratio in the morphology and alignment of bicelles. J Microsc 2009; 233:35-41. [DOI: 10.1111/j.1365-2818.2008.03093.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|