1
|
Battagello DS, Lorenzon AR, Diniz GB, Motta-Teixeira LC, Klein MO, Ferreira JGP, Arias CM, Adamantidis A, Sita LV, Cipolla-Neto J, Bevilacqua EMAF, Sawchenko PE, Bittencourt JC. The Rat Mammary Gland as a Novel Site of Expression of Melanin-Concentrating Hormone Receptor 1 mRNA and Its Protein Immunoreactivity. Front Endocrinol (Lausanne) 2020; 11:463. [PMID: 32849267 PMCID: PMC7411258 DOI: 10.3389/fendo.2020.00463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/12/2020] [Indexed: 11/24/2022] Open
Abstract
Lactation is a complex physiological process, depending on orchestrated central and peripheral events, including substantial brain plasticity. Among these events is a novel expression of pro-melanin-concentrating hormone (Pmch) mRNA in the rodent hypothalamus, such as the ventral part of the medial preoptic area (vmMPOA). This expression reaches its highest levels around postpartum day 19 (PPD19), when dams transition from lactation to the weaning period. The appearance of this lactation-related Pmch expression occurs simultaneously with the presence of one of the Pmch products, melanin-concentrating hormone (MCH), in the serum. Given the relevance of the MPOA to maternal physiology and the contemporaneity between Pmch expression in this structure and the weaning period, we hypothesized that MCH has a role in the termination of lactation, acting as a mediator between central and peripheral changes. To test this, we investigated the presence of the MCH receptor 1 (MCHR1) and its gene expression in the mammary gland of female rats in different stages of the reproductive cycle. To that end, in situ hybridization, RT-PCR, RT-qPCR, nucleotide sequencing, immunohistochemistry, and Western blotting were employed. Although Mchr1 expression was detected in the epidermis and dermis of both diestrus and lactating rats, parenchymal expression was exclusively found in the functional mammary gland of lactating rats. The expression of Mchr1 mRNA oscillated through the lactation period and reached its maximum in PPD19 dams. Presence of MCHR1 was confirmed with immunohistochemistry with preferential location of MCHR1 immunoreactive cells in the alveolar secretory cells. As was the case for gene expression, the MCHR1 protein levels were significantly higher in PPD19 than in other groups. Our data demonstrate the presence of an anatomical basis for the participation of MCH peptidergic system on the control of lactation through the mammary gland, suggesting that MCH could modulate a prolactation action in early postpartum days and the opposite role at the end of the lactation.
Collapse
Affiliation(s)
- Daniella S. Battagello
- Instituto de Psicologia, Nucleo de Neurociencias e Comportamento, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - Aline R. Lorenzon
- Departmento de Biologia Celular e Do Desenvolvimento, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Giovanne B. Diniz
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - Lívia C. Motta-Teixeira
- Departmento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marianne O. Klein
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - Jozélia G. P. Ferreira
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos M. Arias
- Laboratory of Neuronal Structure and Function, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | | | - Luciane V. Sita
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - José Cipolla-Neto
- Departmento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Estela M. A. F. Bevilacqua
- Departmento de Biologia Celular e Do Desenvolvimento, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Paul E. Sawchenko
- Laboratory of Neuronal Structure and Function, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Jackson C. Bittencourt
- Instituto de Psicologia, Nucleo de Neurociencias e Comportamento, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Ciencias Biomedicas, Laboratorio de Neuroanatomia Quimica, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Kokay IC, Grattan DR, Murray JF. Prolactin maintains transient melanin-concentrating hormone expression in the medial preoptic area during established lactation. J Neuroendocrinol 2020; 32:e12827. [PMID: 31917877 DOI: 10.1111/jne.12827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 01/18/2023]
Abstract
A population of neurones in the medial part of the medial preoptic area (mPOA) transiently express melanin-concentrating hormone (MCH) in mid to late lactation in the rat, and this expression disappears on weaning. Prolactin is known to mediate many of the physiological adaptations that occur within the dam associated with lactation and the mPOA is well endowed with prolactin receptors (Prlr); hence, we hypothesised that these transiently MCH-expressing cells may be regulated by prolactin. By in situ hybridisation, we show that approximately 60% of the cells expressing prepro-MCH (Pmch) mRNA in the medial part of the mPOA on day 19 of lactation also express Prlr mRNA. To demonstrate that these transiently MCH-expressing cells can acutely respond to prolactin, dams were treated with bromocriptine on the morning of day 19 of lactation and then given vehicle or prolactin 4 hours later. In the prolactin-treated animals, over 80% of the MCH-immunopositive cells were also immunopositive for phosphorylated signal transducer and activator of transcription 5, an indicator of prolactin receptor activation: double immunopositive cells were rare in vehicle-treated animals. Finally, the effect of manipulating the circulating concentrations of prolactin on days 17, 18 and 19 on the number of MCH-immunopositive cells on day 19 was determined. Reducing circulating concentrations of prolactin over days 17, 18 and 19 of lactation with or without a suckling stimulus resulted in a reduction (P < 0.05) in the number of MCH-immunopositive cells in the medial part of the mPOA on day 19 of lactation. Further research is required to determine the functional role(s) of these prolactin-activated transiently MCH-expressing neurones; however, we suggest the most likely role involves adaptations in maternal metabolism to support the final week of lactation.
Collapse
Affiliation(s)
- Ilona C Kokay
- Department of Anatomy, School of Biomedical Sciences, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Department of Anatomy, School of Biomedical Sciences, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Joanne F Murray
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Faculty of Science and Technology, University of Westminster, London, UK
| |
Collapse
|
3
|
Diniz GB, Bittencourt JC. The Melanin-Concentrating Hormone as an Integrative Peptide Driving Motivated Behaviors. Front Syst Neurosci 2017; 11:32. [PMID: 28611599 PMCID: PMC5447028 DOI: 10.3389/fnsys.2017.00032] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/04/2017] [Indexed: 12/14/2022] Open
Abstract
The melanin-concentrating hormone (MCH) is an important peptide implicated in the control of motivated behaviors. History, however, made this peptide first known for its participation in the control of skin pigmentation, from which its name derives. In addition to this peripheral role, MCH is strongly implicated in motivated behaviors, such as feeding, drinking, mating and, more recently, maternal behavior. It is suggested that MCH acts as an integrative peptide, converging sensory information and contributing to a general arousal of the organism. In this review, we will discuss the various aspects of energy homeostasis to which MCH has been associated to, focusing on the different inputs that feed the MCH peptidergic system with information regarding the homeostatic status of the organism and the exogenous sensory information that drives this system, as well as the outputs that allow MCH to act over a wide range of homeostatic and behavioral controls, highlighting the available morphological and hodological aspects that underlie these integrative actions. Besides the well-described role of MCH in feeding behavior, a prime example of hypothalamic-mediated integration, we will also examine those functions in which the participation of MCH has not yet been extensively characterized, including sexual, maternal, and defensive behaviors. We also evaluated the available data on the distribution of MCH and its function in the context of animals in their natural environment. Finally, we briefly comment on the evidence for MCH acting as a coordinator between different modalities of motivated behaviors, highlighting the most pressing open questions that are open for investigations and that could provide us with important insights about hypothalamic-dependent homeostatic integration.
Collapse
Affiliation(s)
- Giovanne B. Diniz
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
| | - Jackson C. Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São PauloSão Paulo, Brazil
- Center for Neuroscience and Behavior, Institute of Psychology, University of São PauloSão Paulo, Brazil
| |
Collapse
|
4
|
Naufahu J, Alzaid F, Fiuza Brito M, Doslikova B, Valencia T, Cunliffe A, Murray JF. Melanin-concentrating hormone in peripheral circulation in the human. J Endocrinol 2017; 232:513-523. [PMID: 28053003 DOI: 10.1530/joe-16-0240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022]
Abstract
Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide with a well-characterised role in energy homeostasis and emergent roles in diverse physiologic functions such as arousal, mood and reproduction. Work to date has predominantly focused on its hypothalamic functions using animal models; however, little attention has been paid to its role in circulation in humans. The aims of this study were to (a) develop a radioimmunoassay for the detection of MCH in human plasma; (b) establish reference ranges for circulating MCH and (c) characterise the pattern of expression of circulating MCH in humans. A sensitive and specific RIA was developed and cross-validated by RP-HPLC and MS. The effective range was 19.5-1248 pg MCH/mL. Blood samples from 231 subjects were taken to establish a reference range of 19.5-55.4 pg/mL for fasting MCH concentrations. There were no significant differences between male and female fasting MCH concentrations; however, there were correlations between MCH concentrations and BMI in males and females with excess fat (P < 0.001 and P = 0.020) and between MCH concentrations and fat mass in females with excess fat (P = 0.038). Plasma MCH concentrations rose significantly after feeding in a group of older individuals (n = 50, males P = 0.006, females P = 0.023). There were no robust significant correlations between fasting or post-prandial MCH and resting metabolic rate, plasma glucose, insulin or leptin concentrations although there were correlations between circulating MCH and leptin concentrations in older individuals (P = 0.029). These results indicate that the role of circulating MCH may not be reflective of its regulatory hypothalamic role.
Collapse
Affiliation(s)
- J Naufahu
- Faculty of Science and TechnologyUniversity of Westminster, London, UK
| | - F Alzaid
- Faculty of Science and TechnologyUniversity of Westminster, London, UK
| | - M Fiuza Brito
- Faculty of Science and TechnologyUniversity of Westminster, London, UK
| | - B Doslikova
- Faculty of Science and TechnologyUniversity of Westminster, London, UK
| | - T Valencia
- Faculty of Science and TechnologyUniversity of Westminster, London, UK
| | - A Cunliffe
- Faculty of Science and TechnologyUniversity of Westminster, London, UK
| | - J F Murray
- Faculty of Science and TechnologyUniversity of Westminster, London, UK
| |
Collapse
|
5
|
Naufahu J, Cunliffe AD, Murray JF. The roles of melanin-concentrating hormone in energy balance and reproductive function: Are they connected? Reproduction 2013; 146:R141-50. [PMID: 23884861 DOI: 10.1530/rep-12-0385] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Melanin-concentrating hormone (MCH) is an anabolic neuropeptide with multiple and diverse physiological functions including a key role in energy homoeostasis. Rodent studies have shown that the ablation of functional MCH results in a lean phenotype, increased energy expenditure and resistance to diet-induced obesity. These findings have generated interest among pharmaceutical companies vigilant for potential anti-obesity agents. Nutritional status affects reproductive physiology and behaviours, thereby optimising reproductive success and the ability to meet energetic demands. This complex control system entails the integration of direct or indirect peripheral stimuli with central effector systems and involves numerous mediators. A role for MCH in the reproductive axis has emerged, giving rise to the premise that MCH may serve as an integratory mediator between those discrete systems that regulate energy balance and reproductive function. Hence, this review focuses on published evidence concerning i) the role of MCH in energy homoeostasis and ii) the regulatory role of MCH in the reproductive axis. The question as to whether the MCH system mediates the integration of energy homoeostasis with the neuroendocrine reproductive axis and, if so, by what means has received limited coverage in the literature; evidence to date and current theories are summarised herein.
Collapse
Affiliation(s)
- Jane Naufahu
- Department of Human and Health Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK and
| | | | | |
Collapse
|
6
|
Lee SJ, Kirigiti M, Lindsley SR, Loche A, Madden CJ, Morrison SF, Smith MS, Grove KL. Efferent projections of neuropeptide Y-expressing neurons of the dorsomedial hypothalamus in chronic hyperphagic models. J Comp Neurol 2013; 521:1891-914. [PMID: 23172177 DOI: 10.1002/cne.23265] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/15/2012] [Accepted: 11/06/2012] [Indexed: 12/31/2022]
Abstract
The dorsomedial hypothalamus (DMH) has long been implicated in feeding behavior and thermogenesis. The DMH contains orexigenic neuropeptide Y (NPY) neurons, but the role of these neurons in the control of energy homeostasis is not well understood. NPY expression in the DMH is low under normal conditions in adult rodents but is significantly increased during chronic hyperphagic conditions such as lactation and diet-induced obesity (DIO). To understand better the role of DMH-NPY neurons, we characterized the efferent projections of DMH-NPY neurons using the anterograde tracer biotinylated dextran amine (BDA) in lactating rats and DIO mice. In both models, BDA- and NPY-colabeled fibers were limited mainly to the hypothalamus, including the paraventricular nucleus of the hypothalamus (PVH), lateral hypothalamus/perifornical area (LH/PFA), and anteroventral periventricular nucleus (AVPV). Specifically in lactating rats, BDA-and NPY-colabeled axonal swellings were in close apposition to cocaine- and amphetamine-regulated transcript (CART)-expressing neurons in the PVH and AVPV. Although the DMH neurons project to the rostral raphe pallidus (rRPa), these projections did not contain NPY immunoreactivity in either the lactating rat or the DIO mouse. Instead, the majority of BDA-labeled fibers in the rRPa were orexin positive. Furthermore, DMH-NPY projections were not observed within the nucleus of the solitary tract (NTS), another brainstem site critical for the regulation of sympathetic outflow. The present data suggest that NPY expression in the DMH during chronic hyperphagic conditions plays important roles in feeding behavior and thermogenesis by modulating neuronal functions within the hypothalamus, but not in the brainstem.
Collapse
Affiliation(s)
- Shin J Lee
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
The neuroendocrine basis of lactation-induced suppression of GnRH: role of kisspeptin and leptin. Brain Res 2010; 1364:139-52. [PMID: 20727862 DOI: 10.1016/j.brainres.2010.08.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 11/22/2022]
Abstract
Lactation is an important physiological model of the integration of energy balance and reproduction, as it involves activation of potent appetitive neuropeptide systems coupled to a profound inhibition of pulsatile GnRH/LH secretion. There are multiple systems that contribute to the chronic hyperphagia of lactation: 1) suppression of the metabolic hormones, leptin and insulin, 2) activation of hypothalamic orexigenic neuropeptide systems NPY, AGRP, orexin (OX) and melanin concentrating hormone (MCH), 3) special induction of NPY expression in the dorsomedial hypothalamus, and 4) suppression of anorexigenic systems POMC and CART. These changes ensure adequate energy intake to meet the metabolic needs of milk production. There is significant overlap in all of the systems that regulate food intake with the regulation of GnRH, suggesting there could be several redundant factors acting to suppress GnRH/LH during lactation. In addition to an overall increase in inhibitory tone acting directly on GnRH cell bodies that is brought about by increases in orexigenic systems, there are also effects at the ARH to disrupt Kiss1/neurokinin B/dynorphin neuronal function through inhibition of Kiss1 and NKB. These changes could lead to an increase in inhibitory auto-regulation of the Kiss1 neurons and a possible disruption of pulsatile GnRH release. While the low levels of leptin and insulin contribute to the changes in ARH appetitive systems, they do not appear to contribute to the suppression of ARH Kiss1 or NKB. The inhibition of Kiss1 may be the key factor in the suppression of GnRH during lactation, although the mechanisms responsible for its inhibition are unknown.
Collapse
|
8
|
Gao XB. Electrophysiological effects of MCH on neurons in the hypothalamus. Peptides 2009; 30:2025-30. [PMID: 19463877 PMCID: PMC2782585 DOI: 10.1016/j.peptides.2009.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/06/2009] [Accepted: 05/07/2009] [Indexed: 11/21/2022]
Abstract
Melanin concentrating hormone (MCH) has been implicated in many brain functions and behaviors essential to the survival of animals. The hypothalamus is one of the primary targets where MCH-containing nerve fibers and MCH receptors are extensively expressed and its actions in the brain are exerted. Since the identification of MCH receptors as orphan G protein coupled receptors, the cellular effects of MCH have been revealed in many non-neuronal expression systems (including Xenopus oocytes and cell lines), however, the mechanism by which MCH modulates the activity in the neuronal circuitry of the brain is still under investigation. This review summarizes our current knowledge of electrophysiological effects of MCH on neurons in the hypothalamus, particularly in the lateral hypothalamus. Generally, MCH exerts inhibitory effects on neurons in this structure and may serve as a homeostatic regulator in the lateral hypothalamic area. Given the contrast between the limited data on cellular functions of MCH in the hypothalamus versus a fast growing body of evidence on the vital role of MCH in animal behavior, further investigations of the former are warranted.
Collapse
Affiliation(s)
- Xiao-Bing Gao
- Department of OB/GYN and Reproductive Science, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
9
|
Hervieu GJ. Further insights into the neurobiology of melanin-concentrating hormone in energy and mood balances. Expert Opin Ther Targets 2006; 10:211-29. [PMID: 16548771 DOI: 10.1517/14728222.10.2.211] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Melanin-concentrating hormone (MCH) is a critical hypothalamic anabolic neuropeptide, with key central and peripheral actions on energy balance regulation. The actions of MCH are, so far, known to be transduced through two seven-transmembrane-like receptor paralogues, named MCH1R and MCH2R. MCH2R is not functional in rodents. MCH1R is an important receptor involved in mediating feeding behaviour modulation by MCH in rodents. Pharmacological antagonism at MCH1R in rodents diminishes food intake and results in significant and sustained weight loss in fat tissues, particularly in obese animals. Additionally, MCH1R antagonists have been shown to have anxiolytic and antidepressant properties. The purpose of this review is to highlight the recent numerous pieces of evidence showing that pharmacological blockade at MCH1R could be a potential treatment for obesity and its related metabolic syndrome, as well as for various psychiatric disorders.
Collapse
Affiliation(s)
- Guillaume J Hervieu
- GlaxoSmithKline R&D, Neurology Centre of Excellence for Drug Discovery, NFSP-North, HW1713 Building H17, L1-130 C06 Third Avenue, Harlow, Essex CM19 5AW, UK.
| |
Collapse
|
10
|
Abstract
Appetite regulation is part of a feedback system that controls the energy balance, involving a complex interplay of hunger and satiety signals, produced in the hypothalamus as well as in peripheral organs. Hunger signals may be generated in peripheral organs (e.g. ghrelin) but most of them are expressed in the hypothalamus (neuropeptide Y, orexins, agouti-related peptide, melanin concentrating hormone, endogenous opiates and dopamine) and are expressed during situations of energy deficiency. Some satiety signals, such as cholecystokinin, glucagon-like peptide 1, peptide YY and enterostatin are released from the digestive tract in response to food intake. Others, such as leptin and insulin, are mobilized in response to perturbations in the nutritional state. Still others are generated in neurones of the hypothalamus (alpha-melanocyte-stimulating hormone and serotonin). Satiety signals act by inhibiting the expression of hunger signals and/or by blunting their effect. Palatable food, i.e. food rich in fat and sugar, up-regulates the expression of hunger signals and satiety signals, at the same time blunting the response to satiety signals and activating the reward system. Hence, palatable food offsets normal appetite regulation, which may explain the increasing problem of obesity worldwide.
Collapse
|