1
|
Mita H, Kuroda T, Minamijima Y, Tamura N, Ohta M. Concentration of Marbofloxacin in equine subcutaneous tissue fluid after subcutaneous administration in encapsulated microparticles. J Equine Vet Sci 2024; 141:105148. [PMID: 39019294 DOI: 10.1016/j.jevs.2024.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/17/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Surgical-site infections (SSIs) at implant sites in horses are sometimes difficult to control with systemic antimicrobials. Because one of the likely reasons is insufficient antimicrobial concentrations, there is a need to increase these concentrations in and around the infected tissue. Marbofloxacin (MAR)-encapsulated microparticles (MAR-MPs) made of biodegradable poly (lactic-co-glycolic) acid are capable of sustained release in vitro. We examined the concentration of MAR in the subcutaneous tissue fluid at sites where MAR-MPs had been administered. On day 0, six 3- × 4-cm subcutaneous pockets were created in the neck of each of six Thoroughbred horses under sedation and local anesthesia. MAR-MPs containing 50 mg of MAR were added to each pocket, which was then sutured. On days 1, 2, 3, 4, and 7, subcutaneous tissue fluid from one pocket per horse was collected and analyzed by LC-MS/MS. From days 1 to 7, the median MAR concentration in the subcutaneous tissue fluid ranged from 17.7 (4.89-125.6) to 33.05 (15.1-71.6) µg/mL. The median concentrations in the subcutaneous tissue fluid exceeded the MIC90 (the minimum inhibitory concentration that would inhibit the growth of 90 % of the tested bacterial isolates) of MAR for clinical isolates reported previously. The area of swelling at the site of administration was significantly larger on days 1 to 4 than just after administration (P < 0.05). MAR-MPs could be useful for controlling SSIs that require high antimicrobial concentrations for extended periods when they are used with strategies that reduce side effects.
Collapse
Affiliation(s)
- Hiroshi Mita
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, Tochigi, 329-0412, Japan.
| | - Taisuke Kuroda
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, Tochigi, 329-0412, Japan
| | | | - Norihisa Tamura
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, Tochigi, 329-0412, Japan
| | - Minoru Ohta
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, Tochigi, 329-0412, Japan
| |
Collapse
|
2
|
Jagtap AA, Prasanna SB, Kumar GS, Lin YC, Dhawan U, Lu YC, Sakthivel R, Tung CW, Chung RJ. A Ce 2MgMoO 6 double perovskite decorated on a functionalized carbon nanofiber nanocomposite for quantification of ciprofloxacin in milk and honey samples: Density functional theory interpretation. CHEMOSPHERE 2024; 358:142237. [PMID: 38705406 DOI: 10.1016/j.chemosphere.2024.142237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
In this study, a novel Ce2MgMoO6/CNFs (cerium magnesium molybdite double perovskite decorated on carbon nanofibers) nanocomposite was developed for selective and ultra-sensitive detection of ciprofloxacin (CFX). Physical characterization and analytical techniques were used to explore the morphology, structure, and electrocatalytic characteristics of the Ce2MgMoO6/CNFs nanocomposite. The sensor has a wide linear range (0.005-7.71 μM and 9.75-77.71 μM), a low limit of detection (0.012 μM), high sensitivity (0.807 μA μM-1 cm-2 nM), remarkable repeatability, and an appreciable storage stability. Here, we used density functional theory to investigate CFX and oxidized CFX as well as the locations of the energy levels and electron transfer sites. Furthermore, the Ce2MgMoO6/CNFs-modified electrode was successfully tested in food samples (milk and honey), indicating an acceptable response with a recovery percentage and relative standard deviation of less than 4%, which is comparable to that of GC-MS. Finally, the developed sensor exhibited high selectivity and stability for CFX detection.
Collapse
Affiliation(s)
- Akash Ashokrao Jagtap
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Sanjay Ballur Prasanna
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | | | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G116EW, UK
| | - Yu-Chun Lu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan; ZhongSun Co., LTD, New Taipei City, 220031, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan.
| | - Ching-Wei Tung
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan.
| |
Collapse
|
3
|
Chen JC, Liang J, Li ZE, Duan MH, Dai Y, Jin YG, Zhang YN, Liu Y, Zhang M, Wang GY, Yang F. In vitro antibacterial activity of danofloxacin against Escherichia coli in Gushi chickens and its residue depletion following multiple oral administration. Poult Sci 2024; 103:103493. [PMID: 38335674 PMCID: PMC10864797 DOI: 10.1016/j.psj.2024.103493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to investigate the in vitro antibacterial activity of danofloxacin against Escherichia coli isolated from Gushi chickens, as well as the tissue distribution and residue depletion of danofloxacin in Gushi chickens following multiple oral administration. A total of 42 clinical E. coli strains were isolated from the cloaca of locally farmed Gushi chickens between August and October 2023. Then the minimum inhibitory concentration (MIC) of danofloxacin against these isolates was determined by broth microdilution method. Additionally, 42 healthy Gushi chickens were randomly divided into 6 groups, and danofloxacin was orally administered at a dose of 5 mg/kg body weight (BW) for 3 consecutive days. Plasma, intestinal content, and tissue samples, including muscle, skin + fat, liver, kidney, lung, and intestine, were collected at 4, 12, 24, 48, 72, and 120 h after the last administration. Danofloxacin concentrations in all samples were determined using a high-performance liquid chromatography (HPLC) method. The average concentration vs. time data were then subjected to noncompartmental analysis using Phoenix software, and withdrawal periods for danofloxacin in Gushi chickens were further determined with WT1.4 software, setting a 95% confidence interval. Results indicated a notable inhibitory effect of danofloxacin on E. coli, with an MIC50 of 0.5 μg/mL. Additionally, danofloxacin exhibited widespread distribution in Gushi chickens, detectable in all collected samples. Among all tissues, the liver exhibited the highest concentration, followed by the intestine. Even on the fifth day postadministration, danofloxacin persisted in skin + fat, liver, and lung. The elimination half-lives (t1/2λzs) of danofloxacin varied across samples: skin + fat (47.87 h), lung (30.61 h), liver (22.07 h), plasma (16.05 h), muscle (12.53 h), intestine (9.83 h), and kidney (6.34 h). Considering residue depletion and the maximum residue limit (MRL) of danofloxacin in poultry set by Chinese regulatory authorities, withdrawal periods for the kidney, muscle, liver, and skin + fat were determined as 1.03, 1.38, 3.34, and 5.85 d, respectively, rounded to a final withdrawal time of 6 d.
Collapse
Affiliation(s)
- Jun-Cheng Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Jun Liang
- Zhengzhou Institute of Veterinary Drug and Feed Control, Zhengzhou 450002, China
| | - Ze-En Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Ming-Hui Duan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yan Dai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yang-Guang Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yan-Ni Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Mei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Guo-Yong Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
4
|
Dumitru MV, Neagu AL, Miron A, Roque MI, Durães L, Gavrilă AM, Sarbu A, Iovu H, Chiriac AL, Iordache TV. Retention of Ciprofloxacin and Carbamazepine from Aqueous Solutions Using Chitosan-Based Cryostructured Composites. Polymers (Basel) 2024; 16:639. [PMID: 38475322 DOI: 10.3390/polym16050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Water pollution is becoming a great concern at the global level due to highly polluted effluents, which are charged year by year with increasing amounts of organic residues, dyes, pharmaceuticals and heavy metals. For some of these pollutants, the industrial treatment of wastewater is still relevant. Yet, in some cases, such as pharmaceuticals, specific treatment schemes are urgently required. Therefore, the present study describes the synthesis and evaluation of promising cryostructured composite adsorbents based on chitosan containing native minerals and two types of reinforcement materials (functionalized kaolin and synthetic silicate microparticles). The targeted pharmaceuticals refer to the ciprofloxacin (CIP) antibiotic and the carbamazepine (CBZ) drug, for which the current water treatment process seem to be less efficient, making them appear in exceedingly high concentrations, even in tap water. The study reveals first the progress made for improving the mechanical stability and resilience to water disintegration, as a function of pH, of chitosan-based cryostructures. Further on, a retention study shows that both pharmaceuticals are retained with high efficiency (up to 85.94% CIP and 86.38% CBZ) from diluted aqueous solutions.
Collapse
Affiliation(s)
- Marinela-Victoria Dumitru
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnology, University POLITEHNICA of Bucharest, 1-7 Ghe. Polizu Street, 011061 Bucharest, Romania
| | - Ana-Lorena Neagu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania
| | - Andreea Miron
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania
| | - Maria Inês Roque
- University of Coimbra, CERES-Chemical Engineering and Renewable Resources for Sustainability, Department of Chemical Engineering, Rua Silvio Lima, 3030-790 Coimbra, Portugal
| | - Luisa Durães
- University of Coimbra, CERES-Chemical Engineering and Renewable Resources for Sustainability, Department of Chemical Engineering, Rua Silvio Lima, 3030-790 Coimbra, Portugal
| | - Ana-Mihaela Gavrilă
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania
| | - Andrei Sarbu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania
| | - Horia Iovu
- Faculty of Chemical Engineering and Biotechnology, University POLITEHNICA of Bucharest, 1-7 Ghe. Polizu Street, 011061 Bucharest, Romania
| | - Anita-Laura Chiriac
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania
| | - Tanța Verona Iordache
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania
| |
Collapse
|
5
|
Romero B, Susperregui J, Sahagún AM, Fernández N, López C, de la Puente R, Altónaga JR, Díez R. Drug prescription pattern in exotic pet and wildlife animal practice: a retrospective study in a Spanish veterinary teaching hospital from 2018 to 2022. Front Vet Sci 2024; 10:1328698. [PMID: 38260200 PMCID: PMC10800385 DOI: 10.3389/fvets.2023.1328698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Exotic companion animals have had an important role in our society since ancient times. Preserving animal health is necessary to do a responsible use of veterinary medicines. This study aimed to describe the prescription patterns of drugs in exotic pets and wildlife animals attending the Veterinary Teaching Hospital of the University of León (HVULE). A retrospective study was carried out between 2018 and 2022. Birds were the largest group of exotic animals attending the HVULE. Visits were related to emergency reasons and for musculoskeletal disorders. One-third of the animals were eventually euthanised. Regarding pharmacological treatments, the most frequently active ingredients used were pentobarbital, isoflurane, meloxicam, and within antibiotics, marbofloxacin (category B in the classification of European Medicines Agency).
Collapse
Affiliation(s)
- Beatriz Romero
- Department of Biomedical Sciences, Veterinary Faculty, Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Julen Susperregui
- Applied Mathematics, Department of Mathematics, University of León, León, Spain
| | - Ana M. Sahagún
- Department of Biomedical Sciences, Veterinary Faculty, Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Nélida Fernández
- Department of Biomedical Sciences, Veterinary Faculty, Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Cristina López
- Department of Biomedical Sciences, Veterinary Faculty, Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Raúl de la Puente
- Department of Biomedical Sciences, Veterinary Faculty, Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - José R. Altónaga
- Department of Veterinary Medicine, Surgery and Anatomy, Director of the Veterinary Teaching Hospital of the University of León (HVULE), University of León, León, Spain
| | - Raquel Díez
- Department of Biomedical Sciences, Veterinary Faculty, Institute of Biomedicine (IBIOMED), University of León, León, Spain
| |
Collapse
|
6
|
Coluzzi C, Guillemet M, Mazzamurro F, Touchon M, Godfroid M, Achaz G, Glaser P, Rocha EPC. Chance Favors the Prepared Genomes: Horizontal Transfer Shapes the Emergence of Antibiotic Resistance Mutations in Core Genes. Mol Biol Evol 2023; 40:msad217. [PMID: 37788575 PMCID: PMC10575684 DOI: 10.1093/molbev/msad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Bacterial lineages acquire novel traits at diverse rates in part because the genetic background impacts the successful acquisition of novel genes by horizontal transfer. Yet, how horizontal transfer affects the subsequent evolution of core genes remains poorly understood. Here, we studied the evolution of resistance to quinolones in Escherichia coli accounting for population structure. We found 60 groups of genes whose gain or loss induced an increase in the probability of subsequently becoming resistant to quinolones by point mutations in the gyrase and topoisomerase genes. These groups include functions known to be associated with direct mitigation of the effect of quinolones, with metal uptake, cell growth inhibition, biofilm formation, and sugar metabolism. Many of them are encoded in phages or plasmids. Although some of the chronologies may reflect epidemiological trends, many of these groups encoded functions providing latent phenotypes of antibiotic low-level resistance, tolerance, or persistence under quinolone treatment. The mutations providing resistance were frequent and accumulated very quickly. Their emergence was found to increase the rate of acquisition of other antibiotic resistances setting the path for multidrug resistance. Hence, our findings show that horizontal gene transfer shapes the subsequent emergence of adaptive mutations in core genes. In turn, these mutations further affect the subsequent evolution of resistance by horizontal gene transfer. Given the substantial gene flow within bacterial genomes, interactions between horizontal transfer and point mutations in core genes may be a key to the success of adaptation processes.
Collapse
Affiliation(s)
- Charles Coluzzi
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Martin Guillemet
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Fanny Mazzamurro
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Touchon
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Maxime Godfroid
- SMILE Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Guillaume Achaz
- SMILE Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Philippe Glaser
- Institut Pasteur, Université de Paris Cité, CNRS, UMR6047, Unité EERA, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| |
Collapse
|
7
|
Ma KL, Yang F, Zhang M, Chen JC, Duan MH, Li ZE, Dai Y, Liu Y, Jin YG, Yang F. Population Pharmacokinetics of Difloxacin in Crucian Carp ( Carassius auratus) after a Single Oral Administration. Vet Sci 2023; 10:416. [PMID: 37505822 PMCID: PMC10383650 DOI: 10.3390/vetsci10070416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
This study aimed to investigate the population pharmacokinetics of difloxacin in crucian carp (Carassius auratus) orally provided a single dose of 20 mg/kg body weight (BW). To achieve this, fish were sampled at various intervals using a sparse sampling strategy, and plasma samples were analyzed using the high-performance liquid chromatography (HPLC) method. Subsequently, naïve average data were analyzed using a non-compartmental method, and a population model was developed based on the nonlinear mixed effects approach. The covariate of BW and the relationship between covariances were sequentially incorporated into the population model. However, it was found that only covariance and not BW affected the population parameters. Therefore, the covariance model was taken as the final population model, which revealed that the typical values of the absorption rate constant (tvKa), apparent volume of distribution per bioavailability (tvV), and clearance rate per bioavailability (tvCl) were 1.18 1/h, 14.18 L/kg, and 0.20 L/h/kg, respectively. Based on the calculated free AUC/MIC values, the current oral dose of difloxacin (20 mg/kg BW) cannot generate adequate plasma concentrations to inhibit pathogens with MIC values above 0.83 μg/mL. Further study should be carried out to collect the pathogens from crucian carp and determine the MIC data of difloxacin against them. Pharmacodynamic experiments must also be further carried out to determine the optimal therapeutic dose for the treatment of Aeromonas hydrophila infection.
Collapse
Affiliation(s)
- Kai-Li Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Fang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Mei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Jun-Cheng Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Ming-Hui Duan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Ze-En Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yan Dai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yang-Guang Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
8
|
Blanco G, Gómez-Ramírez P, Espín S, Sánchez-Virosta P, Frías Ó, García-Fernández AJ. Domestic Waste and Wastewaters as Potential Sources of Pharmaceuticals in Nestling White Storks (Ciconia ciconia). Antibiotics (Basel) 2023; 12:antibiotics12030520. [PMID: 36978387 PMCID: PMC10044248 DOI: 10.3390/antibiotics12030520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Information on the exposure of wild birds to pharmaceuticals from wastewater and urban refuse is scarce despite the enormous amount of drugs consumed and discarded by human populations. We tested for the presence of a battery of antibiotics, NSAIDs, and analgesics in the blood of white stork (Ciconia ciconia) nestlings in the vicinity of urban waste dumps and contaminated rivers in Madrid, central Spain. We also carried out a literature review on the occurrence and concentration of the tested compounds in other wild bird species to further evaluate possible shared exposure routes with white storks. The presence of two pharmaceutical drugs (the analgesic acetaminophen and the antibiotic marbofloxacin) out of fourteen analysed in the blood of nestlings was confirmed in 15% of individuals (n = 20) and in 30% of the nests (n = 10). The apparently low occurrence and concentration (acetaminophen: 9.45 ng mL−1; marbofloxacin: 7.21 ng mL−1) in nestlings from different nests suggests the uptake through food acquired in rubbish dumps rather than through contaminated flowing water provided by parents to offspring. As with other synthetic materials, different administration forms (tablets, capsules, and gels) of acetaminophen discarded in household waste could be accidentally ingested when parent storks forage on rubbish to provide meat scraps to their nestlings. The presence of the fluoroquinolone marbofloxacin, exclusively used in veterinary medicine, suggests exposure via consumption of meat residues of treated animals for human consumption found in rubbish dumps, as documented previously at higher concentrations in vultures consuming entire carcasses of large livestock. Control measures and ecopharmacovigilance frameworks are needed to minimize the release of pharmaceutical compounds from the human population into the environment.
Collapse
Affiliation(s)
- Guillermo Blanco
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Correspondence:
| | - Pilar Gómez-Ramírez
- Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Silvia Espín
- Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
- Area of Toxicology, Department of Socio-Health Sciences, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Pablo Sánchez-Virosta
- Area of Toxicology, Department of Socio-Health Sciences, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Óscar Frías
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Carretera de Utrera, km. 1, 41013 Sevilla, Spain
| | - Antonio J. García-Fernández
- Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
- Area of Toxicology, Department of Socio-Health Sciences, Faculty of Veterinary, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
9
|
Watanabe M, Guruge KS, Uegaki R, Kure K, Yamane I, Kobayashi S, Akiba M. Occurrence and the potential ecological risk of veterinary antimicrobials in swine farm wastewaters in Japan: Seasonal changes, relation to purchased quantity and after termination of oxytetracycline usage. ENVIRONMENT INTERNATIONAL 2023; 173:107812. [PMID: 36805159 DOI: 10.1016/j.envint.2023.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/07/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
This study provides the first comprehensive investigation of the residual concentrations of eight classes of antimicrobial agents (AMs, 20 compounds) in 13 swine wastewater treatment facilities in Japan. These facilities implemented the aerobic activated sludge (AS) or its alternative methods. The maximum concentrations before treatment were found at the level of 7100, 6900, 6000, 3600, 3400, and 1400 µg/L for tilmicosin, oxytetracycline (OTC), chlortetracycline, lincomycin , sulfamethoxazole, and trimethoprim, respectively. The highest detection rate (96.3%) in influents was noted for the morantel, which was a feed additive. The seasonal difference in residual concentration was much greater for tetracyclines (TCs) and macrolides (MLs) when their residual concentrations were high, especially in the cold season. There was a positive correlation between the purchased quantity of TCs and fluoroquinolones (FQs) and their residue levels detected in the effluents (p < 0.01). The estimated removal rate of AMs was greater than 80%. In contrast, on a few occasions, it was diminished due to failing operating conditions, such as water temperature and AS rate in the aeration tank. The estimated ecological risks of AMs in effluents based on risk quotients (RQs) considered to enhance the selection pressure for drug resistance (RQs-AMR) were high for TCs and FQs, whereas ecotoxicological effects (RQs-ENV) to aquatic organisms were higher for sulfonamides and MLs. When OTC usage ceased, its concentration in wastewater decreased rapidly; however, it remained longer period in the effluents, probably due to OTC desorption from the AS. The concentrations (and respective RQs) of TCs were decreased by >99.8% and >92% in the influents and effluents, respectively. This data suggested that it is essential to reduce the amount used and introduce more efficient methods and operating conditions to constantly remove AMs during the treatment to reduce the risk of AM discharge from swine farms.
Collapse
Affiliation(s)
- Mafumi Watanabe
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Keerthi S Guruge
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan.
| | - Ryuichi Uegaki
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Katsumasa Kure
- The Japanese Association of Swine Veterinarians (JASV), 1704-3 Nishi-Ooi, Tsukuba, Ibaraki 300-1260, Japan
| | - Itsuro Yamane
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Sota Kobayashi
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Masato Akiba
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
10
|
Alhammadi M, Yoo J, Sonwal S, Park SY, Umapathi R, Oh MH, Huh YS. A highly sensitive lateral flow immunoassay for the rapid and on-site detection of enrofloxacin in milk. Front Nutr 2022; 9:1036826. [PMID: 36352902 PMCID: PMC9637957 DOI: 10.3389/fnut.2022.1036826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Enrofloxacin (ENR) is a veterinary antibiotic used to treat bacterial infections in livestock. It chiefly persists in foods and dairy products, which in turn pose severe risks to human health. Hence it is very important to detect the ENR in foods and dairy products to safeguard human health. Herein, we attempted to develop a single-step detection lateral flow immunochromatographic assay (LFIA) using gold nanoparticles (AuNPs) for the rapid and on-site detection of ENR in milk samples. An anti-enrofloxacin monoclonal antibody (ENR-Ab) was conjugated with AuNPs for the specific detection of ENR in milk samples. For sensitivity improvement, many optimization steps were conducted on LFIA test strips. The visual limit of detection (vLOD) was found to be 20 ng/ml with a cut-off value of 50 ng/ml in the milk samples. The obtained LOD and cut-off value were within the safety limit guidelines of the Ministry of food and drug safety, South Korea. The test strip showed negligible cross-reactivity with ENR analogs, and other components of antibiotics, this indicates the high specificity of the LFIA test strip towards ENR. The designed test strip showed good reliability. The visual test results can be seen within 10 min without the need for special equipment. Therefore, the test strip can be employed as a potential detection strategy for the qualitative on-site detection of enrofloxacin in milk samples.
Collapse
Affiliation(s)
- Munirah Alhammadi
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
| | - Jingon Yoo
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
| | - Sonam Sonwal
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
| | - So Young Park
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
| | - Reddicherla Umapathi
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
- *Correspondence: Reddicherla Umapathi,
| | - Mi-Hwa Oh
- National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
- Mi-Hwa Oh,
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
- Yun Suk Huh,
| |
Collapse
|
11
|
Corum O, Terzi E, Durna Corum D, Tastan Y, Gonzales RC, Kenanoglu ON, Arriesgado DM, Navarro VR, Bilen S, Sonmez AY, Uney K. Plasma and muscle tissue disposition of enrofloxacin in Nile tilapia ( Oreochromis niloticus) after intravascular, intraperitoneal, and oral administrations. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1806-1817. [PMID: 36136094 DOI: 10.1080/19440049.2022.2121429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The aim of the study was to investigate the plasma and muscle pharmacokinetic of enrofloxacin (ENR) and its active metabolite ciprofloxacin (CIP) in Nile tilapia (Oreochromis niloticus) following single intravascular (IV), intraperitoneal (IP), or oral (PO) administration at 30 ± 1 °C. In this study, 234 healthy Nile tilapia (120-150 g) were used. The fish received a single IV, IP, or PO treatment of ENR at a dose of 10 mg/kg. The plasma and muscle tissue concentrations of ENR and CIP were measured using high-performance liquid chromatography with fluorescence detection and were evaluated using non-compartmental analysis. The elimination half-life, volume of distribution at steady state, and total body clearance of ENR were 21.7 h, 2.69 L/kg, and 0.09 L/h/kg, respectively. The peak plasma concentrations of ENR after IP or PO administration were 6.11 and 4.21 µg/mL at 0.25 and 2 h, respectively. The bioavailability of ENR for IP or PO routes was 78% and 86%, respectively. AUC(0-120)muscle/AUC(0-120)plasma ratios following the IV, IP, or PO administrations were 1.43, 1.49, and 1.07, respectively. CIP was detected after all routes, but the AUC0-last ratios of CIP to ENR were <1.0% for plasma and muscle. ENR was detected up to 120 h following the IV, IP, or PO administrations. The long residence time of ENR after single IV, IP, or PO administration ensured the plasma concentration was ≥1 × MIC for bacteria with threshold MIC values of 0.92, 0.72, and 0.80 μg/mL over the whole 120 h observed. However, further studies are necessary to determine the optimum pharmacokinetic/pharmacodynamics data of ENR for the treatment of infections caused by susceptible bacteria in tilapia.
Collapse
Affiliation(s)
- Orhan Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Ertugrul Terzi
- Faculty of Fisheries, University of Kastamonu, Kastamonu, Turkey
| | - Duygu Durna Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Yigit Tastan
- Faculty of Fisheries, University of Kastamonu, Kastamonu, Turkey
| | - Ruby C Gonzales
- Department of Marine Biology and Environmental Science, Mindanao State University Naawan, College of Science and Environment, Naawan, Misamis Oriental, Philippines
| | | | - Dan M Arriesgado
- Department of Fisheries, Faculty of Fisheries, Mindanao State University Naawan, Naawan, Misamis Oriental, Philippines
| | - Victor R Navarro
- Department of Fisheries, Faculty of Fisheries, Mindanao State University Naawan, Naawan, Misamis Oriental, Philippines
| | - Soner Bilen
- Faculty of Fisheries, University of Kastamonu, Kastamonu, Turkey
| | | | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| |
Collapse
|
12
|
Shi F, Huang Y, Yang M, Lu Z, Li Y, Zhan F, Lin L, Qin Z. Antibiotic-induced alternations in gut microflora are associated with the suppression of immune-related pathways in grass carp (Ctenopharyngodon idellus). Front Immunol 2022; 13:970125. [PMID: 36032163 PMCID: PMC9403240 DOI: 10.3389/fimmu.2022.970125] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
Gut microbiota play a vital role in fish health homeostasis. Antibiotics are known to alter microbial community composition and diversity; however, the substantial effects of antibiotics upon the gut microbiome with respect to immune-related pathways in healthy fish remain unclear. Accordingly, here we explored the impact of two antibiotics on the intestinal health, immune response, microbiome dynamics, and transcriptome profiles of grass carp. A two-week feeding trial was carried out in which the basal diet was complemented with enrofloxacin (10 mg/kg) or florfenicol (10 mg/kg). The results showed that: (1) Enrofloxacin and florfenicol both induced intestinal oxidative stress and reduced the digestive enzyme activity of grass carp. (2) High-throughput sequencing of 16S rDNA revealed that enrofloxacin but not the florfenicol treatment influenced gut microbiota diversity in grass carp by shifting α/β-diversity with more abundant pathogens detected. (3) Transcriptome profiling demonstrated that florfenicol down-regulated the immune-related pathways of grass carp, and the network analysis revealed that IgA was negatively correlated with certain pathogens, such as Shewanella and Aeromonas. (4) Antibiotic-induced alternations of gut core microbes were revealed via immune-related transcripts, as were lower mRNA expression levels of mucosal-related genes. (5) Apoptosis and histopathological changes were detected in the enrofloxacin- and florfenicol-treated groups compared with the control group. Overall, administering antibiotics will promote oxidative stress, cause intestinal flora dysbiosis, inhibit the mucosal immune system, and induce apoptosis in grass carp.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Lin
- *Correspondence: Li Lin, ; Zhendong Qin,
| | | |
Collapse
|
13
|
Kayal A, Mandal S. Microbial degradation of antibiotic: future possibility of mitigating antibiotic pollution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:639. [PMID: 35927593 DOI: 10.1007/s10661-022-10314-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are the major pharmaceutical wastes that are being exposed to the environment from the pharmaceutical industries and for the anthropogenic activities. The use of antibiotics for disease prevention and treatment in humans has been surpassed by the amount used in agriculture, particularly on livestock. It is stipulated that the overuse of antibiotics is the single largest reason behind the rise of bacterial anti-microbial resistance (AMR). The development of alternative therapy, like gene therapy, immunotherapy, use of natural products, and various nanoparticles, to control bacterial pathogens might be an alternative of antibiotics for mankind but the remediation of already exposed antibiotics from the lithosphere and hydrosphere needs to be envisioned with priority. The ever-increasing release of antibiotics in the environment makes it one of the major emerging contaminants (ECs). Decomposition of such antibiotic contaminants is a great challenge to get a cleaner environment. There are reports describing the degradation of antibiotics by photolysis, hydrolysis, using cathode and metal salts, or by degradation via microbes. Antimicrobials like sulfonamides are recalcitrant to natural biodegradation, exhibiting high thermal stability. There are recent reports on microbial degradation of a few common antibiotics and their derivatives but their applications in waste management are scanty. It could however be a major concern to the scientists whether to use the antibiotic degradation traits of a microbe for the removal of antibiotic wastes. The complexity of the genetic clusters of a microbe that are responsible for degradation is crucial, as a small genetic cluster might have higher chance of horizontal transfer into sensitive species of the normal microbial flora that in turn triggers the rise of antimicrobial resistance.
Collapse
Affiliation(s)
- Aindrila Kayal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
14
|
Effects of Enrofloxacin on the Epiphytic Algal Communities Growing on the Leaf Surface of Vallisneria natans. Antibiotics (Basel) 2022; 11:antibiotics11081020. [PMID: 36009889 PMCID: PMC9404838 DOI: 10.3390/antibiotics11081020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
Enrofloxacin (ENR) is a member of quinolones, which are extensively used in livestock farming and aquaculture to fight various bacterial diseases, but its residues are partially transferred to surface water and affect the local aquatic ecosystem. There are many studies on the effect of ENR on the growth of a single aquatic species, but few on the level of the aquatic community. Epiphytic algae, which are organisms attached to the surface of submerged plants, play an important role in the absorption of nitrogen and phosphorus in the ecological purification pond which are mainly constructed by submerged plants, and are commonly used in aquaculture effluent treatment. Enrofloxacin (ENR) is frequently detected in aquaculture ponds and possibly discharged into the purification pond, thus imposing stress on the pond ecosystem. Here, we performed a microcosm experiment to evaluate the short-term effects of pulsed ENR in different concentrations on the epiphytic algal communities growing on Vallisneria natans. Our results showed an overall pattern of “low-dose-promotion and high-dose-inhibition”, which means under low and median ENR concentrations, the epiphytic algal biomass was promoted, while under high ENR concentrations, the biomass was inhibited. This pattern was mainly attributed to the high tolerance of filamentous green algae and yellow-green algae to ENR. Very low concentrations of ENR also favored the growth of diatoms and cyanobacteria. These results demonstrate a significant alteration of epiphytic algal communities by ENR and also spark further research on the potential use of filamentous green algae for the removal of ENR in contaminated waters because of its high tolerance.
Collapse
|
15
|
Hu Y, Zhu Q, Wang Y, Liao C, Jiang G. A short review of human exposure to antibiotics based on urinary biomonitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154775. [PMID: 35339554 DOI: 10.1016/j.scitotenv.2022.154775] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics play a role in preventing and treating infectious diseases and also contribute to other health risks for humans. With the overuse of antibiotics, they are widely distributed in the environment. Long-term exposure to multiple antibiotics may occur in humans through medication and dietary intake. Therefore, it is critical to estimate daily intake and health risk of antibiotics based on urinary biomonitoring. This review compares the strengths and weaknesses of current analytical methods to determine antibiotics in urine samples, discusses the urinary concentration profiles and hazard quotients of individual antibiotics, and overviews correlations of antibiotic exposure with the risk of diseases. Liquid chromatography-tandem mass spectrometry is most applied to simultaneously determine multiple types of antibiotics at trace levels. Solid-phase extraction with a hydrophilic-lipophilic balance adsorbent is commonly used to extract antibiotics in urine samples. Fifteen major antibiotics with relatively higher detection frequencies and concentrations include sulfaclozine, trimethoprim, erythromycin, azithromycin, penicillin V, amoxicillin, oxytetracycline, chlortetracycline, tetracycline, doxycycline, ofloxacin, enrofloxacin, ciprofloxacin, norfloxacin, and florfenicol. Humans can be easily at microbiological effect-based risk induced by florfenicol, ciprofloxacin, azithromycin, and amoxicillin. Positive associations were observed between specific antibiotic exposure and obesity, allergic diseases, and mental disorders. Overall, the accessible, automated, and environmentally friendly methods are prospected for simultaneous determinations of antibiotics at trace level in urine. To estimate human exposure to antibiotics more accurately, knowledge gaps need to be filled up, including the transformation between parent and metabolic antibiotics, urinary excretion proportions of antibiotics at low-dose exposure and pharmacokinetic data of antibiotics in humans, and the repeated sampling over a long period in future research is needed. Longitudinal studies about antibiotic exposure and the risk of diseases in different developmental windows as well as in-depth research on the pathogenic mechanism of long-term, low-dose, and joint antibiotic exposure are warranted.
Collapse
Affiliation(s)
- Yu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Du D, Zhou J, Zhang K, Zhi S. Seasonal Pollution Characteristics of Antibiotics on Pig Farms of Different Scales. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8264. [PMID: 35886115 PMCID: PMC9320919 DOI: 10.3390/ijerph19148264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022]
Abstract
Scientific interest in pollution from veterinary antibiotics (VAs) on intensive animal farms has been increasing in recent years. However, limited information is available on the seasonal pollution characteristics and the associated ecological risks of VAs, especially about the different scale farms. Therefore, this study investigated the seasonal pollution status and ecological risks of 42 typical VAs (5 classes) on three different scale pig farms (breeding scales of about 30,000, 1200, and 300 heads, respectively) in Tianjin, China. The results showed that large-scale pig farms usually had the highest antibiotic pollution levels, followed by small-scale pig farms and medium-scale pig farms. Among different seasons, antibiotic contamination was more severe in winter and spring than that in the other seasons. Tetracyclines (TCs) usually had higher proportions (over 51.46%) and the residual concentration detected in manure, and wastewater samples ranged from not detected (ND)-1132.64 mg/kg and ND-1692.50 μg/L, respectively, which all occurred for oxytetracycline (OTC) during winter. For the antibiotic ecological risks in the effluent, we found high-risk level of 12 selected VAs accounted for 58% in spring, and 7 kinds of VAs were selected in the amended soil, but nearly all the antibiotics had no obvious ecological risks except OTC (spring and summer). All these data provided an insight into the seasonal variability and the associated ecological risks of antibiotics on intensive pig farms, which can provide scientific guidance on decreasing antibiotic contamination to enhance environmental security in similar areas.
Collapse
Affiliation(s)
- Delin Du
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
- College of Resources and Environment, Northeast Agricultural University, Harbin 150036, China
| | - Jing Zhou
- Guangdong VTR Bio-Tech Co., Ltd., Zhuhai 519060, China;
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
- College of Resources and Environment, Northeast Agricultural University, Harbin 150036, China
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
- China-UK Agro-Environmental Pollution Prevention and Control Joint Research Centre, Tianjin 300191, China
| |
Collapse
|
17
|
Poapolathep S, Klangkaew N, Wongwaipairoj T, Chaiyabutr N, Giorgi M, Poapolathep A. Pharmacokinetics of danofloxacin in freshwater crocodiles (Crocodylus siamensis) after intramuscular injection. J Vet Pharmacol Ther 2022; 45:352-357. [PMID: 35582881 DOI: 10.1111/jvp.13072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
The present study evaluated the pharmacokinetic profiles of danofloxacin (DNX) in freshwater crocodiles (Crocodylus siamensis), following single intramuscular (i.m.) administrations at two different dosages of 6 and 12 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 168 h. DNX in the harvested crocodile plasma was extracted using liquid-liquid extraction and analyzed using a validated high-performance liquid chromatography method equipped with fluorescence detection. The pharmacokinetic analysis was performed using a non-compartmental approach. DNX in plasma was quantifiable from 5 min to 168 h after i.m. administration at the two dosages in freshwater crocodiles. The area under the curve (AUC) and maximum concentration (Cmax ) values increased in a dose-dependent fashion. Long elimination half-life (48.18 and 67.29 h) and low clearance (0.024 and 0.020 ml/g h) were obtained in the high- and low-dose groups, respectively. According to the pharmacokinetic-pharmacodynamic surrogate (AUC0-24h /MIC > 125), i.m. single administration of DNX at a dosage of 6 mg/kg b.w. is predicted to have antibacterial success for disease caused by bacteria with MIC < 0.04 μg/ml in the freshwater crocodile, C. siamensis.
Collapse
Affiliation(s)
- Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Narumol Klangkaew
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | | | - Narongsak Chaiyabutr
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, Via Livornese (latomonte), San Piero a Grado, Italy
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
18
|
Golestani S, Golestaneh A, Gohari AA. Comparative effects of systemic administration of levofloxacin and cephalexin on fracture healing in rats. J Korean Assoc Oral Maxillofac Surg 2022; 48:94-100. [PMID: 35491140 PMCID: PMC9065642 DOI: 10.5125/jkaoms.2022.48.2.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives This study aimed to compare the effects of systemic administration of levofloxacin or cephalexin on fracture healing in rats. Materials and Methods In this animal study, tibial fractures not requiring fixation were artificially induced in 30 male Wistar albino rats using a 1.1 mm surgical bur. The rats were randomly divided into 6 groups (n=5). Groups 1 and 2 received daily subcutaneous saline injections. Groups 3 and 4 received subcutaneous injections of 25 mg/kg levofloxacin twice daily. Groups 5 and 6 received daily subcutaneous injections of 20 mg/kg cephalexin. The rats in Groups 1, 3, and 5 were sacrificed after 1 week, while the rats in Groups 2, 4, and 6 were sacrificed after 4 weeks. The score of fracture healing was determined through histological assessment of sections from the fracture site according to Perry and colleagues. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests. Results The mean score of fracture healing at 4 weeks was significantly higher than that at 1 week in the saline, levofloxacin, and cephalexin groups (P<0.001). At 1 week, no significant difference was noted among the three groups of saline, levofloxacin, and cephalexin in the mean score of fracture healing (P=0.360). However, this difference was significant at 4 weeks (P=0.018), and the mean score in the saline group was significantly higher compared to that in the levofloxacin group (P=0.015). Conclusion It is recommended not to prescribe levofloxacin for more than 1 week after surgical management of bone fractures due to its possible adverse effects on fracture healing.
Collapse
Affiliation(s)
- Shayan Golestani
- Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Arash Golestaneh
- Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Atousa Aminzadeh Gohari
- Department of Oral Pathology, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| |
Collapse
|
19
|
Sullivan MV, Henderson A, Hand RA, Turner NW. A molecularly imprinted polymer nanoparticle-based surface plasmon resonance sensor platform for antibiotic detection in river water and milk. Anal Bioanal Chem 2022; 414:3687-3696. [PMID: 35318515 DOI: 10.1007/s00216-022-04012-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
Abstract
Using a solid-phase molecular imprinting technique, high-affinity nanoparticles (nanoMIPs) selective for the target antibiotics, ciprofloxacin, moxifloxacin, and ofloxacin have been synthesised. These have been applied in the development of a surface plasmon resonance (SPR) sensor for the detection of the three antibiotics in both river water and milk. The particles produced demonstrated good uniformity with approximate sizes of 65.8 ± 1.8 nm, 76.3 ± 4.1 nm, and 85.7 ± 2.5 nm, and were demonstrated to have affinities of 36.2 nM, 54.7 nM, and 34.6 nM for the ciprofloxacin, moxifloxacin, and ofloxacin nanoMIPs, respectively. Cross-reactivity studies highlighted good selectivity towards the target antibiotic compared with a non-target antibiotic. Using spiked milk and river water samples, the nanoMIP-based SPR sensor offered comparable affinity with 66.8 nM, 33.4 nM, and 55.0 nM (milk) and 39.3 nM, 26.1 nM, and 42.7 nM (river water) for ciprofloxacin, moxifloxacin, and ofloxacin nanoMIPs, respectively, to that seen within a buffer standard. Estimated LODs for the three antibiotic targets in both milk and river water were low nM or below. The developed SPR sensor showed good potential for using the technology for the capture and detection of antibiotics from food and environmental samples.
Collapse
Affiliation(s)
- Mark V Sullivan
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Alisha Henderson
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Rachel A Hand
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
- Department of Chemistry, Library Road, University of Warwick, Coventry, CV4 &AL, UK
| | - Nicholas W Turner
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
| |
Collapse
|
20
|
Chaabani A, Ben Jabrallah T, Belhadj Tahar N. Electrochemical Oxidation of Ciprofloxacin on COOH-Functionalized Multi-Walled Carbon Nanotube–Coated Vitreous Carbon Electrode. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00725-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
El-Sherbeny EME, Khoris EA, Kassem S. Assessment the efficacy of some various treatment methods, in vitro and in vivo, against Aeromonas hydrophila infection in fish with regard to side effects and residues. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109246. [PMID: 34801729 DOI: 10.1016/j.cbpc.2021.109246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 11/21/2022]
Abstract
Aeromonas hydrophila is an opportunistic bacteria with an overwhelming impact on fish farming industry especially with upraising of drug resistant mutants. This study aimed to evaluate and compare the therapeutic and side effects of levofloxacin (LEV), chitosan-nanoparticles (CNPs), and fructooligosaccharides (FOS) in control of this infection in tilapia. A total of 160 Nile-tilapia divided into 8-groups; G1: negative-control, G2: infected-control, G3: non-infected-(levofloxacin (LEV) 10 mg/kg bwt), G4: non-infected-(chitosan-nanoparticles (CNPs) 1 g/kg ration), G5: non-infected-(fructooligosaccharides (FOS) 20 g/kg ration), G6: infected-LEV, G7: infected-CNPs and G8: infected-FOS for 7 days. MICs were (0.125 μg/ml and 1.25 mg/ml) for LEV and CNPs respectively. No mortalities or significant adverse effects were recorded in non-infected treated-groups while infected were (20%) LEV, (30%) CNPs, (40%) FOS and (70%) G2. Aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) decreased by LEV and CNPs than FOS while all increased total protein (TP) and albumin than G2. Malondialdehyde (MDA) significantly decreased and superoxide dismutase (SOD) and reduced glutathione (GSH) increased in all infected-treated groups than G2 in various degrees. Urea and creatinine descending order were FOS, LEV then CNPs decreased significantly than G2. LEV musculature residues, using HPLC, decreased gradually till the 5th day; 621.00 ± 0.66, 270.00 ± 0.48 then 64.00 ± 0.40, and 471.00 ± 0.79, 175.00 ± 0.52 ppb then not detected at 1st, 3rd, and 5th days of withdrawal in non-infected and infected groups respectively. Finally, LEV and CNPs were superior as bactericidal, decreasing mortalities and enzyme activities while CNPs and FOS increased performance, non-specific immunity, and antioxidant biomarkers.
Collapse
Affiliation(s)
- Eman M El El-Sherbeny
- Pharmacology unit, Tanta lab, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Enas A Khoris
- Fish disease unit, Tanta lab, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Samr Kassem
- Nanomaterials Research and Synthesis Unit, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt.
| |
Collapse
|
22
|
Karuppusamy N, Mariyappan V, Chen SM, Ramachandran R. A novel electrochemical sensor for the detection of enrofloxacin based on a 3D flower-like metal tungstate-incorporated reduced graphene oxide nanocomposite. NANOSCALE 2022; 14:1250-1263. [PMID: 34994758 DOI: 10.1039/d1nr06343j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent times, metal tungstates have received a lot of attention in various research fields. Accordingly, the CaWO4/RGO (CW/RGO) nanocomposite was prepared by a facile hydrothermal method. The electrocatalytic performance of the hydrothermally prepared CW/RGO nanocomposite was used for the electrochemical detection of the antibiotic medicine enrofloxacin (ENF). The electrocatalytic oxidation performance of ENF was examined by cyclic voltammetry (CV) and amperometry (AMP) techniques. The CV results showed the lowest anodic peak potential and the enhanced anodic peak current response compared to the other modified electrodes. Mainly, our newly proposed sensor exhibited excellent electrochemical performance with the lowest limit of detection (LOD) of 0.021 μM, and a significant linear range of 0.001-115 μM. Additionally, our proposed sensor exhibited good selectivity, great long-term stability, and excellent reproducibility. Then, our proposed sensor was successfully applied to detect the amount of ENF in a milk sample and river water, which exhibited good satisfactory results.
Collapse
Affiliation(s)
- Naveen Karuppusamy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Vinitha Mariyappan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Rasu Ramachandran
- Department of Chemistry, The Madura College, Vidya Nagar, Madurai 625 011, Tamil Nadu, India
| |
Collapse
|
23
|
Aghasizadeh M, Moghaddam T, Bahrami AR, Sadeghian H, Alavi SJ, Matin MM. 8-Geranyloxycarbostyril as a potent 15-LOX-1 inhibitor showed great anti-tumor effects against prostate cancer. Life Sci 2022; 293:120272. [PMID: 35065164 DOI: 10.1016/j.lfs.2021.120272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Carbostyrils are quinolone derivatives, with possible growth inhibition properties on cancer cells. Unlike many tumors, 15-Lipoxygenase-1 (15-LOX-1) is highly expressed in prostate cancer (PCa) cells and has oncogenic properties. Here, with the hypothesis that 6-, 7- and 8-geranyloxycarbostyril (GQ) have inhibitory properties on 15-LOX-1, their effects were assessed on PCa cells. Their cytotoxic effects were evaluated by MTT assay and mechanism of cell death was investigated using annexin V/PI staining. Finally, the anti-tumor properties of 8-GQ were assessed in immunocompromised C57BL/6 mice bearing human PCa cells. Accordingly, these compounds could effectively inhibit 15-LOX activity in PCa cells. MTT and flow cytometry tests confirmed their toxic effects on PCa cells, with no significant toxicity on normal cells, and apoptosis was the main mechanism of cell death. In vivo results indicated that use of 8-GQ at 50 mg/kg had stronger anti-tumor effects than 5 mg/kg cisplatin, with fewer side effects on normal tissues. Therefore, 8-GQ can be introduced as a potential drug candidate with 15-LOX-1 inhibitory potency, which can be effective in treatment of prostate cancer, and should be considered for further drug screening investigations.
Collapse
Affiliation(s)
- Mehrdad Aghasizadeh
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Tayebe Moghaddam
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Sadeghian
- Neurogenic Inflammation Research Center, Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Jamal Alavi
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.
| |
Collapse
|
24
|
Li J, Claudi B, Fanous J, Chicherova N, Cianfanelli FR, Campbell RAA, Bumann D. Tissue compartmentalization enables Salmonella persistence during chemotherapy. Proc Natl Acad Sci U S A 2021; 118:e2113951118. [PMID: 34911764 PMCID: PMC8713819 DOI: 10.1073/pnas.2113951118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial chemotherapy can fail to eradicate the pathogen, even in the absence of antimicrobial resistance. Persisting pathogens can subsequently cause relapsing diseases. In vitro studies suggest various mechanisms of antibiotic persistence, but their in vivo relevance remains unclear because of the difficulty of studying scarce pathogen survivors in complex host tissues. Here, we localized and characterized rare surviving Salmonella in mouse spleen using high-resolution whole-organ tomography. Chemotherapy cleared >99.5% of the Salmonella but was inefficient against a small Salmonella subset in the white pulp. Previous models could not explain these findings: drug exposure was adequate, Salmonella continued to replicate, and host stresses induced only limited Salmonella drug tolerance. Instead, antimicrobial clearance required support of Salmonella-killing neutrophils and monocytes, and the density of such cells was lower in the white pulp than in other spleen compartments containing higher Salmonella loads. Neutrophil densities declined further during treatment in response to receding Salmonella loads, resulting in insufficient support for Salmonella clearance from the white pulp and eradication failure. However, adjunctive therapies sustaining inflammatory support enabled effective clearance. These results identify uneven Salmonella tissue colonization and spatiotemporal inflammation dynamics as main causes of Salmonella persistence and establish a powerful approach to investigate scarce but impactful pathogen subsets in complex host environments.
Collapse
Affiliation(s)
- Jiagui Li
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | - Joseph Fanous
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | - Dirk Bumann
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
25
|
Meenongwa A, Brissos RF, Soikum C, Chaveerach P, Trongpanich Y, Chaveerach U. Enhancement of biological activities of copper(II) complexes containing guanidine derivatives by enrofloxacin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Simultaneous Determination of Tetracyclines and Fluoroquinolones in Poultry Eggs by UPLC Integrated with Dual-Channel-Fluorescence Detection Method. Molecules 2021; 26:molecules26185684. [PMID: 34577155 PMCID: PMC8470762 DOI: 10.3390/molecules26185684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
An innovative, rapid and stable method for simultaneous determination of three tetracycline (oxytetracycline, tetracycline and doxycycline) and two fluoroquinolone (ciprofloxacin and enrofloxacin) residues in poultry eggs by ultra-high performance liquid chromatography-fluorescence detection (UPLC-FLD) was established and optimized. The samples were homogenized and extracted with acetonitrile/ultrapure water (90:10, v/v) and then purified by solid-phase extraction (SPE). LC separation was achieved on an ACQUITY UPLC BEH C18 column (1.7 µm, 2.1 mm × 100 mm), and the mobile phase was composed of acetonitrile and a 0.1 mol/L malonic acid solution containing 50 mmol/L magnesium chloride (the pH was adjusted to 5.5 with ammonia). When the five target drugs were spiked at the limit of quantification, 0.5 times the maximum residue limit (MRL), 1.0 MRL and 2.0 MRL, the recoveries were above 83.5% and the precision ranged from 1.99% to 6.24%. These figures of merit complied with the parameter validation regulations of the EU and U.S. FDA. The limits of detection and quantifications of the targets were 0.1-13.4 µg/kg and 0.3-40.1 µg/kg, respectively. The proposed method was easily extended to quantitative analyses of target drug residues in 85 egg samples, thus demonstrating its reliability and applicability.
Collapse
|
27
|
Wan YP, Liu ZH, Liu Y. Veterinary antibiotics in swine and cattle wastewaters of China and the United States: Features and differences. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1516-1529. [PMID: 33586826 DOI: 10.1002/wer.1534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/12/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Veterinary antibiotics (VAs) have been widely used in livestock for disease prevention, treatment, and growth promotion. This study compared top 20 VAs in Chinese and US swine and cattle wastewater with published literatures. The sulfonamides (SAs) were found to be predominant, accounting for 62% of the top 20 VAs in Chinese swine wastewater, while tetracyclines (TCs) contributed to about 68.7% of the 18 VAs in US swine wastewater. The average concentration of the 20 major VAs in Chinese swine wastewater was estimated to be 1145 μg/L against 253.6 μg/L in the United States. On the other hand, the five major VAs in Chinese cattle wastewater were identified to be oxytetracycline, nafcillin, apramycin, lincomycin, and amikacin, while monensin was found to be dominant in US cattle wastewater. The average concentration of the top 20 VAs in Chinese and US cattle wastewaters were found to be 54.6 and 46.2 μg/L, respectively. These analyses suggested that VAs were probably over-used in Chinese swine industry, eventually causing the development and spreading of antibiotic resistant-bacteria and genes, which should be paid with attention. PRACTITIONER POINTS: Major veterinary antibiotics (VAs) in swine and cattle wastewater were identified. Top 20 VAs in swine and cattle wastewater of China and the United States were compared. VAs concentration in Chinese swine wastewater was 4.52 times that in the United States. VAs concentration in Chinese cattle wastewater was 1.18 times that of the United States.
Collapse
Affiliation(s)
- Yi-Ping Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, China
- Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, China
| | - Yu Liu
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, CleanTech One, Singapore, Singapore
- School of Civil and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
28
|
Yang Q, Qi Y, Zhou J, Chen Y, Liang C, Liu Z, Zhang X, Wang A. Development of a fluorescent immunochromatographic assay based on quantum dots for the detection of fleroxacin. RSC Adv 2021; 11:22005-22013. [PMID: 35480815 PMCID: PMC9034125 DOI: 10.1039/d1ra03065e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/06/2021] [Indexed: 11/21/2022] Open
Abstract
Fleroxacin (FLE) is a broad-spectrum fluoroquinolone antibiotic widely used in animal husbandry, veterinary medicine and aquaculture. Eating animal-derived foods with FLE residues can cause allergies, poisoning or drug resistance. The water-soluble QDs (CdSe/ZnS) and anti-FLE monoclonal antibody (mAb) were used to prepare a fluorescent probe by the method of N-(3-dimethylaminopropyl)-N'-ethylcarbodimide hydrochloride (EDC) activation. The fluorescent probe was characterized by dynamic light scattering (DLS). The better bioactivity and stability of the fluorescent probe was obtained under the pH value of 8.0, the molecule molar ratio of EDC (1 : 2000) and anti-FLE monoclonal antibodies (1 : 10). The control line (C line) and test line (T line) of a nitrocellulose (NC) filter membrane were sprayed with SPA (0.05 mg mL-1) and FLE-OVA (1.4 mg mL-1) solutions with optimal concentration, respectively. A novel method of fluorescent immunochromatographic assay based on quantum dots (QDs-ICA) in this work exhibited good accuracy, reproductivity and excellent specificity under the optimal experimental conditions. Compared with the traditional method for the visual detection of FLE, the developed QDs-ICA can successfully determine FLE residues in pork meat with a better cut-off value of 2.5 ng mL-1. The QDs-ICA could be adapted for the rapid preliminary detection of FLE residues in pork meat for the first time.
Collapse
Affiliation(s)
- Qingbao Yang
- School of Life Sciences, Zhengzhou University Zhengzhou 450001 Henan China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University Zhengzhou 450001 Henan China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University Zhengzhou 450001 Henan China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University Zhengzhou 450001 Henan China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University Zhengzhou 450001 Henan China
| | - Zhanxiang Liu
- School of Life Sciences, Zhengzhou University Zhengzhou 450001 Henan China
| | - Xiaoli Zhang
- School of Life Sciences, Zhengzhou University Zhengzhou 450001 Henan China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University Zhengzhou 450001 Henan China
| |
Collapse
|
29
|
Fernández-Varón E, García-Romero E, Serrano-Rodríguez JM, Cárceles CM, García-Galán A, Cárceles-García C, Fernández R, Muñoz C, de la Fe C. PK/PD Analysis of Marbofloxacin by Monte Carlo Simulation against Mycoplasmaagalactiae in Plasma and Milk of Lactating Goats after IV, SC and SC-Long Acting Formulations Administration. Animals (Basel) 2021; 11:ani11041104. [PMID: 33921496 PMCID: PMC8069869 DOI: 10.3390/ani11041104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary In some countries like Spain and France, contagious agalactia (CA) is a highly relevant issue. CA is a mycoplasmosis affecting small ruminants and it is associated with a relevant economic impact on dairy. The poor efficacy of vaccines and their inability to prevent disease transmission is conducive to the use of antibiotics to control CA. However, only a few groups of antimicrobial agents are effective against these species, and selecting an adequate antimicrobial agent following the categorization of antibiotics made by the different international organisms (European Medicine Agency, World Health Organization) in veterinary medicine becomes a difficult task. The PK/PD approach is a useful tool to guide veterinarians on the appropriate targets through a rational selection of the best dose regimen of antimicrobial agents. In this study, marbofloxacin pharmacokinetics was studied after three routes of administration with two long-acting formulations. The minimum inhibitory concentrations (MIC) values of Mycoplasma agalactia isolated from goats affected by CA in Spain were calculated. The results show that systemic exposure achieved in lactating goats following these formulations provides rate of drug release that could be adequate to maintain effective plasma concentrations against M. agalactiae. The PK/PD analysis by Monte Carlo simulation showed that a dosage regimen from 8.47 to 11.57 mg/kg every 24 h could effectively treat goats affected by CA. Abstract Contagious agalactia is a mycoplasmosis affecting small ruminants that have become an important issue in many countries. However, PK/PD studies of antibiotics to treat this problem in lactating goats affected by Mycoplasma (M.) agalactiae, the main CA-causing mycoplasma are almost non-existent. The aims of this study were to evaluate the plasma and milk disposition of marbofloxacin in lactating goats after intravenous (IV), subcutaneous (SC) and subcutaneous poloxamer P407 formulations with and without carboxy-methylcellulose (SC-P407-CMC and SC-P407) administration. Marbofloxacin concentrations were analysed by the High Performance Liquid Chromatography (HPLC) method. Minimum inhibitory concentrations (MIC) of M. agalactiae field isolates from mastitic goat’s milk were used to calculate surrogate markers of efficacy. Terminal half-lives of marbofloxacin after IV, SC, SC-P407 and SC-P407-CMC administration were 7.12, 6.57, 13.92 and 12.19 h in plasma, and the half-lives of elimination of marbofloxacin in milk were 7.22, 7.16, 9.30 and 7.74 h after IV, SC, SC-P407 and SC-P407-CMC administration, respectively. Marbofloxacin penetration from the blood into the milk was extensive, with Area Under the Curve (AUCmilk/AUCplasma) ratios ranged 1.04–1.23, and maximum concentrations (Cmax-milk/Cmax-plasma) ratios ranged 0.72–1.20. The PK/PD surrogate markers of efficacy fAUC24/MIC and the Monte Carlo simulation show that marbofloxacin ratio (fAUC24/MIC > 125) using a 90% of target attainment rate (TAR) need a dose regimen between 8.4 mg/kg (SC) and 11.57 mg/kg (P407CMC) and should be adequate to treat contagious agalactia in lactating goats.
Collapse
Affiliation(s)
- Emilio Fernández-Varón
- Center for Biomedical Research (CIBM), Department of Pharmacology, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Edgar García-Romero
- Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo s/n., University of Murcia, 30100 Murcia, Spain; (E.G.-R.); (A.G.-G.); (C.d.l.F.)
| | - Juan M. Serrano-Rodríguez
- Department of Nursing, Pharmacology and Physiotherapy, Pharmacology Area, Faculty of Veterinary Medicine, Universidad de Córdoba, 14071 Córdoba, Spain;
- Correspondence:
| | - Carlos M. Cárceles
- Department of Pharmacology, Faculty of Veterinary Medicine, Campus de Espinardo s/n., University of Murcia, 30100 Murcia, Spain; (C.M.C.); (C.C.-G.)
| | - Ana García-Galán
- Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo s/n., University of Murcia, 30100 Murcia, Spain; (E.G.-R.); (A.G.-G.); (C.d.l.F.)
| | - Carlos Cárceles-García
- Department of Pharmacology, Faculty of Veterinary Medicine, Campus de Espinardo s/n., University of Murcia, 30100 Murcia, Spain; (C.M.C.); (C.C.-G.)
| | - Rocío Fernández
- Department of Nursing, Pharmacology and Physiotherapy, Pharmacology Area, Faculty of Veterinary Medicine, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Cristina Muñoz
- Spanish Agency of Medicines and Medical Devices (AEMPS), Parque Empresarial Las Mercedes, 28022 Madrid, Spain;
| | - Christian de la Fe
- Department of Animal Health, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo s/n., University of Murcia, 30100 Murcia, Spain; (E.G.-R.); (A.G.-G.); (C.d.l.F.)
| |
Collapse
|
30
|
Yadav S, Asthana A, Singh AK, Chakraborty R, Sree Vidya S, Singh A, Carabineiro SAC. Methionine-Functionalized Graphene Oxide/Sodium Alginate Bio-Polymer Nanocomposite Hydrogel Beads: Synthesis, Isotherm and Kinetic Studies for an Adsorptive Removal of Fluoroquinolone Antibiotics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:568. [PMID: 33668774 PMCID: PMC7996286 DOI: 10.3390/nano11030568] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/17/2022]
Abstract
In spite of the growing demand for new antibiotics, in the recent years, the occurrence of fluoroquinolone antibiotics (as a curative agent for urinary tract disorders and respiratory problems) in wastewater have drawn immense attention. Traces of antibiotic left-overs are present in the water system, causing noxious impact on human health and ecological environments, being a global concern. Our present work aims at tackling the major challenge of toxicity caused by antibiotics. This study deals with the efficient adsorption of two commonly used fluoroquinolone (FQ) antibiotics, i.e., Ofloxacin (OFX) and Moxifloxacin (MOX) on spherical hydrogel beads generated from methionine‒functionalized graphene oxide/ sodium alginate polymer (abbreviated Met-GO/SA) from aqueous solutions. The composition, morphology and crystal phase of prepared adsorbents were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM) and thermogravimetric analysis/differential thermogravimetry (TGA/DTG). Batch adsorption tests are followed to optimize the conditions required for adsorption process. Both functionalized and non-functionalized adsorbents were compared to understand the influence of several experimental parameters, such as, the solution pH, contact time, adsorbent dosage, temperature and initial concentration of OFX and MOX on adsorption. The obtained results indicated that the functionalized adsorbent (Met-GO/SA) showed a better adsorption efficiency when compared to non-functionalized (GO/SA) adsorbent. Further, the Langmuir isotherm was validated as the best fitting model to describe adsorption equilibrium and pseudo second-order-kinetic model fitted well for both types of adsorbate. The maximum adsorption capacities of Met-GO/SA were 4.11 mg/g for MOX and 3.43 mg/g for OFX. Thermodynamic parameters, i.e., ∆G°, ∆H° and ∆S° were also calculated. It was shown that the overall adsorption process was thermodynamically favorable, spontaneous and exothermic in nature. The adsorbents were successfully regenerated up to four cycles with 0.005 M NaCl solutions. Overall, our work showed that the novel Met-GO/SA nanocomposite could better contribute to the removal of MOX and OFX from the liquid media. The gel beads prepared have adequate features, such as simple handling, eco-friendliness and easy recovery. Hence, polymer gel beads are promising candidates as adsorbents for large-scale water remediation.
Collapse
Affiliation(s)
- Sushma Yadav
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College, Durg 491001, India; (S.Y.); (A.A.); (R.C.)
| | - Anupama Asthana
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College, Durg 491001, India; (S.Y.); (A.A.); (R.C.)
| | - Ajaya Kumar Singh
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College, Durg 491001, India; (S.Y.); (A.A.); (R.C.)
| | - Rupa Chakraborty
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College, Durg 491001, India; (S.Y.); (A.A.); (R.C.)
| | - S. Sree Vidya
- Department of Chemistry, Kalyan PG College, Durg 490006, India;
| | - Ambrish Singh
- School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China;
| | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
31
|
Sartini I, Łebkowska-Wieruszewska B, Lisowski A, Poapolathep A, Giorgi M. Danofloxacin pharmacokinetics and tissue residues in Bilgorajska geese. Res Vet Sci 2021; 136:11-17. [PMID: 33556838 DOI: 10.1016/j.rvsc.2021.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Danofloxacin is a fluoroquinolone developed for veterinary medicine and used in avian species for the treatment of numerous bacterial infections. However, no pharmacokinetic data have been reported in geese. The aim of the study was three-fold: (i) to evaluate the pharmacokinetics of danofloxacin in geese after single oral (PO) and intravenous (IV) administrations; (ii) to define its residue depletion profile in different goose tissues, and (iii) to recreate a multiple-dose simulation in the practical context of large-scale breeding. Twenty-four healthy geese were randomly divided in three groups each composed of eight animals. Group 1 received danofloxacin IV (5 mg/kg) and groups 2 and 3 were treated PO with the same dose. Blood was collected until 24 h (IV; group 1) and 48 h (PO; group 2) after administration. Two animals from group 3 were sacrificed at 6, 10, 24 and 48 h to collect samples of muscle, heart, kidney, liver, and lung. Danofloxacin was quantified in each matrix using a validated high-performance liquid chromatography method with spectrofluorimetric detection and the pharmacokinetic analysis was performed using non-compartmental and compartmental approaches. Danofloxacin showed a moderate elimination half-life (6.61 h), a slow clearance (0.35 mL/g*h) and a large volume of distribution (1.46 mL/g). The peak plasma concentration after PO administration and the time to reach it were 0.96 μg/mL and 1.70 h, respectively. The oral bioavailability was moderate (58%). Higher residue concentration was found in liver and kidney, compared to the other tissues. If the AUC(0-24) value found in the present study is included in the pharmacokinetic/pharmacodynamic index (AUC(0-24)/MIC) for the prediction of fluoroquinolones' efficacy, danofloxacin seems to be effective in geese against gram-negative bacteria with a minimum inhibitory concentration (MIC) < 0.076 μg/mL and against S. pneumoniae with a MIC < 0.29 μg/mL after a single PO dose of 5 mg/kg. Liver and kidney showed the highest drug tissue penetration value, with an explorative withdrawal time of 2.6 and 3.8 days, respectively. A practical multiple-dose regimen simulation does not lead to significant plasma drug accumulation.
Collapse
Affiliation(s)
- Irene Sartini
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | | - Andrzej Lisowski
- Institute of Animal Breeding and Biodiversity Conservation, University of Life Sciences, Lublin, Poland
| | - Amnart Poapolathep
- Faculty of Veterinary Medicine, Department of Pharmacology, Kasetsart University, Bangkok, Thailand
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy; School of Veterinary Sciences, Department of Veterinary Medicine, University of Sassari, Sassari, Italy.
| |
Collapse
|
32
|
Bousquet-Mélou A, Schneider M, El Garch F, Broussou DC, Ferran AA, Lallemand EA, Triboulloy C, Damborg P, Toutain PL. Determination of the pharmacokinetic-pharmacodynamic cut-off values of marbofloxacin in horses to support the establishment of a clinical breakpoint for antimicrobial susceptibility testing. Equine Vet J 2020; 53:1047-1055. [PMID: 33169427 DOI: 10.1111/evj.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/29/2020] [Accepted: 10/29/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Marbofloxacin (MBX), a fluoroquinolone (FQ), is considered as a critical antibiotic requiring antimicrobial susceptibility testing (AST) for prudent use. No clinical breakpoint (CBP) currently exists to interpret the results of such tests in horses. OBJECTIVES To compute PK/PD cut-offs (PK/PDCO ) that is one of the three minimum inhibitory concentrations (MICs) considered establishing a CBP for antimicrobial susceptibility test interpretation. STUDY DESIGN A meta-analysis conducted by combining five sets of previously published pharmacokinetic data, obtained in clinical and nonclinical settings. METHODS Horses (n = 131) received MBX intravenously at doses of either 2 or 10 mg/kg BW. They were richly sampled (five or six samples per horse). A population model was built to generate a virtual population of 5000 MBX disposition curves by Monte Carlo simulations (MCS) over 24 hours. The selected PK/PD index was the ratio of Area Under the free plasma concentration-time Curve divided by the MIC (fAUC/MIC). The PK/PDCO , which is the highest MIC for which 90% of horses can achieve an a priori selected critical value for the numerical value of the PK/PD index, was established for Gram-positive and Gram-negative bacteria for a dose of 2 mg/kg. RESULTS The PK/PDCO of MBX in horses was 0.125 mg/L for Gram-positive pathogens and 0.0625 mg/L for Gram-negative pathogens. MBX MICs determined by broth microdilution for 54 Escherichia coli and 189 Streptococcus equi isolates are reported. MAIN LIMITATION No clinical data are taken into account in the determination of a PK/PDco . CONCLUSION The computed PK/PDco predicts that MBX may be efficacious in horses to treat infections associated with Enterobacteriaceae but unlikely to those involving Staphylococcus aureus or Streptococcus equi.
Collapse
Affiliation(s)
| | - Marc Schneider
- Vétoquinol, Global Drug Development Division, Lure Cedex, France
| | - Farid El Garch
- Vétoquinol, Global Drug Development Division, Lure Cedex, France
| | - Diane C Broussou
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France.,Vétoquinol, Global Drug Development Division, Lure Cedex, France
| | - Aude A Ferran
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France
| | | | - Cyrielle Triboulloy
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Pierre-Louis Toutain
- INTHERES, Université de Toulouse, INRA, ENVT, Toulouse, France.,The Royal Veterinary College, Hawkshead Campus, Hatfield, Hertfordshire, UK
| |
Collapse
|
33
|
Scott KA, Qureshi MH, Cox PB, Marshall CM, Bellaire BC, Wilcox M, Stuart BAR, Njardarson JT. A Structural Analysis of the FDA Green Book-Approved Veterinary Drugs and Roles in Human Medicine. J Med Chem 2020; 63:15449-15482. [PMID: 33125236 DOI: 10.1021/acs.jmedchem.0c01502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The FDA Green Book is a list of all drug products that have been approved by the FDA for use in veterinary medicine. The Green Book, as published, lacks structural information corresponding to approved drugs. To address this gap, we have compiled the structural data for all FDA Green Book drugs approved through the end of 2019. Herein we discuss the relevance of this data set to human drugs in the context of structural classes and physicochemical properties. Analysis reveals that physicochemical properties are highly optimized and consistent with a high probability of favorable drug metabolism and pharmacokinetic properties, including good oral bioavailability for most compounds. We provide a detailed analysis of this data set organized on the basis of structure and function. Slightly over half (51%) of vet drugs are also approved in human medicine. Combination drugs are biologics are also discussed.
Collapse
Affiliation(s)
- Kevin A Scott
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States.,Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - M Haziq Qureshi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Philip B Cox
- Drug Discovery Science and Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Christopher M Marshall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Bailey C Bellaire
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael Wilcox
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Bradey A R Stuart
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
34
|
Fang B, Xu S, Huang Z, Wang S, Chen W, Yuan M, Hu S, Peng J, Lai W. Glucose oxidase-induced colorimetric immunoassay for qualitative detection of danofloxacin based on iron (Ⅱ) chelation reaction with phenanthroline. Food Chem 2020; 328:127099. [PMID: 32474238 DOI: 10.1016/j.foodchem.2020.127099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 03/07/2020] [Accepted: 05/17/2020] [Indexed: 01/05/2023]
Abstract
In this study, we developed a competitive colorimetric immunoassay for qualitative detection of DAN based on oxidation of iron (Ⅱ) (Fe2+) in the presence of glucose oxidase (GOx) and color change induced by Fe2+-phenanthroline (Phen) chromogenic system. Streptavidin (SA) acted as a linker between biotinylated anti-DAN-monoantibody (bio-mAb) and biotinylated GOx (bio-GOx) to form the immunocomplexes bio-mAb-SA-bio-GOx. In the absence of DAN, the immunocomplexes bio-mAb-SA-bio-GOx combining with coated DAN-ovalbumin (DAN-OVA) will be immobilized and catalyze glucose to produce H2O2. Fe2+ is oxidized to Fe3+ by H2O2, giving rise to a colorless result. In the presence of DAN, Fe2+ produces a chelation reaction with Phen, leading to orange-red color. Under optimal conditions, the detection limit (LOD) by naked eyes was 2.5 ng mL-1 in milk, chicken, beef, and pork samples. Low LOD, no matrix effect, and no signal reader requirement make it possibly applied to quickly screen DAN on site.
Collapse
Affiliation(s)
- Bolong Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Shaolan Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Zhen Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Suhua Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Wenyao Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Meifang Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Song Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Juan Peng
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
35
|
Ding G, Chen G, Liu Y, Li M, Liu X. Occurrence and risk assessment of fluoroquinolone antibiotics in reclaimed water and receiving groundwater with different replenishment pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139802. [PMID: 32535279 DOI: 10.1016/j.scitotenv.2020.139802] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Artificial recharge to groundwater with reclaimed water is considered a promising method to alleviate groundwater depletion and over-exploitation. However, the occurrence of fluoroquinolone antibiotics (FQs) was ubiquitous in wastewater, surface water, groundwater and even drinking water threating human health and ecology. In this study, the occurrence of six selected FQs in reclaimed water effluent and their removal by tertiary treatment units were investigated. The overall removal efficiencies in average of the tertiary treatment processes in Beijing and Changzhou were ranging from 21.2% to 55.2%. Activated carbon exhibited better performance for FQs removal than ozone and biological treatment such as membrane bioreactor, anaerobic-anoxic-oxic and biofilter. The results of two pilot study showed that the impact of reclaimed water to groundwater quality in terms of FQs concentration by direct injection in GBD was stronger than surface spreading in Changzhou, which might be due to the recharge strategy and the physical and chemical characteristics of sediment and aquifer soil. The hazard quotient (HQ) values of ofloxacin (OFL) in reclaimed water was up to 12.54, indicating the extreme eco-toxicological risk, while enrofloxacin (ENR) exhibited medium risk. After recharge with reclaimed water, the HQ values of OFL and ENR in groundwater ranged from low to medium ecological risk to the environment. Thus, the FQs in reclaimed water need to be paid more attention during their reuse for groundwater recharge, especially by direct injection. It is suggested that FQs should be considered in the priority substances lists in standards and guidelines of reclaimed water reuse for groundwater recharge to ensure the safety of groundwater.
Collapse
Affiliation(s)
- Guoyu Ding
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing 100044, China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Guoli Chen
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Yuedong Liu
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
36
|
George JM, Priyanka RN, Mathew B. Bimetallic Ag–Au nanoparticles as pH dependent dual sensing probe for Mn(II) ion and ciprofloxacin. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104686] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Novel interpenetrating polymeric network based microbeads for delivery of poorly water soluble drug. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02077-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Sitovs A, Voiko L, Kustovs D, Kovalcuka L, Bandere D, Purvina S, Giorgi M. Pharmacokinetic profiles of levofloxacin after intravenous, intramuscular and subcutaneous administration to rabbits ( Oryctolagus cuniculus). J Vet Sci 2020; 21:e32. [PMID: 32233138 PMCID: PMC7113567 DOI: 10.4142/jvs.2020.21.e32] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/05/2023] Open
Abstract
Levofloxacin pharmacokinetic profiles were evaluated in 6 healthy female rabbits after intravenous (I/V), intramuscular (I/M), or subcutaneous (S/C) administration routes at a single dose of 5 mg/kg in a 3 × 3 cross-over study. Plasma levofloxacin concentrations were detected using a validated Ultra Performance Liquid Chromatography method with a fluorescence detector. Levofloxacin was quantifiable up to 10 h post-drug administration. Mean AUC0-last values of 9.03 ± 2.66, 9.07 ± 1.80, and 9.28 ± 1.56 mg/h*L were obtained via I/V, I/M, and S/C, respectively. Plasma clearance was 0.6 mL/g*h after I/V administration. Peak plasma concentrations using the I/M and S/C routes were 3.33 ± 0.39 and 2.91 ± 0.56 μg/mL. Bioavailability values, after extravascular administration were complete, - 105% ± 27% (I/M) and 118% ± 40% (S/C). Average extraction ratio of levofloxacin after I/V administration was 7%. Additionally, levofloxacin administration effects on tear production and osmolarity were evaluated. Tear osmolarity decreased within 48 h post-drug administration. All 3 levofloxacin administration routes produced similar pharmacokinetic profiles. The studied dose is unlikely to be effective in rabbits; however, it was calculated that a daily dose of 29 mg/kg appears effective for I/V administration for pathogens with MIC < 0.5 μg/mL.
Collapse
Affiliation(s)
- Andrejs Sitovs
- Department of Pharmacology, Riga Stradins University, Riga, LV-1007, Latvia.
| | - Laura Voiko
- Clinical Institute, Faculty of Veterinary Medicine, University of Life Sciences and Technologies, Jelgava, LV-3001, Latvia
| | - Dmitrijs Kustovs
- Department of Pharmacology, Riga Stradins University, Riga, LV-1007, Latvia
| | - Liga Kovalcuka
- Clinical Institute, Faculty of Veterinary Medicine, University of Life Sciences and Technologies, Jelgava, LV-3001, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, LV-1007, Latvia
| | - Santa Purvina
- Department of Pharmacology, Riga Stradins University, Riga, LV-1007, Latvia
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, Pisa 56126, Italy
| |
Collapse
|
39
|
Altan F, Corum O, Yildiz R, Eser Faki H, Ider M, Ok M, Uney K. Intravenous pharmacokinetics of moxifloxacin following simultaneous administration with flunixin meglumine or diclofenac in sheep. J Vet Pharmacol Ther 2020; 43:108-114. [PMID: 32043623 DOI: 10.1111/jvp.12841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
Abstract
In this study, the pharmacokinetics of moxifloxacin (5 mg/kg) was determined following a single intravenous administration of moxifloxacin alone and co-administration with diclofenac (2.5 mg/kg) or flunixin meglumine (2.2 mg/kg) in sheep. Six healthy Akkaraman sheep (2 ± 0.3 years and 53.5 ± 5 kg of body weight) were used. A longitudinal design with a 15-day washout period was used in three periods. In the first period, moxifloxacin was administered by an intravenous (IV) injection. In the second and third periods, moxifloxacin was co-administered with IV administration of diclofenac and flunixin meglumine, respectively. The plasma concentration of moxifloxacin was assayed by high-performance liquid chromatography. The pharmacokinetic parameters were calculated using a two-compartment open pharmacokinetic model. Following IV administration of moxifloxacin alone, the mean elimination half-life (t1/2β ), total body clearance (ClT ), volume of distribution at steady state (Vdss ) and area under the curve (AUC) of moxifloxacin were 2.27 hr, 0.56 L h-1 kg-1 , 1.66 L/kg and 8.91 hr*µg/ml, respectively. While diclofenac and flunixin meglumine significantly increased the t1/2β and AUC of moxifloxacin, they significantly reduced the ClT and Vdss . These results suggest that anti-inflammatory drugs could increase the therapeutic efficacy of moxifloxacin by altering its pharmacokinetics.
Collapse
Affiliation(s)
- Feray Altan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Dicle, Diyarbakir, Turkey
| | - Orhan Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Kastamonu, Kastamonu, Turkey
| | - Ramazan Yildiz
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Mehmet Akif Ersoy, Burdur, Turkey
| | - Hatice Eser Faki
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| | - Merve Ider
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| | - Mahmut Ok
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| |
Collapse
|
40
|
Poapolathep S, Laovechprasit W, Giorgi M, Monanunsap S, Klangkaew N, Phaochoosak N, Kongchandee P, Poapolathep A. Pharmacokinetics of marbofloxacin in Green sea turtles (Chelonia mydas) following intravenous and intramuscular administration at two dosage rates. J Vet Pharmacol Ther 2019; 43:215-221. [PMID: 31851387 DOI: 10.1111/jvp.12832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/13/2019] [Accepted: 12/01/2019] [Indexed: 11/29/2022]
Abstract
Limited pharmacokinetic information to establish suitable therapeutic plans is available for green sea turtles. Therefore, the present study was conducted to evaluate the pharmacokinetic characteristics of marbofloxacin (MBF) in the green sea turtle, Chelonia mydas, following single intravenous (i.v.) or intramuscular (i.m.) administration at two dosages of 2 and 4 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 168 hr. MBF in plasma was extracted using liquid-liquid extraction and analyzed by a validated high-performance liquid chromatography (HPLC). MBF was quantifiable from 15 min to 96 hr after i.v. and i.m. administrations at two dose rates. A noncompartmental model was used to fit the plasma concentration of MBF versus time curve for each green sea turtle. The t1/2λz value, similar for both the dosages (22-28 hr), indicated that the overall rate of elimination of MBF in green sea turtles is relatively slow. The average i.m. F% ranged 88%-103%. MBF is a concentration-dependent drug and the AUC/MIC ratio is the best PK/PD predictor for its efficacy. The MBF dosage of 4 mg/kg appeared to produce an appropriate value of the PK-PD surrogate that predicts antibacterial success for disease caused by susceptible bacteria. In contrast, i.m. administration of MBF at a dosage of 2 mg/kg b.w. was not found to produce a suitable PK-PD surrogate index. However, further studies of multiple doses and plasma binding proteins are warranted to confirm an appropriate dosage regimen.
Collapse
Affiliation(s)
- Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | | | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Somchai Monanunsap
- Eastern Marine and Coastal Resources Research and Development Center, Rayong, Thailand
| | - Narumol Klangkaew
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Napasorn Phaochoosak
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Petcharat Kongchandee
- Eastern Marine and Coastal Resources Research and Development Center, Rayong, Thailand
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
41
|
Effects of treatment with enrofloxacin or tulathromycin on fecal microbiota composition and genetic function of dairy calves. PLoS One 2019; 14:e0219635. [PMID: 31825967 PMCID: PMC6905572 DOI: 10.1371/journal.pone.0219635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/19/2019] [Indexed: 12/29/2022] Open
Abstract
The increasing concerns with antimicrobial resistance highlights the need for studies evaluating the impacts of antimicrobial use in livestock on antimicrobial resistance using new sequencing technologies. Through shotgun sequencing, we investigated the changes in the fecal microbiome composition and function, with a focus on functions related to antimicrobial resistance, of dairy calves. Heifers 2 to 3 weeks old, which were not treated with antibiotics by the farm before enrollment, were randomly allocated to one of three study groups: control (no treatment), a single treatment of enrofloxacin, or a single treatment of tulathromycin. Fecal samples were collected at days 4, 14, 56 and 112 days after enrollment, and DNA extraction and sequencing was conducted. The effect of antibiotic treatment on each taxon and genetic functional level by time (including Day 0 as a covariate) revealed few changes in the microbiota. At the genus level, enrofloxacin group had higher relative abundance of Blautia, Coprococcus and Desulfovibrio and lower abundance of Bacteroides when compared to other study groups. The SEED database was used for genetic functional analyses, which showed that calves in the enrofloxacin group started with a higher relative abundance of "Resistance to antibiotics and toxic compounds" function on Day 0, however an increase in antibiotic resistance genes after treatment with enrofloxacin was not observed. "Resistance to Fluoroquinolones" and "Erythromycin resistance", of relevance given the study groups, were not statistically different in relative abundance between study groups. "Resistance to fluoroquinolones" increased during the study period regardless of study group. Despite small differences over the first weeks between study groups, at Day 112 the microbiota composition and genetic functional profile was similar among all study groups. In our study, enrofloxacin or tulathromycin had minimal impacts on the microbial composition and genetic functional microbiota of calves over the study period.
Collapse
|
42
|
Aboubakr M, Soliman A. Pharmacokinetics of danofloxacin in African catfish ( Clarias gariepinus) after intravenous and intramuscular administrations. Acta Vet Hung 2019; 67:602-609. [PMID: 31842594 DOI: 10.1556/004.2019.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The plasma pharmacokinetics of danofloxacin was studied in healthy African catfish (Clarias gariepinus) following a single intravenous (IV) and intramuscular (IM) administration of 10 mg/kg at 22 °C. Catfish were divided into two groups (each group containing 78 fish), then danofloxacin mesylate (10 mg/kg) was administered IV (into the caudal vein) in Group 1 and IM (into the right epaxial muscle) in Group 2, and blood was obtained from the caudal vein before (0 h) and after (0.25, 0.5, 1, 2, 4, 8, 12, 24, 36, 48, 72 and 96 h) of drug administration. High-performance liquid chromatography was used for the determination of plasma concentration, and a non-compartmental model was used for the analysis of pharmacokinetic parameters. After IV administration, elimination half-life (t1/2λz, 24.49 h), mean residence time (MRT, 30.14 h), volume of distribution at steady state (Vdss, 1.07 L/kg) and total body clearance (CLT, 0.035 L/h/kg) were determined. After IM administration, t1/2λz, MRT, peak concentration (Cmax), time to reach Cmax and bioavailability were 47.64 h, 61.06 h, 5.22 µg/mL, 1 h and 67.12%, respectively. After IM administration, danofloxacin showed good bioavailability and long t1/2λz. The favourable pharmacokinetic characteristics after IM administration support the use of danofloxacin for the treatment of susceptible bacterial infections in catfish.
Collapse
Affiliation(s)
- Mohamed Aboubakr
- 1Pharmacology Department, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qalioubeya, Egypt
| | - Ahmed Soliman
- 2Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
43
|
Melandri M, Veronesi MC, Pisu MC, Majolino G, Alonge S. Fertility outcome after medically treated pyometra in dogs. J Vet Sci 2019; 20:e39. [PMID: 31364324 PMCID: PMC6669203 DOI: 10.4142/jvs.2019.20.e39] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 01/02/2023] Open
Abstract
Cystic endometrial hyperplasia-pyometra complex (CEH/P) is a challenge in canine reproduction. Present study aimed to assess fertility after medical treatment. One-hundred-seventy-four bitches affected by CEH/P received aglepristone on days 1, 2, 8, then every 7 days until blood progesterone < 1.2 ng/mL; cloprostenol was administered on days 3 to 5. Records were grouped according to bodyweight (BW): small (< 10 kg, n = 33), medium (10 ≥ BW < 25 kg, n = 44), large (25 ≥ BW < 40 kg, n = 52), and giant bitches (BW ≥ 40 kg, n = 45). Age; success rate; aglepristone treatments number; relapse, pregnancy rates; diagnosis-relapse, -first, -last litter intervals; litters number after treatment, and LS were analyzed by ANOVA. Overall age was 5.14 ± 1.75 years, without difference among groups. Treatment was 100% successful, without difference in treatments number (4.75 ± 1.18), relapse (15/174, 8.62%) and pregnancy (129/140 litters, 92.14%) rates, intervals diagnosis-relapse (409.63 ± 254.9 days) or -last litter (418.62 ± 129.03 days). The interval diagnosis-first litter was significantly shorter (163.52 ± 51.47 days) and longer (225.17 ± 90.97 days) in small and giant bitches, respectively. Overall, 1.47 ± 0.65 litters were born after treatment. Expected LS was achieved in each group, as shown by ΔLS (actual-expected LS by breed, overall -0.40 ± 1.62) without differences among groups. Concluding, CEH/P affects younger dogs than previously described. Relapses were rarer than previously reported. Medical treatment with aglepristone+cloprostenol is effective and safe, preserving subsequent fertility, as demonstrated by negligible changes in LS.
Collapse
Affiliation(s)
- Monica Melandri
- Società Veterinaria "Il Melograno" Srl, 21018 Sesto Calende, Varese, Italy.,Department of Veterinary Medicine, Università degli Studi di Milano, 20122 Milan, Italy
| | | | | | - Giovanni Majolino
- Ambulatorio Veterinario Dr. R. Ranieri - Dr. G. Majolino, 43044 Collecchio, Parma, Italy
| | - Salvatore Alonge
- Società Veterinaria "Il Melograno" Srl, 21018 Sesto Calende, Varese, Italy.
| |
Collapse
|
44
|
Ellerbrock RE, Curcio BR, Zhong L, Honoroto J, Wilkins P, Lima FS, Giguere S, Canisso IF. Pharmacokinetics of intravenous and oral administration of enrofloxacin to the late-term pregnant and non-pregnant mares. Equine Vet J 2019; 52:464-470. [PMID: 31483886 DOI: 10.1111/evj.13175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/22/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Enrofloxacin may be an alternative antimicrobial for unresponsive cases of severe bacterial infections in pregnant mares. As pregnancy may affect drug bioavailability, distribution, metabolism and excretion, dose adjustment might be necessary. OBJECTIVES To determine the disposition of orally and intravenously administered enrofloxacin in pregnant and non-pregnant mares. STUDY DESIGN Randomised cross-over experiment. METHODS Six light-breed, healthy pregnant mares (260 days gestation) were given a single dose of either intravenous (5 mg/kg bwt) or oral compounded (7.5 mg/kg bwt) enrofloxacin, with the opposite dose administered after a 7-day washout. The protocol was repeated 45-60 days post-partum, 15-30 days after foals were weaned. Plasma samples were obtained via venepuncture at 0, 5, 10, 20, 30, 45, 60, 90 min, and 2, 3, 4, 6, 8, 12, 24, 36, 48 and 72 h after enrofloxacin administration. Enrofloxacin and ciprofloxacin concentrations were measured by LC-MS/MS. Concentration versus time data were analysed based on non-compartmental pharmacokinetics. RESULTS Enrofloxacin AUC0-∞ was significantly higher in pregnant mares than non-pregnant mares after PO administration and tended to be higher after i.v. administration. Ciprofloxacin maximum plasma concentration (Cmax ) and concentration at 24 h (C24h ) were higher, and half-life of the terminal phase (t½λz ) was longer in pregnant mares than non-pregnant mares after oral administration. Similarly, ciprofloxacin C24h was higher in pregnant mares with intravenous administration. Oral bioavailability did not differ based on pregnancy status. MAIN LIMITATIONS Only six healthy light breed mares were assessed. Disease or horse breed may affect the endpoints evaluated. A lack of established enrofloxacin AUC/MIC targets for equine pathogens limits pharmacokinetic-pharmacodynamic conclusions. CONCLUSIONS The oral form of enrofloxacin was well absorbed, and oral bioavailability was comparable to previous studies. While differences in enrofloxacin and ciprofloxacin pharmacokinetics were seen between pregnant and non-pregnant mares, the recommended drug dose and dose intervals are appropriate for MIC <0.25 µg/mL. Dosages may need to be adjusted for bacteria with a MIC >0.25 µg/mL.
Collapse
Affiliation(s)
- R E Ellerbrock
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.,Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - B R Curcio
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.,Departamento de Clinica Veterinaria, Faculdade de Veterinaria, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - L Zhong
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - J Honoroto
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - P Wilkins
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - F S Lima
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - S Giguere
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - I F Canisso
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
45
|
Shanin IA, Zvereva EA, Eremin SA, Sviridov OV, Zherdev AV, Dzantiev BB. Development of an Immunoenzyme Assay to Control the Total Content of Antibiotics of the Fluoroquinolone Group in Milk. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819050132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Effect of piperine and quercetin alone or in combination with marbofloxacin on CYP3A37 and MDR1 mRNA expression levels in broiler chickens. Res Vet Sci 2019; 126:178-183. [PMID: 31539794 DOI: 10.1016/j.rvsc.2019.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
After oral route of administration, drug absorption is unpredictable and is governed by various factors such as multi drug resistance-1 (MDR1) an efflux transporter and drug metabolizing enzymes (like CYP3A4, CYP3A37, CYP2D6) at intestine and liver. Naturally available phyto chemicals like piperine and quercetin as well as some floroquinolones are known to inhibit MDR1 and CYP3A37 activity and increases bioavailability of co-administered drugs. This study was carried out to investigate the effect of piperine and quercetin alone or in combination with marbofloxacin on CYP3A37 and MDR1 mRNA expression levels in liver and intestine of broiler chicken. After oral administration of piperine and quercetin for 3 consecutive days followed by with or without oral administration of marbofloxacin for 5 days, CYP3A37 and MDR1 mRNA expression levels were determined using quantitative real-time PCR. Total of 36 broiler chickens in seven individual groups were treated with different regimen and the mRNA expression levels at duodenum and liver were analyzed with apt statistical tools. After piperine and quercetin combined treatment with marbofloxacin, CYP3A37 mRNA expression levels were significantly down regulated by 20.57 (p = .034) and 25.95 (p = .003) folds; and MDR1 mRNA expression levels were also significantly down regulated by 11.33 (p = .012) and 33.59 (p = .006) folds in liver and duodenum, respectively. Down regulation of CYP3A37 and MDR1 mRNA in liver and duodenum indicate the combined pretreatment of piperine and quercetin may be useful for improving the pharmacokinetics of orally administered drugs which are substrates for CYP3A37 and MDR1.
Collapse
|
47
|
Lai OR, Marín P, Laricchiuta P, Gelli D, Escudero E, Crescenzo G. Pharmacokinetics of injectable marbofloxacin after intravenous and intramuscular administration in red-eared sliders (Trachemys scripta elegans). J Vet Pharmacol Ther 2019; 43:129-134. [PMID: 31393637 DOI: 10.1111/jvp.12803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 11/30/2022]
Abstract
Fluoroquinolone antibacterial drugs are currently used in reptilian medicine because of their broad spectrum of activity including the most frequent pathogens of these species. The disposition kinetics of marbofloxacin (MBX) at a single dose of 2 mg/kg were determined in healthy red-eared sliders after intravenous (IV) and intramuscular (IM) administration. The influence of renal portal system on the bioavailability of the drug was investigated by using forelimb and hindlimb as IM injection sites. Apparent volume of distribution at steady-state (Vss ) and systemic clearance (Cl) of marbofloxacin after IV administration were estimated to be 48.21 ± 5.42 ml/kg and 23.38 ± 2.90 ml/hr·kg, respectively. The absolute bioavailabilities after IM route were 45.96% (forelimb) and 52.09% (hindlimb). The lack of statistically significant differences in most of the pharmacokinetic parameters after the two IM injection sites suggests a negligible influence of renal portal system in clinical use of MBX, although the Cmax after IMfore administration is advantageous, having into account the concentration-dependent action of this antibiotic. The absence of visible adverse reactions in the animals and the advantageous pharmacokinetic properties suggest the possibility of its safe and effective clinical use in red-eared sliders.
Collapse
Affiliation(s)
- Olimpia R Lai
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Pedro Marín
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | | | - Donatella Gelli
- Department of Clinic Veterinary Sciences, Faculty of Veterinary Medicine, University of Padua, Agripolis, Legnaro PD, Italy
| | - Elisa Escudero
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Giuseppe Crescenzo
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Bari, Valenzano, Italy
| |
Collapse
|
48
|
Altan F, Sayin Ipek DN, Corum O, Yesilmen Alp S, Ipek P, Uney K. The effects of Mannheimia haemolytica and albendazole on marbofloxacin pharmacokinetics in lambs. Trop Anim Health Prod 2019; 51:2603-2610. [PMID: 31230255 DOI: 10.1007/s11250-019-01980-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/12/2019] [Indexed: 11/28/2022]
Abstract
The study aimed to define the effects of M. haemolytica and a single oral dose of albendazole on the single-dose pharmacokinetics of marbofloxacin in lambs. The pharmacokinetic-pharmacodynamic integration of marbofloxacin was applied to describe a 3 mg/kg intramuscular dose in lambs. The 6 healthy and 12 naturally infected with M. haemolytica lambs (Akkaraman, males weighing 10-15 kg and aged 2-3 months) were used in this study. In the marbofloxacin group, 6 healthy lambs received marbofloxacin. In the albendazole group after 2 weeks washout period, the same animals received marbofloxacin on 1 h after albendazole. In the diseased marbofloxacin group, 6 lambs naturally infected with M. haemolytica received marbofloxacin. In the diseased albendazole group, 6 lambs naturally infected with M. haemolytica received marbofloxacin on 1 h after albendazole. The marbofloxacin and albendazole were administered each as a single dose of 3 mg/kg intramuscular and 7.5 mg/kg oral, respectively, in the respective groups. Plasma concentration of marbofloxacin was measured with HPLC-UV and pharmacokinetic parameters were analyzed by non-compartmental model. Albendazole did not change the pharmacokinetic profiles of marbofloxacin in healthy and diseased lambs. However, M. haemolytica affected the pharmacokinetics of marbofloxacin in diseased lambs, AUC0-24/MIC90 ratio was not found to be higher than 125, but Cmax/MIC90 ratios was found to be higher than 10 for an MIC value of 0.25 μg/mL in all groups. The marbofloxacin dose described in this study may not be effective for the treatment of infections due to M. haemolytica in lambs, with MIC ≤ 0.25 μg/mL.
Collapse
Affiliation(s)
- Feray Altan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Dicle, Diyarbakir, Turkey.
| | - Duygu Neval Sayin Ipek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Dicle, Diyarbakir, Turkey
| | - Orhan Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Kastamonu, Kastamonu, Turkey
| | - Simten Yesilmen Alp
- Department of Microbiology, Faculty of Veterinary Medicine, University of Dicle, Diyarbakir, Turkey
| | - Polat Ipek
- Department of Physiology, Faculty of Veterinary Medicine, University of Dicle, Diyarbakir, Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| |
Collapse
|
49
|
Hruba H, Abdelsalam EEE, Anisimov N, Bandouchova H, Havelkova B, Heger T, Kanova M, Kovacova V, Nemcova M, Piacek V, Sedlackova J, Vitula F, Pikula J. Reproductive toxicity of fluoroquinolones in birds. BMC Vet Res 2019; 15:209. [PMID: 31226987 PMCID: PMC6588855 DOI: 10.1186/s12917-019-1957-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Background While commercial poultry and captive birds are exposed to antimicrobials through direct medication, environmental pollution may result in contamination of wild birds. Fluoroquinolones are commonly used medications to treat severe avian bacterial infections; however, their adverse effects on birds remain understudied. Here, we examine toxicity of enrofloxacin and marbofloxacin during the egg incubation period using the chicken (Gallus Gallus domesticus) as a model avian species. Laboratory tests were based on eggs injected with 1, 10 and 100 μg of fluoroquinolones per 1 g of egg weight prior to the start of incubation and monitoring of chick blood biochemistry, reproductive parameters and heart rate during incubation. Results Eggs treated with fluoroquinolones displayed reduced hatchability due to embryonic mortality, particularly on day 13 of incubation. Total hatching success showed a similar pattern, with a significantly reduced hatchability in low and high exposure groups treated with both enrofloxacin and marbofloxacin. From 15 to 67% of chicks hatching in these groups exhibited joint deformities. Hatching one-day pre-term occurred with a prevalence of 31 to 70% in all groups treated with fluoroquinolones. Embryonic heart rate, measured on days 13 and 19 of incubation, increased in all enrofloxacin-treated groups and medium and high dose groups of marbofloxacin-treated eggs. Blood biochemistry of chicks sampled at hatch from medium dose groups showed hypoproteinaemia, decreased uric acid and increased triglycerides. Chicks from the enrofloxacin-treated group displayed mild hyperglycaemia and a two-fold rise in the blood urea nitrogen to uric acid ratio. Principal components analysis based on blood biochemistry clearly separated the control bird cluster from both enrofloxacin- and marbofloxacin-treated birds. Conclusions Fluoroquinolones induce complex adverse effects on avian embryonic development, considerably reducing the performance of incubated eggs and hatching chicks. Cardiotoxicity, which quickens embryonic heart rate, meant that the total number of heart beats required for embryogenesis was achieved earlier than in the standard incubation period, resulting in pre-term hatching. Our data suggest that enrofloxacin has a higher potential for adverse effects than marbofloxacin. To conclude, care should be taken to prevent exposure of reproducing birds and their eggs to fluoroquinolones. Electronic supplementary material The online version of this article (10.1186/s12917-019-1957-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hana Hruba
- Department of Ecology and Diseases of Game, Fish, and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Ehdaa Eltayeb Eltigani Abdelsalam
- Department of Ecology and Diseases of Game, Fish, and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Nikolay Anisimov
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Volodarskogo 6, 625003, Tyumen, Russia
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish, and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Barbora Havelkova
- Department of Ecology and Diseases of Game, Fish, and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Tomas Heger
- Department of Ecology and Diseases of Game, Fish, and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Miroslava Kanova
- Department of Ecology and Diseases of Game, Fish, and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish, and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Monika Nemcova
- Department of Ecology and Diseases of Game, Fish, and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish, and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Jana Sedlackova
- Department of Ecology and Diseases of Game, Fish, and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Frantisek Vitula
- Department of Ecology and Diseases of Game, Fish, and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish, and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic. .,CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.
| |
Collapse
|
50
|
Corum O, Altan F, Yildiz R, Ider M, Ok M, Uney K. Pharmacokinetics of enrofloxacin and danofloxacin in premature calves. J Vet Pharmacol Ther 2019; 42:624-631. [PMID: 31190327 DOI: 10.1111/jvp.12787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/05/2019] [Accepted: 05/14/2019] [Indexed: 01/02/2023]
Abstract
The aim of this study was to determine the pharmacokinetics/pharmacodynamics of enrofloxacin (ENR) and danofloxacin (DNX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. The study was performed on twenty-four calves that were determined to be premature by anamnesis and general clinical examination. Premature calves were randomly divided into four groups (six premature calves/group) according to a parallel pharmacokinetic (PK) design as follows: ENR-IV (10 mg/kg, IV), ENR-IM (10 mg/kg, IM), DNX-IV (8 mg/kg, IV), and DNX-IM (8 mg/kg, IM). Plasma samples were collected for the determination of tested drugs by high-pressure liquid chromatography with UV detector and analyzed by noncompartmental methods. Mean PK parameters of ENR and DNX following IV administration were as follows: elimination half-life (t1/2λz ) 11.16 and 17.47 hr, area under the plasma concentration-time curve (AUC0-48 ) 139.75 and 38.90 hr*µg/ml, and volume of distribution at steady-state 1.06 and 4.45 L/kg, respectively. Total body clearance of ENR and DNX was 0.07 and 0.18 L hr-1 kg-1 , respectively. The PK parameters of ENR and DNX following IM injection were t1/2λz 21.10 and 28.41 hr, AUC0-48 164.34 and 48.32 hr*µg/ml, respectively. The bioavailability (F) of ENR and DNX was determined to be 118% and 124%, respectively. The mean AUC0-48CPR /AUC0-48ENR ratio was 0.20 and 0.16 after IV and IM administration, respectively, in premature calves. The results showed that ENR (10 mg/kg) and DNX (8 mg/kg) following IV and IM administration produced sufficient plasma concentration for AUC0-24 /minimum inhibitory concentration (MIC) and maximum concentration (Cmax )/MIC ratios for susceptible bacteria, with the MIC90 of 0.5 and 0.03 μg/ml, respectively. These findings may be helpful in planning the dosage regimen for ENR and DNX, but there is a need for further study in naturally infected premature calves.
Collapse
Affiliation(s)
- Orhan Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Kastamonu, Kastamonu, Turkey
| | - Feray Altan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Dicle, Diyarbakir, Turkey
| | - Ramazan Yildiz
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Mehmet Akif Ersoy, Burdur, Turkey
| | - Merve Ider
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| | - Mahmut Ok
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| |
Collapse
|