1
|
Jukier T, Gross A, Boothe D. Pharmacokinetics and tolerability of a veterinary phenobarbital product in healthy dogs. Front Vet Sci 2024; 10:1307888. [PMID: 38249559 PMCID: PMC10796454 DOI: 10.3389/fvets.2023.1307888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Phenobarbital has been used for many decades in both human and veterinary epileptic patients. Many formulations for a particular drug exist, most of which are marketed for humans. Recently a veterinary specific phenobarbital product has been introduced to the market in the United States. Utilizing a specific formulation to treat patients may help decrease the issue of bioequivalence between one pharmaceutical product to another. Therefore, the goal of this study was to determine single and multiple dosing pharmacokinetics and tolerability of a veterinary specific phenobarbital product over a 4-week time period. Materials and methods 8 Healthy dogs from a canine research colony were used in the study. Results Overall, this phenobarbital formulation was well tolerated in the dogs in this study. Cmax, Tmax, half-life, and AUC after single 12 mg/kg oral dose were 23.5 μg/mL, 4.2 h, 94 h, and 2,758 h*μg/mL. Following chronic dosing, these parameters were 29.1 μg/mL, 3.4 h, 70 h, and 2,971 h*μg/mL, respectively. Discussion This formulation demonstrated a mean absolute bioavailability of 100%, with similar pharmacokinetic properties to previously published data.
Collapse
Affiliation(s)
- Tom Jukier
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Amanda Gross
- Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Dawn Boothe
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
2
|
Mealey KL, Martinez SE, Villarino NF, Court MH. Personalized medicine: going to the dogs? Hum Genet 2019; 138:467-481. [PMID: 31032534 DOI: 10.1007/s00439-019-02020-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
Abstract
Interindividual variation in drug response occurs in canine patients just as it does in human patients. Although canine pharmacogenetics still lags behind human pharmacogenetics, significant life-saving discoveries in the field have been made over the last 20 years, but much remains to be done. This article summarizes the available published data about the presence and impact of genetic polymorphisms on canine drug transporters, drug-metabolizing enzymes, drug receptors/targets, and plasma protein binding while comparing them to their human counterparts when applicable. In addition, precision medicine in cancer treatment as an application of canine pharmacogenetics and pertinent considerations for canine pharmacogenetics testing is reviewed. The field is poised to transition from single pharmacogene-based studies, pharmacogenetics, to pharmacogenomic-based studies to enhance our understanding of interindividual variation of drug response in dogs. Advances made in the field of canine pharmacogenetics will not only improve the health and well-being of dogs and dog breeds, but may provide insight into individual drug efficacy and toxicity in human patients as well.
Collapse
Affiliation(s)
- Katrina L Mealey
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA.
| | - Stephanie E Martinez
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Nicolas F Villarino
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Michael H Court
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| |
Collapse
|
3
|
Martinez MN, Court MH, Fink-Gremmels J, Mealey KL. Population variability in animal health: Influence on dose-exposure-response relationships: Part I: Drug metabolism and transporter systems. J Vet Pharmacol Ther 2018; 41:E57-E67. [PMID: 29917248 DOI: 10.1111/jvp.12670] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 01/03/2023]
Abstract
There is an increasing effort to understand the many sources of population variability that can influence drug absorption, metabolism, disposition, and clearance in veterinary species. This growing interest reflects the recognition that this diversity can influence dose-exposure-response relationships and can affect the drug residues present in the edible tissues of food-producing animals. To appreciate the pharmacokinetic diversity that may exist across a population of potential drug product recipients, both endogenous and exogenous variables need to be considered. The American Academy of Veterinary Pharmacology and Therapeutics hosted a 1-day session during the 2017 Biennial meeting to explore the sources of population variability recognized to impact veterinary medicine. The following review highlights the information shared during that session. In Part I of this workshop report, we consider sources of population variability associated with drug metabolism and membrane transport. Part II of this report highlights the use of modeling and simulation to support an appreciation of the variability in dose-exposure-response relationships.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Center for Veterinary Medicine, US Food and Drug Administration, Rockville, Maryland
| | - Michael H Court
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Johanna Fink-Gremmels
- Division of Pharmacology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Katrina L Mealey
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| |
Collapse
|
4
|
Visser M, Zaya MJ, Locuson CW, Boothe DM, Merritt DA. Comparison of predicted intrinsic hepatic clearance of 30 pharmaceuticals in canine and feline liver microsomes. Xenobiotica 2018; 49:177-186. [PMID: 29405805 DOI: 10.1080/00498254.2018.1437933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. Known cytochrome P450 (CYP) substrates in humans are used in veterinary medicine, with limited knowledge of the similarity or variation in CYP metabolism. Comparison of canine and feline CYP metabolism via liver microsomes report that human CYP probes and inhibitors demonstrate differing rates of intrinsic clearance (CLint). 2. The purpose of this study was to utilize a high-throughput liver microsome substrate depletion assay, combined with microsomal and plasma protein binding to compare the predicted hepatic clearance (CLhep) of thirty therapeutic agents used off-label in canines and felines, using both the well-stirred and parallel tube models. 3. In canine liver microsomes, 3/30 substrates did not have quantifiable CLint, while midazolam and amitriptyline CLint was too rapid for accurate determination. A CLhep was calculated for 29/30 substrates in feline microsomes. Overall, canine CLhep was faster compared to the feline, with fold differences ranging from 2-20-fold. 4. A comparison between the well-stirred and parallel tube model indicates that the parallel tube model reports a slighter higher CLhep in both species. 5. The differences in CYP metabolism between canine and feline highlight the need for additional research into CYP expression and specificity.
Collapse
Affiliation(s)
- Marike Visser
- a VMRD Global Therapeutics, Zoetis , Kalamazoo , MI , USA
| | | | | | - Dawn M Boothe
- d College of Veterinary Medicine, Auburn University , Auburn , AL , USA
| | | |
Collapse
|
5
|
YU HJ, LEE SH, LEE S, CHOI YJ, OH D, NAM KH, YUN Y, RYU DY. Biochemical characterization of variants of canine CYP1A1 using heterologous expression. J Vet Med Sci 2017; 79:1327-1334. [PMID: 28652520 PMCID: PMC5573817 DOI: 10.1292/jvms.17-0192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/12/2017] [Indexed: 12/27/2022] Open
Abstract
Cytochrome P450 1A1 (CYP1A1) is a heme-containing mono-oxygenase involved in metabolism of environmental contaminants. Two variants of dog CYP1A1 with a single residue difference were identified and designated Sap1 and Sap2. Compared with Sap1, Sap2 had a Trp50Leu substitution. The biochemical characteristics of the variants were comparatively analyzed using heterologous expression in Escherichia coli. The membrane fraction of E. coli expressing Sap2 exhibited higher CYP holoprotein and heme contents than the Sap1-containing membranes, although the level of total CYP1A1 protein (i.e., apoprotein + holoprotein) was comparable between the groups. As normalized to holo-CYP content, the Sap2-expressing membranes showed lower CYP1A1-specific enzyme activities, such as 7-ethoxyresorufin O-dealkylation (EROD), than the Sap1 group. In single substitution variants of residue 50, proteins with hydrophobic residues having mass similar to Leu exhibited lower EROD activities than those with hydrophobic residues having larger mass than Leu. In addition, variants with polar or charged residues having mass similar to Leu showed activities that were comparable to those of Sap2. Taken together, these findings suggest that the Trp50Leu substitution leads to an enhancement of holo-CYP1A1 formation, but diminishes the enzyme activity because of the small size of Leu compared with Trp.
Collapse
Affiliation(s)
- Hee Jeong YU
- College of Veterinary Medicine, Research Institute for
Veterinary Sciences, BK21plus Program for Creative Veterinary Science Research, Seoul
National University, Seoul, 08862, Republic of Korea
| | - Seung Heon LEE
- College of Veterinary Medicine, Research Institute for
Veterinary Sciences, BK21plus Program for Creative Veterinary Science Research, Seoul
National University, Seoul, 08862, Republic of Korea
| | - Seungwoo LEE
- College of Veterinary Medicine, Research Institute for
Veterinary Sciences, BK21plus Program for Creative Veterinary Science Research, Seoul
National University, Seoul, 08862, Republic of Korea
| | - Yu Jung CHOI
- College of Veterinary Medicine, Research Institute for
Veterinary Sciences, BK21plus Program for Creative Veterinary Science Research, Seoul
National University, Seoul, 08862, Republic of Korea
| | - Dayoung OH
- College of Veterinary Medicine, Research Institute for
Veterinary Sciences, BK21plus Program for Creative Veterinary Science Research, Seoul
National University, Seoul, 08862, Republic of Korea
| | - Ki-Hoan NAM
- Laboratory Animal Resource Center, Korea Research Institute
of Bioscience and Biotechnology, Cheongwon, Chungbuk, 28116 Republic of Korea
| | - YoungMin YUN
- College of Veterinary Medicine, Jeju National University,
Jeju, 63243, Republic of Korea
| | - Doug-Young RYU
- College of Veterinary Medicine, Research Institute for
Veterinary Sciences, BK21plus Program for Creative Veterinary Science Research, Seoul
National University, Seoul, 08862, Republic of Korea
| |
Collapse
|
6
|
Locuson CW, Williams P, Adcock JM, Daniels JS. Evaluation of tizanidine as a marker of canine CYP1A2 activity. J Vet Pharmacol Ther 2015; 39:122-30. [PMID: 26228837 DOI: 10.1111/jvp.12256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/01/2015] [Indexed: 01/23/2023]
Abstract
The dog CYP1A2 enzyme is likely an important contributor to the metabolism of veterinary drugs. Dog CYP1A2 is expressed in liver, plus it is inducible and polymorphic, creating the potential for intersubject differences in pharmacokinetics. Hence, the ability to probe dog CYP1A2 activity and inhibition is relevant toward veterinary drug development and drug-drug interaction assessment. Previous studies have relied on human probes with questionable specificity for CYP1A2, so it was hypothesized that recombinant CYP1A2 could be used to find a specific CYP1A2 substrate. Intrinsic clearance experiments demonstrated that tizanidine was a substrate of CYP1A2. Profiling of tizanidine metabolites generated by CYP1A2 identified the imidazole metabolite that was detectable in dog plasma. The imidazole metabolite was subsequently used to evaluate tizanidine as a CYP1A2 probe. Co-administration of the CYP1A inhibitor enrofloxacin with tizanidine significantly decreased (30%; n = 3) the formation of the imidazole metabolite vs. control experiments. As enrofloxacin is a weak inhibitor, further studies are required to confirm the sensitivity of tizanidine as an in vivo probe. However, tizanidine may be a more selective CYP1A2 probe than phenacetin when conducting in vitro studies due to the presence of other phenacetin-metabolizing enzymes in dog liver microsomes.
Collapse
Affiliation(s)
- C W Locuson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - P Williams
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J M Adcock
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J S Daniels
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
7
|
|
8
|
Abstract
The cytochrome P-450 (CYP) drug metabolizing enzymes are essential for the efficient elimination of many clinically used drugs. These enzymes typically display high interindividual variability in expression and function resulting from enzyme induction, inhibition, and genetic polymorphism thereby predisposing patients to adverse drug reactions or therapeutic failure. There are also substantial species differences in CYP substrate specificity and expression that complicate direct extrapolation of information from humans to veterinary species. This article reviews the available published data regarding the presence and impact of genetic polymorphisms on CYP-dependent drug metabolism in dogs in the context of known human-dog CYP differences.
Collapse
Affiliation(s)
- Michael H Court
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|