1
|
Calcium signaling cascades differentially regulate PGF 2α-induced myometrial contractions in water buffaloes (Bubalus bubalis). Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1651-1664. [PMID: 33884445 DOI: 10.1007/s00210-021-02084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
This study unravels the differential involvement of calcium signaling pathway(s) in PGF2α-induced contractions in myometrium of nonpregnant (NP) and pregnant buffaloes. Compared to the myometrium of pregnant animals, myometrium of NP buffaloes was more sensitive to PGF2α as manifested by changes in mean integral tension (MIT) and tonicity. In the presence of nifedipine, myometrial contraction to PGF2α was significantly attenuated in both NP and pregnant uteri; however, mibefradil and NNC 55-0396 produced inhibitory effects only in uterus of pregnant animals, thus suggesting the role of extracellular Ca2+ influx through nifedipine-sensitive L-type Ca2+-channels both in NP and pregnant, but T-type Ca2+ channels seem to play a role only during pregnancy. Entry of extracellular Ca2+ is triggered by enhanced functional involvement of Pyr3-sensitive TRPC3 channels and Rho-kinase pathways as evidenced by a significant rightward shift of the concentration-response curve of PGF2α in the presence of Pyr3 and Y-27632 in NP myometrium. But significant down-expressions of TRPC3 and Rho-A proteins during pregnancy apparently facilitate uterine quiescence. In the presence of Ca2+-free solution and cyclopiazonic acid (SERCA blocker), feeble contraction to PGF2α was observed in both NP and pregnant myometrium which suggests minor role of intracellular source of Ca2+ in mediating PGF2α-induced contractions in these tissues.
Collapse
|
2
|
Nair SV, Sharma V, Sharma A, Nakade UP, Jaitley P, Mathesh K, Choudhury S, Garg SK. The functional and molecular studies on involvement of hydrogen sulphide in myometrial activity of non-pregnant buffaloes (Bubalus bubalis). BMC Vet Res 2017; 13:379. [PMID: 29207994 PMCID: PMC5717829 DOI: 10.1186/s12917-017-1288-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/17/2017] [Indexed: 01/23/2023] Open
Abstract
Background Hydrogen sulphide (H2S), a member of the gasotransmitters family, is known to play patho-physiological role in different body systems including during pregnancy. But its involvement in myometrial spontaneity and associated signalling pathways in uterus in non-pregnant animals is yet to be studied. Present study describes the effect of L-cysteine, an endogenous H2S donor, on isolated myometrial strips of non-pregnant buffaloes and the underlying signaling mechanism(s). Results L-cysteine (10 nM-30 mM) produced concentration-dependent contractile effect on buffalo myometrium which was extracellular Ca2+ and L-type calcium channels-dependent. Significant rightward shift of dose-response curve of L-cysteine was observed with significant decrease in maxima in the presence of amino-oxyacetic acid (AOAA; 100 μM) and d, l-propargylglycine (PAG; 100 μM), the specific blockers of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), respectively. Existence of CBS enzyme of 63 kDa and CSE of 45 kDa molecular weights was confirmed by western blot using specific antibodies and also by immunohistochemistry. Conclusions Endogenous H2S along with its biosynthetic enzymes (CBS and CSE) is evidently present in uteri of non-pregnant buffaloes and it regulates spontaneity in uteri of non-pregnant buffaloes and this effect is dependent on extracellular Ca2+ influx through nifedipine-sensitive L-type calcium channels. Thus H2S-signalling pathway may be a potential target to alter the uterine activities in physiology and patho-physiolgical states.
Collapse
Affiliation(s)
- Sooraj V Nair
- Experimental and Molecular Pharmacology Laboratory, Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Vipin Sharma
- Experimental and Molecular Pharmacology Laboratory, Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Abhishek Sharma
- Experimental and Molecular Pharmacology Laboratory, Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Udayraj P Nakade
- Experimental and Molecular Pharmacology Laboratory, Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Pooja Jaitley
- Experimental and Molecular Pharmacology Laboratory, Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Karikalan Mathesh
- Centre for Wildlife Conservation Management and Disease Surveillance, Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, U.P, 243 122, India
| | - Soumen Choudhury
- Experimental and Molecular Pharmacology Laboratory, Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Satish Kumar Garg
- Experimental and Molecular Pharmacology Laboratory, Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India.
| |
Collapse
|
3
|
Sharma V, Nair SV, Jaitley P, Nakade UP, Sharma A, Choudhury S, Garg SK. ATP-sensitive and maxi potassium channels regulate BRL 37344-induced tocolysis in buffaloes-an in vitro study. Theriogenology 2017; 107:194-202. [PMID: 29172176 DOI: 10.1016/j.theriogenology.2017.10.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 11/17/2022]
Abstract
Cellular coupling of beta3-adrenoceptors (β3-ADR) to potassium channels in myometrium is largely unknown. In vitro study was undertaken to unravel the presence of β3-adrenergic receptors (ADR) and the role of K+-channels in mediating β3-ADR-induced relaxation in isolated myometrial strips from cyclic non-pregnant water buffaloes. Isometric tension was recorded in isolated myometrial strips using data acquisition system based physiograph. Compared to SR 59230A, BRL 37344 was found to be more potent in inducing β3-dependent myometrial relaxation which was significantly (p < 0.05) inhibited in the presence of β3 antagonist, SAR 150640. The immunoreactive protein to β3-ADR was also detected in membrane fraction of myometrial protein. Further, incubation with BRL 37344 (10 μM) significantly (p < 0.05) increased c-AMP accumulation (37.58 ± 9.52 pmol/mg protein; n = 4) in the myometrial strips compared to basal c-AMP level (16.85 ± 3.87 pmol/mg protein; n = 4). The concentration response curves (CRC) of BRL 37344 were significantly (p < 0.05) shifted towards right in the presence of KATP channels specific blocker, glibenclamide (10 μM) and maxi K+-channels (BKCa) specific blocker, iberiotoxin (100 nM), with decrease in both efficacy and potency as compared to control. However, 4-aminopyridine (4-AP), a specific blocker of the voltage gated K+-channels (Kv), failed to alter the CRC of BRL 37344. Existence of immunoreactive protein to Kir6.1, α-subunit of BKCa and Kv1.1 channels were also detected in the membrane fraction of myometrial protein. Based on the above findings, it can be concluded that BRL 37344 is a potent stimulator of β3-adrenoceptors in buffalo myometrium and besides mediating their effect through rise in c-AMP, they are coupled to KATP and BKCa channels in inducing tocolytic effects.
Collapse
Affiliation(s)
- Vipin Sharma
- Smooth Muscle & Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam, Go-Anusandhan Sansthan, Mathura 281001, India
| | - Sooraj V Nair
- Smooth Muscle & Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam, Go-Anusandhan Sansthan, Mathura 281001, India
| | - Pooja Jaitley
- Smooth Muscle & Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam, Go-Anusandhan Sansthan, Mathura 281001, India
| | - Udayraj P Nakade
- Smooth Muscle & Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam, Go-Anusandhan Sansthan, Mathura 281001, India
| | - Abhishek Sharma
- Smooth Muscle & Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam, Go-Anusandhan Sansthan, Mathura 281001, India
| | - Soumen Choudhury
- Smooth Muscle & Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam, Go-Anusandhan Sansthan, Mathura 281001, India.
| | - Satish Kumar Garg
- Smooth Muscle & Molecular Pharmacology Laboratory, Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam, Go-Anusandhan Sansthan, Mathura 281001, India
| |
Collapse
|
4
|
Sharma A, Nakade UP, Jaitley P, Sharma V, Choudhury S, Garg SK. WITHDRAWN: Differential involvement of L- and T-type Ca 2+ channels, store-operated calcium channel (TRPC) and Rho-kinase signaling pathway(s) in PGF 2α-induced contractions in myometrium of non-pregnant and pregnant buffaloes (Bubalus bubalis). Prostaglandins Other Lipid Mediat 2017:S1098-8823(17)30021-7. [PMID: 28916261 DOI: 10.1016/j.prostaglandins.2017.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 11/30/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Abhishek Sharma
- Experimental Pharmacology Laboratory, Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya, Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Udayraj P Nakade
- Experimental Pharmacology Laboratory, Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya, Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Pooja Jaitley
- Experimental Pharmacology Laboratory, Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya, Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Vipin Sharma
- Experimental Pharmacology Laboratory, Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya, Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Soumen Choudhury
- Experimental Pharmacology Laboratory, Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya, Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India
| | - Satish Kumar Garg
- Experimental Pharmacology Laboratory, Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya, Evam Go-Anusandhan Sansthan (DUVASU), Mathura 281001, India.
| |
Collapse
|
5
|
Functional involvement of protein kinase C, Rho-kinase and TRPC3 decreases while PLC increases with advancement of pregnancy in mediating oxytocin-induced myometrial contractions in water buffaloes ( Bubalus bubalis ). Theriogenology 2017; 92:176-189. [DOI: 10.1016/j.theriogenology.2016.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 11/20/2022]
|
6
|
Sharma A, Nakade UP, Choudhury S, Yadav RS, Garg SK. Extra and intracellular calcium signaling pathway(s) differentially regulate histamine-induced myometrial contractions during early and mid-pregnancy stages in buffaloes (Bubalus bubalis). Anim Reprod Sci 2017; 179:10-19. [PMID: 28228338 DOI: 10.1016/j.anireprosci.2017.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
This study examines the differential role of calcium signaling pathway(s) in histamine-induced uterotonic action during early and mid-pregnancy stages in buffaloes. Compared to mid pregnancy, tonic contraction, amplitude and mean-integral tension were significantly increased by histamine to produce myometrial contraction during early pregnancy with small effects on phasic contraction and frequency. Although uterotonic action of histamine during both stages of pregnancy is sensitive to nifedipine (a L-type Ca2+ channels blocker) and NNC55-0396 (T-type Ca2+ channels blocker), the role of extracellular calcium seems to be more significant during mid-pregnancy as in this stage histamine produced only 9.38±0.96% contraction in Ca2+ free-RLS compared to 21.60±1.45% in uteri of early pregnancy stage. Intracellular calcium plays major role in histamine-induced myometrial contraction during early pregnancy as compared to mid pregnancy, as in the presence of cyclopiazonic acid (CPA) Ca2+-free RLS, histamine produced significantly higher contraction in myometrial strips of early-pregancy in comparison to mid-pregnancy (10.59±1.58% and 3.13±0.46%, respectively). In the presence of U-73122, the DRC of histamine was significantly shifted towards right with decrease in maximal effect (Emax) only in early pregnancy suggesting the predominant role of phospholipase-C (PL-C) in this stage of pregnancy.
Collapse
Affiliation(s)
- Abhishek Sharma
- Experimental Pharmacology Laboratory, Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, UP Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura, U.P., 281 001, India
| | - Udayraj P Nakade
- Experimental Pharmacology Laboratory, Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, UP Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura, U.P., 281 001, India
| | - Soumen Choudhury
- Experimental Pharmacology Laboratory, Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, UP Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura, U.P., 281 001, India
| | - Rajkumar Singh Yadav
- Experimental Pharmacology Laboratory, Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, UP Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura, U.P., 281 001, India
| | - Satish Kumar Garg
- Experimental Pharmacology Laboratory, Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, UP Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura, U.P., 281 001, India.
| |
Collapse
|
7
|
Lovasz N, Koncz A, Domokos D, Gaspar R, Falkay G. ATP-sensitive potassium channels modulate in vitro tocolytic effects of β₂-adrenergic receptor agonists on uterine muscle rings in rats in early but not in late pregnancy. Croat Med J 2015; 56:114-8. [PMID: 25891870 PMCID: PMC4410172 DOI: 10.3325/cmj.2015.56.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Aim To investigate whether ATP-sensitive potassium (KATP) channels modulate the tocolytic effect of β2-AR agonists (ritodrine and salmeterol) in early-pregnant (day 6) and late-pregnant (day 22) rat uterus in vitro, in order to examine the relation between the KATP channel sulphonylurea-binding regulatory subunit (SUR) expression and pharmacological reactivity of β2-AR agonists. Methods The tocolytic effects of ritodrine and salmeterol (10-10-10-5 M) on spontaneous rhythmic contractions were investigated cumulatively, alone, or in the presence of the KATP channel blocker glibenclamide (10-6 M) and the KATP channel opener pinacidil (10-9-10-7 M) after 5-min preincubation. Results β2-AR agonist induced myometrial relaxation was inhibited by glibenclamide and enhanced by pinacidil on day 6, when SUR1 expression levels were high. Neither glibenclamide nor pinacidil mediated tocolytic effect was measured on day 22. Conclusion Low expression of the KATP channels at the end of gestation may facilitate enhanced excitability and contractility in the rat myometrium. The combination of a betamimetic and a KATP channel opener will therefore not be of therapeutic relevance in the treatment of preterm delivery.
Collapse
Affiliation(s)
| | | | | | | | - György Falkay
- György Falkay, Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6701, P.O. Box 121, Hungary,
| |
Collapse
|
8
|
Sharma A, Choudhury S, Nakade UP, Yadav RS, Garg SK. Calcium influx and release mechanism(s) in histamine-induced myometrial contraction in buffaloes. Anim Reprod Sci 2014; 146:157-64. [PMID: 24631173 DOI: 10.1016/j.anireprosci.2014.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 02/02/2014] [Accepted: 02/15/2014] [Indexed: 01/10/2023]
Abstract
The present study was undertaken to characterize the presence of histamine H1R using molecular biology tools and unravel the influx and release mechanism(s) involved in calcium signalling cascades in histamine-induced myometrial contraction in buffaloes. The presence of H1R mRNA transcript and immunoreactive membrane protein in buffalo myometrium was confirmed by RT-PCR and Western blot analysis. Further, histamine produced concentration-dependent (1nM-10μM) contraction in buffalo myometrium with a potency of 7.13±0.11. When myometrial strips were pre-incubated either with Ca(2+) free solution or with nifedipine, a L-type Ca(2+) channel blocker, dose response curve (DRC) of histamine was significantly (P<0.05) shifted towards right with decline in maximal contraction (Emax). Reduction in Emax of histamine in the presence of nifedipine (55.75±3.10%) was significantly (P<0.001) greater than that in the presence of ruthenium red (93.61±3.43%), a blocker of IP3-gated and RyR-sensitive Ca(2+) channels. Moreover, histamine produced only 26.87±1.99% of the maximum contraction in the presence of both nifedipine and CPA (blocker of sarco-endoplasmic reticulum Ca(2+)-ATPase). Interestingly, following concurrent exposure to U-73122 (a PL-C inhibitor) and nifedipine, the DRC of histamine was significantly (P<0.05) shifted towards left with increase in maximal contraction (126.30±3.36%). Our findings in buffalo uterus thus suggest that influx of extracellular calcium plays a major role in histamine-induced myometrial contraction, while release of intracellular calcium through calcium-release channels of sarcoplasmic reticulum has a minor role. A possible involvement of non-selective cation channels in histamine-induced myometrial contraction cannot be ruled out, and therefore requires further investigations.
Collapse
Affiliation(s)
- Abhishek Sharma
- Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura 281001, India
| | - Soumen Choudhury
- Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura 281001, India
| | - Udayraj P Nakade
- Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura 281001, India
| | - Rajkumar Singh Yadav
- Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura 281001, India
| | - Satish Kumar Garg
- Department of Pharmacology & Toxicology, College of Veterinary Science and Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura 281001, India.
| |
Collapse
|
9
|
Choudhury S, Garg SK, Singh TU, Mishra SK. Functional and molecular characterization of maxi K+-channels (BKCa) in buffalo myometrium. Anim Reprod Sci 2011; 126:173-8. [DOI: 10.1016/j.anireprosci.2011.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 05/20/2011] [Accepted: 05/30/2011] [Indexed: 11/25/2022]
|