1
|
Zhang Y, Lou Z, Lin X, Wang Q, Cao M, Gu N. Optimizing purification process of MIM-I-BAR domain by introducing atomic force microscope and dynamics simulations. Colloids Surf B Biointerfaces 2017. [PMID: 28623696 DOI: 10.1016/j.colsurfb.2017.05.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MIM (missing in metastasis) is a member of I-BAR (inverse BAR) domain protein family, which functions as a putative metastasis suppressor. However, methods of gaining high purity MIM-I-BAR protein are barely reported. Here, by optimizing the purification process including changing the conditions of cell lysate and protein elution, we successfully purified MIM protein. The purity of the obtained protein was up to ∼90%. High-resolution atomic force microscope (AFM) provides more visual images, ensuring that we can observe the microenvironment around the target protein, as well as the conformations of the purification products following each purification process. MIM protein with two different sizes were observed on mica surface with AFM. Combining with molecular dynamics simulations, these molecules were revealed as MIM monomer and dimer. Furthermore, our study attaches importance to the usage of imidazole with suitable concentrations during the affinity chromatography process, as well as the removal of excessive imidazole after the affinity chromatography process. All these results indicate that the method described here was successful in purifying MIM protein and maintaining their natural properties, and is supposed to be used to purify other proteins with low solubility.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Zhichao Lou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xubo Lin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Qiwei Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Meng Cao
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China.
| |
Collapse
|
2
|
Bodemer W. Prions. Primate Biol 2016. [DOI: 10.5194/pb-3-47-2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. Prions gained widespread public and scientific interest in the year 2000. At that time, the human neurological Creutzfeldt–Jakob disease (CJD) was known. However, new CJD cases were diagnosed but they could not be ascribed to one of the classical CJD categories i.e. sporadic (sCJD), hereditary or acquired. Hence, they were classified as variant CJD (vCJD). Later on, experimental evidence suggested that vCJD was caused by prions postulated as unique novel infectious agents and, for example, responsible for bovine spongiform encephalopathy (BSE) also known as mad cow disease. The infection of humans by transmission of BSE prions also defined vCJD as a zoonotic disease. Prions, especially those associated with scrapie in sheep had been known for quite some time and misleadingly discussed as a slow virus. Therefore, this enigmatic pathogen and the transmission of this unusual infectious agent was a matter of a controversial scientific debate. An agent without nucleic acid did not follow the current dogma postulating DNA or RNA as inheritable information encoding molecules. Although numerous experimental results clearly demonstrated the infectious capacity of prions in several animal species, a model close to human was not readily available. Therefore, the use of rhesus monkeys (Macaca mulatta) served as a non-human primate model to elucidate prion infection under controlled experimental conditions. Not the least, transmission of BSE, human vCJD, and sCJD prions could be confirmed in our study. Any prion infection concomitant with progression of disease in humans, especially vCJD, could be analyzed only retrospectively and at late stages of disease. In contrast, the prion-infected rhesus monkeys were accessible before and after infection; the progression from early stage to late clinical stages – and eventually death of the animal – could be traced. Because of the phylogenetic proximity to humans, the rhesus monkey was superior to any rodent or other animal model. For these reasons an experimental approach had been conceived by J. Collinge in London and A. Aguzzi in Zurich and performed in a cooperative study with both research groups in the pathology unit of the German Primate Center (DPZ). The study in the DPZ lasted from 2001 until 2012. Our research in the pathology unit provided a temporal monitoring of how an initial prion infection develops eventually into disease; an approach that would have never been possible in humans since the time point of infection with prions from, for example, BSE is always unknown. Telemetry revealed a shift in sleep–wake cycles early on, long before behavioral changes or clinical symptoms appeared. Pathology confirmed non-neuronal tissue as hidden places where prions exist. The rhesus model also allowed first comparative studies of epigenetic modifications on RNA in peripheral blood and brain tissue collected from uninfected and prion-infected animals. To conclude, our studies clearly demonstrated that this model is valid since progression to disease is almost identical to human CJD.
Collapse
|
3
|
Moda F, T. Le TN, Aulić S, Bistaffa E, Campagnani I, Virgilio T, Indaco A, Palamara L, Andréoletti O, Tagliavini F, Legname G. Synthetic prions with novel strain-specified properties. PLoS Pathog 2015; 11:e1005354. [PMID: 26720726 PMCID: PMC4699842 DOI: 10.1371/journal.ppat.1005354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/30/2015] [Indexed: 01/10/2023] Open
Abstract
Prions are infectious proteins that possess multiple self-propagating structures. The information for strains and structural specific barriers appears to be contained exclusively in the folding of the pathological isoform, PrPSc. Many recent studies determined that de novo prion strains could be generated in vitro from the structural conversion of recombinant (rec) prion protein (PrP) into amyloidal structures. Our aim was to elucidate the conformational diversity of pathological recPrP amyloids and their biological activities, as well as to gain novel insights in characterizing molecular events involved in mammalian prion conversion and propagation. To this end we generated infectious materials that possess different conformational structures. Our methodology for the prion conversion of recPrP required only purified rec full-length mouse (Mo) PrP and common chemicals. Neither infected brain extracts nor amplified PrPSc were used. Following two different in vitro protocols recMoPrP converted to amyloid fibrils without any seeding factor. Mouse hypothalamic GT1 and neuroblastoma N2a cell lines were infected with these amyloid preparations as fast screening methodology to characterize the infectious materials. Remarkably, a large number of amyloid preparations were able to induce the conformational change of endogenous PrPC to harbor several distinctive proteinase-resistant PrP forms. One such preparation was characterized in vivo habouring a synthetic prion with novel strain specified neuropathological and biochemical properties. Prions are infectious proteins capable of acquiring multiple self-propagating structures. The information for strains and structural specific barriers appears to be contained exclusively in the folding of the pathological isoform, designated as PrPSc. During propagation, disease-associated conformer PrPSc coerces the physiological form, denoted as PrPC, to adopt the pathological isoform conformation. We describe here the generation of an array of infectious materials with different structural, morphological, biochemical and cell biological characteristics. After producing purified recombinant prion protein of the wild-type mouse full-length sequence in Escherichia coli, we polymerized the protein into various amyloid fibril conformations based on different amyloid preparations. We also applied a build-in methodology for screening amyloid preparations and generate infectious materials using an amyloid-infected cell culture assay. Some of the amyloid fibrils preparations were able to efficiently amplify in PMCA (Protein Misfolding Cyclic Amplification), and to induce endogenous PrPC to convert into PrPSc in both murine hypothalamic GT1 and neuroblastoma N2a cell lines. One such protocol lead to the generation of a novel synthetic prion strain in mice.
Collapse
Affiliation(s)
- Fabio Moda
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Thanh-Nhat T. Le
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Ital,y
| | - Suzana Aulić
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Ital,y
| | - Edoardo Bistaffa
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Ital,y
| | - Ilaria Campagnani
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Tommaso Virgilio
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Antonio Indaco
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Luisa Palamara
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Olivier Andréoletti
- UMR INRA-ENVT, Physiopathologie Infectieuse et Parasitaire des Ruminants, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Fabrizio Tagliavini
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Ital,y
- ELETTRA Laboratory, Sincrotrone Trieste S.C.p.A, Basovizza, Trieste, Italy
- * E-mail:
| |
Collapse
|
4
|
Lou Z, Wang B, Guo C, Wang K, Zhang H, Xu B. Molecular-level insights of early-stage prion protein aggregation on mica and gold surface determined by AFM imaging and molecular simulation. Colloids Surf B Biointerfaces 2015; 135:371-378. [DOI: 10.1016/j.colsurfb.2015.07.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
|
5
|
Abstract
It was reported that buffalo is a low susceptibility species resisting to transmissible spongiform encephalopathies (TSEs) (same as rabbits, horses, and dogs). TSEs, also called prion diseases, are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of species (except for rabbits, dogs, horses, and buffalo), manifesting as scrapie in sheep and goats; bovine spongiform encephalopathy (BSE or "mad-cow" disease) in cattle; chronic wasting disease in deer and elk; and Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia, and Kulu in humans etc. In molecular structures, these neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrP(C)), predominantly with α-helices, into insoluble abnormally folded infectious prions (PrP(Sc)), rich in β-sheets. In this article, we studied the molecular structure and structural dynamics of buffalo PrP(C) (BufPrP(C)), in order to understand the reason why buffalo is resistant to prion diseases. We first did molecular modeling of a homology structure constructed by one mutation at residue 143 from the NMR structure of bovine and cattle PrP(124-227); immediately we found that for BufPrP(C)(124-227), there are five hydrogen bonds (HBs) at Asn143, but at this position, bovine/cattle do not have such HBs. Same as that of rabbits, dogs, or horses, our molecular dynamics studies also revealed there is a strong salt bridge (SB) ASP178-ARG164 (O-N) keeping the β2-α2 loop linked in buffalo. We also found there is a very strong HB SER170-TYR218 linking this loop with the C-terminal end of α-helix H3. Other information, such as (i) there is a very strong SB HIS187-ARG156 (N-O) linking α-helices H2 and H1 (if mutation H187R is made at position 187, then the hydrophobic core of PrP(C) will be exposed (L.H. Zhong (2010). Exposure of hydrophobic core in human prion protein pathogenic mutant H187R. Journal of Biomolecular Structure and Dynamics 28(3), 355-361)), (ii) at D178, there is a HB Y169-D178 and a polar contact R164-D178 for BufPrP(C) instead of a polar contact Q168-D178 for bovine PrP(C) (C.J. Cheng, & V. Daggett. (2014). Molecular dynamics simulations capture the misfolding of the bovine prion protein at acidic pH. Biomolecules 4(1), 181-201), (iii) BufPrP(C) owns three 310 helices at 125-127, 152-156, and in the β2-α2 loop, respectively, and (iv) in the β2-α2 loop, there is a strong π-π stacking and a strong π-cation F175-Y169-R164.(N)NH2, has been discovered.
Collapse
Affiliation(s)
- Jiapu Zhang
- a Molecular Model Discovery Laboratory, Faculty of Science, Engineering & Technology, Department of Chemistry & Biotechnology , Swinburne University of Technology , Hawthorn Campus, Hawthorn , Victoria 3122 , Australia.,b Faculty of Science, Graduate School of Sciences, Information Technology and Engineering & Centre of Informatics and Applied Optimisation , The Federation University Australia , Mount Helen Campus, Mount Helen, Ballarat , Victoria 3353 , Australia
| | - Feng Wang
- a Molecular Model Discovery Laboratory, Faculty of Science, Engineering & Technology, Department of Chemistry & Biotechnology , Swinburne University of Technology , Hawthorn Campus, Hawthorn , Victoria 3122 , Australia
| | - Subhojyoti Chatterjee
- a Molecular Model Discovery Laboratory, Faculty of Science, Engineering & Technology, Department of Chemistry & Biotechnology , Swinburne University of Technology , Hawthorn Campus, Hawthorn , Victoria 3122 , Australia
| |
Collapse
|
6
|
Li YL, Meng YF, Zhang ZM, Jiang Y. Detecting the oligomeric state of Escherichia coli MutS from its geometric architecture observed by an atomic force microscope at a single molecular level. J Phys Chem B 2014; 118:9218-24. [PMID: 25029278 DOI: 10.1021/jp504644r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomic force microscopy (AFM), which provides true 3D surface topography, can also be used to determine the geometric parameters of proteins quantitatively at a single molecular level. In this paper, two different kinds of Escherichia coli MutS (MutS) protein were observed using AFM, and the geometric parameters of the proteins such as height, perimeter, area, and volume were measured. On the basis of these measurements, the molecular weight, association constant, oligomeric state, and orientation of MutS proteins on a mica surface were deduced. The oligomerization mechanism of MutS was analyzed in detail, and the results show that two different kinds of interactions between MutS protein may be involved in oligomerization. Our results also show that AFM imaging is an accurate method for analyzing the geometric structures of a single protein quantitatively at a single-molecule level.
Collapse
Affiliation(s)
- Yan-Li Li
- School of Chemistry and Chemical Engineering, Southeast University , No. 2 Dongnandaxue Road, Jiangning, Nanjing, Jiangsu 211189, China
| | | | | | | |
Collapse
|
7
|
Molecular-level removal of proteinaceous contamination from model surfaces and biomedical device materials by air plasma treatment. J Hosp Infect 2010; 76:234-42. [DOI: 10.1016/j.jhin.2010.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 07/02/2010] [Indexed: 11/17/2022]
|
8
|
Weroński KJ, Diez-Pérez I, Busquets MA, López-Iglesias C, Girona V, Prat J. Interaction of lipidated GBV-C/HGV NS3 (513–522) and (505–514) peptides with phospholipids monolayer. An AFM study. Colloids Surf B Biointerfaces 2010; 75:25-33. [DOI: 10.1016/j.colsurfb.2009.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 07/31/2009] [Accepted: 08/02/2009] [Indexed: 11/29/2022]
|
9
|
Structural insights into alternate aggregated prion protein forms. J Mol Biol 2009; 393:1033-42. [PMID: 19720066 DOI: 10.1016/j.jmb.2009.08.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 08/11/2009] [Accepted: 08/22/2009] [Indexed: 11/21/2022]
Abstract
The conversion of the cellular form of the prion protein (PrP(C)) to an abnormal, alternatively folded isoform (PrP(Sc)) is the central event in prion diseases or transmissible spongiform encephalopathies. Recent studies have demonstrated de novo generation of murine prions from recombinant prion protein (recPrP) after inoculation into transgenic and wild-type mice. These so-called synthetic prions lead to novel prion diseases with unique neuropathological and biochemical features. Moreover, the use of recPrP in an amyloid seeding assay can specifically detect and amplify various strains of prions. We employed this assay in our experiments and analyzed in detail the morphology of aggregate structures produced under defined chemical constraints. Our results suggest that changes in the concentration of guanidine hydrochloride can lead to different kinetic traces in a typical thioflavin T(ThT) assay. Morphological and structural analysis of these aggregates by atomic force microscopy indicates a variation in the structure of the PrP molecular assemblies. In particular, ThT positive PrP aggregates produced from rec mouse PrP residues 89 to 230 lead to mostly oligomeric structures at low concentrations of guanidine hydrochloride, while more amyloidal structures were observed at higher concentrations of the denaturant. These findings highlight the presence of numerous and complex pathways in deciphering prion constraints for infectivity and toxicity.
Collapse
|