1
|
Dobolyi A, Oláh S, Keller D, Kumari R, Fazekas EA, Csikós V, Renner É, Cservenák M. Secretion and Function of Pituitary Prolactin in Evolutionary Perspective. Front Neurosci 2020; 14:621. [PMID: 32612510 PMCID: PMC7308720 DOI: 10.3389/fnins.2020.00621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
The hypothalamo-pituitary system developed in early vertebrates. Prolactin is an ancient vertebrate hormone released from the pituitary that exerts particularly diverse functions. The purpose of the review is to take a comparative approach in the description of prolactin, its secretion from pituitary lactotrophs, and hormonal functions. Since the reproductive and osmoregulatory roles of prolactin are best established in a variety of species, these functions are the primary subjects of discussion. Different types of prolactin and prolactin receptors developed during vertebrate evolution, which will be described in this review. The signal transduction of prolactin receptors is well conserved among vertebrates enabling us to describe the whole subphylum. Then, the review focuses on the regulation of prolactin release in mammals as we have the most knowledge on this class of vertebrates. Prolactin secretion in response to different reproductive stimuli, such as estrogen-induced release, mating, pregnancy and suckling is detailed. Reproduction in birds is different from that in mammals in several aspects. Prolactin is released during incubation in avian species whose regulation and functional significance are discussed. Little information is available on prolactin in reptiles and amphibians; therefore, they are mentioned only in specific cases to explain certain evolutionary aspects. In turn, the osmoregulatory function of prolactin is well established in fish. The different types of pituitary prolactin in fish play particularly important roles in the adaptation of eutherian species to fresh water environments. To achieve this function, prolactin is released from lactotrophs in hyposmolarity, as they are directly osmosensitive in fish. In turn, the released prolactin acts on branchial epithelia, especially ionocytes of the gill to retain salt and excrete water. This review will highlight the points where comparative data give new ideas or suggest new approaches for investigation in other taxa.
Collapse
Affiliation(s)
- Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Szilvia Oláh
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Keller
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rashmi Kumari
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Emese A. Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Vivien Csikós
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Melinda Cservenák
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
Laguna-Abreu MTC, Germano C, Moreira AC, Antunes-Rodrigues J, Elias L, Castro M. Changes in prolactin secretion in the short- and long-term after adrenalectomy. ACTA ACUST UNITED AC 2012; 56:244-9. [DOI: 10.1590/s0004-27302012000400005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 06/02/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVE: To evaluate the modulation of the hypothalamus-pituitary-adrenal axis (HPA) on prolactin secretion in rats after adrenalectomy (ADX). MATERIALS AND METHODS: Plasma corticosterone, ACTH, and prolactin concentrations were measured by radioimmunoassay in rats after bilateral ADX in the short- (3 hours and 1day) and long-term (3, 7, and 14 days). RESULTS: Animals that underwent ADX showed undetectable corticosterone levels and a triphasic ACTH response with a transient increase (3h), a decrease (1d), and further increase in the long-term after ADX. Sham animals showed a marked increase in corticosterone and ACTH levels three hours after surgery, with a decrease to basal levels thereafter. Plasma prolactin levels were not changed after ADX. CONCLUSION: There are different points of equilibrium in the HPA axis after the glucocorticoid negative feedback is removed. Prolactin plasma secretion is not altered in the short or long- term after ADX, suggesting that the peptidergic neurons essential for prolactin release are not activated after ADX.
Collapse
|
3
|
Rojas Vega S, Hollmann W, Strüder HK. Influences of exercise and training on the circulating concentration of prolactin in humans. J Neuroendocrinol 2012; 24:395-402. [PMID: 22151605 DOI: 10.1111/j.1365-2826.2011.02266.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Physical activity has an impact on several endocrine functions. During exercise, certain endocrine adjustments are required to maintain the homeostasis. It is well known that, depending on the intensity and duration, exercise stimulates the release of the hormone prolactin (PRL). After the cessation of acute exercise, this effect persist and continues during the recovery period. Chronic exercise can affect the PRL basal concentration and/or the PRL response to acute exercise. The main functions of PRL are associated with the maintenance of homeostasis and processes of reproduction. A role for PRL also has been recognised as an important regulator of cellular proliferation. The present review examines the exercise-induced acute or adaptive responses of PRL secretion. It is also hypothesised that increased concentrations of PRL during exercise could play an important role for neuroplasticity as a result of involvement of the hormone in the neurogenesis in subventricular zone of the adult brain.
Collapse
Affiliation(s)
- S Rojas Vega
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany.
| | | | | |
Collapse
|
4
|
Debeljuk L, Lasaga M. Tachykinins and the control of prolactin secretion. Peptides 2006; 27:3007-19. [PMID: 16930771 DOI: 10.1016/j.peptides.2006.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 07/14/2006] [Accepted: 07/17/2006] [Indexed: 11/28/2022]
Abstract
Tachykinins are present in the pituitary gland and in brain areas involved in the control of the secretion of pituitary hormones. Tachykinins have been demonstrated to stimulate prolactin release acting directly on the anterior pituitary gland. These peptides have also been revealed to be able to act at the hypothalamic level, interacting with neurotransmitters and neuropeptides that have the potential to affect prolactin secretion. Tachykinins seem to act by stimulating or inhibiting the release of the factors that affect prolactin secretion. Among them, tachykinins have been demonstrated to stimulate oxytocin and vasopressin release, which in turn results in prolactin release. Tachykinins also potentiated the response to vasoactive intestinal peptide (VIP) and reinforced the action of glutamate, which in turn result in prolactin release. They have also been shown to interact with serotonin, a neurotransmitter involved in the control of prolactin secretion. In addition, tachykinins have been shown to inhibit GABA release, a neurotransmitter with prolactin-release inhibiting effect. This inhibition may result in an increased prolactin secretion by removal of the GABA inhibition. On the other hand, tachykinins have also been shown to stimulate dopamine release by the hypothalamus, an action that results in an inhibition of prolactin release. Dopamine is a well known inhibitor of prolactin secretion. In conclusion, although tachykinins have been shown to have a predominantly stimulatory effect on prolactin secretion, especially at the pituitary level, under some circumstances they may also exert an inhibitory influence on prolactin release, by stimulating dopamine release at the hypothalamic level.
Collapse
Affiliation(s)
- Luciano Debeljuk
- School of Allied Health (Anatomy and Physiology), College of Applied Sciences and Arts, Southern Illinois University, Carbondale, IL 62901, USA.
| | | |
Collapse
|
5
|
Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000; 80:1523-631. [PMID: 11015620 DOI: 10.1152/physrev.2000.80.4.1523] [Citation(s) in RCA: 1518] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prolactin is a protein hormone of the anterior pituitary gland that was originally named for its ability to promote lactation in response to the suckling stimulus of hungry young mammals. We now know that prolactin is not as simple as originally described. Indeed, chemically, prolactin appears in a multiplicity of posttranslational forms ranging from size variants to chemical modifications such as phosphorylation or glycosylation. It is not only synthesized in the pituitary gland, as originally described, but also within the central nervous system, the immune system, the uterus and its associated tissues of conception, and even the mammary gland itself. Moreover, its biological actions are not limited solely to reproduction because it has been shown to control a variety of behaviors and even play a role in homeostasis. Prolactin-releasing stimuli not only include the nursing stimulus, but light, audition, olfaction, and stress can serve a stimulatory role. Finally, although it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin, other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate prolactin secretion as well. It is the purpose of this review to provide a comprehensive survey of our current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.
Collapse
Affiliation(s)
- M E Freeman
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4340, USA.
| | | | | | | |
Collapse
|
6
|
Dohanics J, Verbalis JG. Naloxone disinhibits magnocellular responses to osmotic and volemic stimuli in chronically hypoosmolar rats. J Neuroendocrinol 1995; 7:57-62. [PMID: 7735298 DOI: 10.1111/j.1365-2826.1995.tb00667.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Normonatremic and chronically hyponatremic rats were pretreated with naloxone (5 mg/kg) or isotonic (150 mM) NaCl, then were given i.v. injections of 2 M NaCl (2 ml) or were hemorrhaged (20 ml/kg). Baseline and post-stimulus blood samples were withdrawn through indwelling jugular venous catheters. Baseline levels of plasma vasopressin (AVP) and oxytocin (OT) were similar in both normonatremic and hyponatremic rats and did not change after naloxone pretreatment. Increases in plasma AVP and OT levels in response to both hypertonic saline and hemorrhage were markedly blunted in the hyponatremic rats compared to the normonatremic rats. Naloxone pretreatment caused augmented AVP and OT secretion in response to hypertonic saline stimulation and hemorrhage in both the normonatremic and hyponatremic rats; the magnitude of the naloxone augmentations in the hyponatremic rats were sufficient to normalize the OT response to hypertonic saline and both the OT and AVP responses to hemorrhage. Our results therefore suggest that endogenous opioids are likely involved in the inhibition of stimulus-induced AVP and OT release that accompanies chronic hypoosmolality.
Collapse
Affiliation(s)
- J Dohanics
- Department of Medicine, University of Pittsburgh, PA 15261, USA
| | | |
Collapse
|