1
|
Lemire KA, Rodriguez YY, McIntosh MT. Alkaline hydrolysis to remove potentially infectious viral RNA contaminants from DNA. Virol J 2016; 13:88. [PMID: 27260412 PMCID: PMC4893296 DOI: 10.1186/s12985-016-0552-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Diagnostics and research of high-consequence animal disease agents is often limited to laboratories with a high level of biosecurity that restrict the transport of biological material. Often, sharing of DNA with external partners is needed to support diagnostics, forensics, or research. Even in the absence of virus, RNA from positive-sense single stranded RNA (+ssRNA) viruses that may contaminate otherwise purified DNA preparations continues to pose a threat due to its potential to be infectious via direct translation to yield viral proteins. While the risk of animal infection or accidental reconstitution and release of a virus from RNA is very low, the high impact of an animal disease event associated with the accidental release of some + ssRNA viruses, such as classical swine fever or foot-and-mouth disease viruses, necessitates the precaution of having procedures to ensure the complete inactivation of viruses and + ssRNA viral genomes. RNA and DNA are differentially susceptible to enzymatic degradations; however, such procedures are susceptible to unintended DNA damage and/or failure due to enzyme or cofactor instabilities. Therefore, we describe the development and verification of a robust and simple chemical and physical method to selectively degrade RNA from purified DNA preparations. The procedure employs incubation of DNA in 0.25 N sodium hydroxide at 65 °C for 1 h followed by neutralization and boiling for 10 min to hydrolyze contaminating RNA and inactivate animal disease viruses from DNA preparations. Additional critical quality control elements include use of a synthetic control RNA (SCR) and an SCR-specific real-time RT-PCR to track effectiveness of the procedure in a parallel treated control sample, and a pH check of reagents to ensure proper neutralization of alkaline conditions. Results The new procedure reduced intact RNA beyond the limit of detection by realtime RT-PCR and inactivated viruses by in vitro culture infectivity assays. Conclusions Treated DNA, while denatured, remains suitable for most common molecular biology procedures including PCR, transformation of E. coli, and molecular sequencing. The procedure ensures not only the inactivation of a variety of viruses but also the degradation through hydrolysis of potentially contaminating infectious + ssRNA viral genomes.
Collapse
Affiliation(s)
- Karissa A Lemire
- Foreign Animal Disease Diagnostic Laboratory, NVSL, STAS, VS, APHIS, USDA, Plum Island Animal Disease Center, PO Box 848, Greenport, NY, 11944-0848, USA
| | - Yelitza Y Rodriguez
- Foreign Animal Disease Diagnostic Laboratory, NVSL, STAS, VS, APHIS, USDA, Plum Island Animal Disease Center, PO Box 848, Greenport, NY, 11944-0848, USA
| | - Michael T McIntosh
- Foreign Animal Disease Diagnostic Laboratory, NVSL, STAS, VS, APHIS, USDA, Plum Island Animal Disease Center, PO Box 848, Greenport, NY, 11944-0848, USA.
| |
Collapse
|
2
|
Qi Y, Xu C, Nizam MN, Li Y, Yu B, Xu FJ. Functionalized PGMA nanoparticles with aggregation-induced emission characteristics for gene delivery systems. Polym Chem 2016. [DOI: 10.1039/c6py00998k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIE fluorogen conjugated cationic nanoparticles with excellent bioimaging abilities and stable morphologies were designed for multifunctional gene delivery systems.
Collapse
Affiliation(s)
- Yu Qi
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| | - Chen Xu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| | - Muhammad Naeem Nizam
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology)
| |
Collapse
|
3
|
Cortesi R, Campioni M, Ravani L, Drechsler M, Pinotti M, Esposito E. Cationic lipid nanosystems as carriers for nucleic acids. N Biotechnol 2013; 31:44-54. [PMID: 24120492 DOI: 10.1016/j.nbt.2013.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/01/2013] [Accepted: 10/01/2013] [Indexed: 12/30/2022]
Abstract
Solid lipid nanoparticles (SLNs) consisting of tristearin or tribehenin, and monoolein aqueous dispersions (MADs) consisting of glyceryl-monoolein have been studied as potential nanocarriers for nucleic acids. The cationic character of nanocarriers was obtained by adding cationic surfactants, such as diisobutylphenoxyethyl-dimethylbenzyl ammonium chloride (DEBDA) or PEG-15 Cocopolyamine (PCPA), to the lipid composition. The products were characterised in terms of size and morphology by Cryo-TEM and PCS. The charge properties were determined by measuring the zeta potential. Our experimental protocol enabled us to obtain homogeneous and stable cationic nanosystems within 3-6 months of production. Assessment of cytotoxicity on HepG2 cells by MTT assays indicated that MAD preparations were less toxic than SLN, and in general PCPA-containing formulations are less cytotoxic than DEBDA-containing ones. The formation of electrostatic complexes with salmon sperm or plasmid DNA, used as model nucleic acids, was evaluated by electrophoresis on agarose gel. The results confirmed that all the formulations studied are able to form the complex. Finally, we investigated the ability of SLN and MAD to deliver DNA into HepG2 cells, and to this purpose we exploited expression plasmids for green fluorescent protein or firefly luciferase. Although with reduced efficiency, the results showed that the produced nanocarriers are able to convey plasmids into cells. The data obtained encourage further study aimed at improving these new formulations and proposing them as novel in vitro transfection reagents with potential application to in vivo delivery of nucleic acids.
Collapse
Affiliation(s)
- Rita Cortesi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
4
|
Uprichard SL. Hepatitis C virus experimental model systems and antiviral drug research. Virol Sin 2010; 25:227-45. [PMID: 20960298 DOI: 10.1007/s12250-010-3134-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 04/18/2010] [Indexed: 12/27/2022] Open
Abstract
An estimated 130 million people worldwide are chronically infected with hepatitis C virus (HCV) making it a leading cause of liver disease worldwide. Because the currently available therapy of pegylated interferon-alpha and ribavirin is only effective in a subset of patients, the development of new HCV antivirals is a healthcare imperative. This review discusses the experimental models available for HCV antiviral drug research, recent advances in HCV antiviral drug development, as well as active research being pursued to facilitate development of new HCV-specific therapeutics.
Collapse
Affiliation(s)
- Susan L Uprichard
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Yao X, Han Q, Song J, Liang C, Wakita T, Yang R, Chen X. Baculovirus Mediated Production of Infectious Hepatitis C Virus in Human Hepatoma Cells Stably Expressing T7 RNA Polymerase. Mol Biotechnol 2008; 40:186-94. [DOI: 10.1007/s12033-008-9075-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 05/21/2008] [Indexed: 02/05/2023]
|
6
|
Blackard JT, Kemmer N, Sherman KE. Extrahepatic replication of HCV: insights into clinical manifestations and biological consequences. Hepatology 2006; 44:15-22. [PMID: 16799966 DOI: 10.1002/hep.21283] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An estimated 170 million persons are infected with the hepatitis C virus (HCV) worldwide. While hepatocytes are the major site of infection, a broad clinical spectrum of extrahepatic complications and diseases are associated with chronic HCV infection, highlighting the involvement of HCV in a variety of non-hepatic pathogenic processes. There is a growing body of evidence to suggest that HCV can replicate efficiently in extrahepatic tissues and cell types, including peripheral blood mononuclear cells. Nonetheless, laboratory confirmation of HCV replication in extrahepatic sites is fraught with technical challenges, and in vitro systems to investigate extrahepatic replication of HCV are severely limited. Thus, future studies of extrahepatic replication should combine innovative in vitro assays with a prospective cohort design to maximize our understanding of this important phenomenon to the pathogenesis and treatment response rates of HCV.
Collapse
Affiliation(s)
- Jason T Blackard
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | | | | |
Collapse
|
7
|
Sun BS, Pan J, Clayton MM, Liu J, Yan X, Matskevich AA, Strayer DS, Gerber M, Feitelson MA. Hepatitis C virus replication in stably transfected HepG2 cells promotes hepatocellular growth and tumorigenesis. J Cell Physiol 2004; 201:447-58. [PMID: 15389552 DOI: 10.1002/jcp.20083] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HepG2 cells stably transfected with a full-length, infectious hepatitis C virus (HCV) cDNA demonstrated consistent replication of HCV for more than 3 years. Intracellular minus strand HCV RNA was present. Minus strand synthesis was NS5B dependent, and was sensitive to interferon alpha (IFN alpha) treatment. NS5B and HCV core protein were detectable. HCV stimulated HepG2 cell growth and survival in culture, in soft agar, and accelerated tumor growth in SCID mice. These mice became HCV RNA positive in blood, where the virus was also sensitive to IFN alpha. The RNA banded at the density of HCV, and was resistant to RNase prior to extraction. Hence, HCV stably replicates in HepG2 cells, stimulates hepatocellular growth and tumorigenesis, and is susceptible to IFN alpha both in vitro and in vivo.
Collapse
Affiliation(s)
- Bill S Sun
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-6799, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lim SP, Soo HM, Tan YH, Brenner S, Horstmann H, MacKenzie JM, Ng ML, Lim SG, Hong WJ. Inducible system in human hepatoma cell lines for hepatitis C virus production. Virology 2002; 303:79-99. [PMID: 12482660 DOI: 10.1006/viro.2002.1687] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We cloned the complete complementary DNA of an isolate of the hepatitis C virus, HCV-S1, into a tetracycline-inducible expression vector and stably transfected it into two human hepatoma cell lines, Huh7 and HepG2. Twenty-six Huh7 and two HepG2-positive clones were obtained after preliminary screening. Two Huh7 (SH-7 and -9) and one HepG2 (G-19) clones were chosen for further characterisation. Expression of HCV proteins in these cells accumulated from 6 h to 4 days posttreatment. Full-length viral plus-strand RNA was detected by Northern analyses. Using RT-PCR and ribonuclease protection assay, we also detected the synthesis of minus-strand HCV RNA. Plus- and minus-strand viral RNA was still detected after treatment with actinomycin D. Indirect immunofluorescence staining with anti-E2, NS4B, and NS5A revealed that these proteins were mostly localised to the endoplasmic reticulum (ER). Culture media from tet-induced SH-9 cells was separated on sucrose density gradients and analysed for the presence of HCV RNA. Viral RNA levels peaked at two separate ranges, one with a buoyant density of 1.08 g/ml and another from 1.17 to 1.39 g/ml. Electron microscopy demonstrated the presence of subviral-like particles (approximately 20-25 nm in diameter) in the cytoplasm of SH-9 and G-19 cells, which were positively labelled by anti-HCV core antibodies. Anti-E2 antibodies strongly labelled cytoplasmic vesicular structures and some viral-like particles. Complete viral particles of about 50 nm which reacted with anti-E2 antibodies were observed in the culture media of tet-induced SH-9 cells following negative staining. Supernatant from tet-treated SH-9 cells was found to infect nai;ve Huh7 and stable Huh7-human CD81 cells.
Collapse
Affiliation(s)
- Siew Pheng Lim
- Collaborative Anti-viral Research Laboratory, Institute of Molecular and Cell Biology, 30 Medical Drive, 117609, Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhu LX, Liu J, Li YC, Kong YY, Staib C, Sutter G, Wang Y, Li GD. Full-length core sequence dependent complex-type glycosylation of hepatitis C virus E2 glycoprotein. World J Gastroenterol 2002; 8:499-504. [PMID: 12046079 PMCID: PMC4656430 DOI: 10.3748/wjg.v8.i3.499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2001] [Revised: 12/23/2001] [Accepted: 01/23/2002] [Indexed: 02/06/2023] Open
Abstract
AIM To study HCV polyprotein processing is important for the understanding of the natural history of HCV and the design of vaccines against HCV. The purpose of this study is to investigate the affection of context sequences on hepatitis C virus (HCV) E2 processing. METHODS HCV genes of different lengths were expressed and compared in vaccinia virus/T7 system with homologous patient serum S94 and mouse anti-serum M( E2116) raised against E.coli -derived E2 peptide, respectively. Deglycosylation analysis and GNA ( Galanthus nivalus ) lectin binding assay were performed to study the post-translational processing of the expressed products. RESULTS E2 glycoproteins with different molecular weights (-75 kDa and -60 kDa) were detected using S94 and M( E2116), respectively. Deglycosylation analysis showed that this difference was mainly due to different glycosylation. Endo H resistance and its failure to bind to GNA lectin demonstrated that the higher molecular weight form (75 kDa) of E2 was complex-type glycosylated, which was readily recognized by homologous patient serum S94. Expression of complex-type glycosylated E2 could not be detected in all of the core-truncated constructs tested, but readily detected in constructs encoding full-length core sequences. CONCLUSION The upstream conserved full-length core coding sequence was required for the production of E2 glycoproteins carrying complex-type N-glycans which reacted strongly with homologous patient serum and therefore possibly represented more mature forms of E2. As complex-type N-glycans indicated modification by Golgi enzymes, the results suggest that the presence of full-length core might be critical for E1/E2 complex to leave ER. Our data may contribute to a better understanding of the processing of HCV structural proteins as well as HCV morphogenesis.
Collapse
Affiliation(s)
- Li-Xin Zhu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Favre D, Berthillon P, Trépo C. Removal of cell-bound lipoproteins: a crucial step for the efficient infection of liver cells with hepatitis C virus in vitro. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2001; 324:1141-8. [PMID: 11803815 DOI: 10.1016/s0764-4469(01)01397-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hepatitis C virus (HCV) is of major social, medical and economic importance. The prevalence of HCV is approximatively 1% in most developed countries, and much higher in developing countries. HCV infection is the second major cause, after hepatitis B virus infection, for the generation of chronic liver disease and hepatocellular carcinoma. To date, the only reliable model for the study of HCV infection is the chimpanzee. Indeed, there is no robust in vitro infection system, yet. There is thus an urgent need for such an in vitro infection system in order to evaluate therapeutic agents. Here, a process is provided for infecting hepatocyte cell lines with hepatitis C virus in vitro. It is strongly suggested that cell-bound lipoproteins are playing a crucial role during the infection process. In order to obtain a robust infection, the cell-bound lipoproteins have first to be removed from their cellular receptor prior to the addition of viral inocula originating from human sera, the latter being made originally of a virus-lipoprotein complex.
Collapse
Affiliation(s)
- D Favre
- Institut national de la santé et de la recherche médicale, virus des hépatites, rétrovirus humains et pathologies associées, Inserm unité 271, 151, cours Albert Thomas, 69424 Lyon, France.
| | | | | |
Collapse
|
11
|
Myung J, Khalap N, Kalkeri G, Garry R, Dash S. Inducible model to study negative strand RNA synthesis and assembly of hepatitis C virus from a full-length cDNA clone. J Virol Methods 2001; 94:55-67. [PMID: 11337040 DOI: 10.1016/s0166-0934(01)00278-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An inducible in vitro cell culture system was developed to assay HCV replication by direct biochemical means. A transcription plasmid containing a T7 promoter at the 5' end, full-length cDNA of the HCV genome, a ribozyme sequence from the antigenomic strand of hepatitis delta virus and a T7 terminator was prepared. To facilitate high-level transcription of HCV RNA, HepG2 cells were infected with replication deficient adenovirus containing the T7 RNA polymerase gene and later transfected with the transcription plasmid containing the full-length HCV genome. This transfection-based cell culture system expressed high levels of HCV structural (core, El and E2) and non-structural proteins (NS3 and NS5B) detectable by Western blot and immunofluorescence assays. Production of HCV RNA transcripts and presence of replicative negative strand of HCV was confirmed by ribonuclease protection assay indicating replication of HCV in the transfected HepG2 cell. The transfected HepG2 cells assembled 50-60 nm virus-like particles, which could be aggregated by anti-E2 antibodies. This model can be utilized for studying mechanisms of HCV replication, assembly of HCV particles and to test potential anti-HCV compounds.
Collapse
Affiliation(s)
- J Myung
- Department of Pathology and Laboratory Medicine, Health Sciences Center, Tulane University, 1430 Tulane Avenue, , New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
12
|
Jiang RL, Lu QS, Luo KX. Cloning and expression of core gene cDNA of Chinese hepatitis C virus in cosmid pTM3. World J Gastroenterol 2000; 6:220-222. [PMID: 11819560 PMCID: PMC4723488 DOI: 10.3748/wjg.v6.i2.220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To clone core gene cDNA of Chinese hepatitis C virus (HCV) into eukaryotic expression vector cosmid pTM3 and to express HCV core antigen in HepG2 cells.
METHODS: Core gene cDNA of HCV was introduced into eukaryotice xpression vector cosmid pTM3. Using vaccinia virus/bacterio phage T7 hybrid expression system, HepG2 cells were transfected with the recombinant plasmid pTM3-Q534 by lipofectin.
RESULTS: From the transfected bacteria Top10F′, 2 pTM3-Q534 clones containing the recombinant plasmid were identified from randomly selected 10 ampicillin-resistant colonies. By reverse transcription PCR and indirect immunofluorescence technique, HCV RNA and core protein was identified in HepG2 cells transfected with the recombinant plasmid.
CONCLUSION: The construction of a recombinant plasmid and the expression of core gene cDNA of HCV in HepG2 was successful.
Collapse
|
13
|
Ye J, Zeng L, Yang M, Luo D, Guo J. In vitro expression of hepatitis C virus non-structure 5 antigen in the HepG2 cell line. Curr Med Sci 2000; 20:277-9. [PMID: 12840910 DOI: 10.1007/bf02888178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/1999] [Indexed: 10/19/2022]
Abstract
To establish a cell line as a model system for HCV infection and propagation in vitro, a human HepG2 cell line was incubated with a HCV RNA positive serum. The sABC immunological techniques and gold-labeled colloid electron microscopy method were employed to examine the viral proteins in those cells. The HCV non-structure 5 antigen was first detected in the HepG2 cells 72 h after incubation. The antigen was continuously observed in the cytoplasm as well on the membrane of the HepG2 cells even after 1, 2, 3 and 4 weeks after incubation. The observation of HCV non-structure 5 antigen continuously expressed in the HepG2 cells strongly indicates that the cells may have been infected by HCV virus. Therefore, the HepG2 cell line may serve as a potential host for establishment of HCV infection and propagation in vitro.
Collapse
Affiliation(s)
- J Ye
- Department of Infectious Disease, Xiehe Hospital, Tongji Medical University, Wuhan 430022
| | | | | | | | | |
Collapse
|
14
|
Uehara T, Honda K, Hatano E, Terao R, Iimuro Y, Yamamoto N, Yamamoto M, Kaneda Y, Yamaoka Y. Gene transfer to the rat biliary tract with the HVJ-cationic liposome method. J Hepatol 1999; 30:836-42. [PMID: 10365810 DOI: 10.1016/s0168-8278(99)80137-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS The ability to transfer foreign genes into the biliary tract would be useful for the treatment of biliary tract diseases, including cancer, cystic fibrosis and other genetic diseases. To introduce a foreign gene precisely into the rat biliary epithelial cells, we developed a new technique, inserting a polyethylene catheter into the common bile duct through the papilla of Vater by use of a fusigenic cationic liposome with hemagglutinating virus of Japan (HVJ-cationic liposome). METHODS Transfection efficiency was estimated with the use of FITC-oligonucleotides (FITC-ODNs) and cDNA of beta-galactosidase (pCAG-lacZ). RESULTS FITC-ODNs encapsulated in HVJ-cationic liposome were effectively transfected into cell nuclei of human cholangiocellular carcinoma in vitro after a 30-min incubation as compared with the simple application of naked FITC-ODNs. After in vivo injection of FITC-ODNs using the HVJ-cationic liposome method through the papilla of Vater, fluorescence accumulation was observed only in the epithelial cells of the biliary tract, but not in the parenchymal cells of the liver. Beta-galactosidase expression was observed in the biliary epithelial cells 3 days after the transfection of pCAG-lacZ and was also detected at 14 days, but not at 28 days, without obvious cytotoxicity. CONCLUSIONS HVJ-cationic liposome-mediated gene transfer to the biliary tract via the papilla of Vater is a minimally-invasive and an effective gene-delivery method for site-specific targeting to the epithelial cells of the biliary tract, which could be applied to the treatment of human biliary tract diseases.
Collapse
Affiliation(s)
- T Uehara
- Department of Gastroenterological Surgery, Kyoto University, Graduate School of Medicine, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Delaney WE, Isom HC. Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant baculovirus. Hepatology 1998; 28:1134-46. [PMID: 9755254 DOI: 10.1002/hep.510280432] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel transient mechanism for studying hepatitis B virus (HBV) gene expression and replication using recombinant HBV baculovirus to deliver the HBV genome to HepG2 cells was generated. In HBV baculovirus infected HepG2 cells, HBV transcripts, and intracellular and secreted HBV antigens are produced; replication occurs as evidenced by the presence of high levels of intracellular replicative intermediates and protected HBV DNA in the medium. Density-gradient analysis of extracellular HBV DNA indicated that the DNA was contained predominantly in enveloped HBV virions. Covalently closed circular (CCC) DNA is present indicating that, in this system, HBV core particles are capable of delivering newly synthesized HBV genomes back into the nuclei of infected cells. HBV gene expression is driven exclusively from endogenous promoters. Levels of HBV gene expression and replication can be achieved in HBV baculovirus-infected HepG2 cells which far exceed levels found in HepG2 2.2.15 cells. HBV baculovirus infection of HepG2 cells lends itself readily to experimental manipulation as follows: 1) HBV expression can be initiated any time relative to seeding of HepG2 cells; 2) levels of HBV replication can be regulated over a wide range simply by changing the baculovirus multiplicity of infection; 3) HBV replication is readily detectable by one day post infection with HBV baculovirus and persists at least through day eleven post infection; and (4) the transient nature of the infection can be extended and/or enhanced by superinfecting the cultures. We conclude that infection of HepG2 cells by HBV recombinant baculovirus represents a simple to use and highly flexible system for studying the effects of antivirals and/or cytokines on HBV production and for understanding HBV replication and pathogenesis at the molecular level.
Collapse
Affiliation(s)
- W E Delaney
- Department of Microbiology and Immunology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17033, USA
| | | |
Collapse
|