1
|
Kurata S, Sakaguchi S, Hirota SK, Kurashima O, Suyama Y, Nishida S, Ito M. Refugia within refugium of Geranium yesoense (Geraniaceae) in Japan were driven by recolonization into the southern interglacial refugium. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Recent studies have found that geographical fragmentation and recurrent colonization result in complex genetic structures in refugial areas. This phenomenon, known as ‘refugia within refugium’, has been identified from many geographical locations. In Japan, the high-elevation mountains of central Honshu provided an interglacial refugium for alpine plants. Here we focused on the Geranium yesoense complex, which exhibits increased morphological variation in the refugial area, to determine whether this variation was shaped by recurrent colonization, range fragmentation or phenotypic changes independent of population history. We analysed single nucleotide polymorphism data and chloroplast genome sequences. Diversification in the G. yesoense species complex occurred in the mid-Pleistocene. The varieties are distinct entities and suggest the presence of a genetic cluster with highly disjunct distributions, occurring both in northern Japan and in southern refugial areas in central Honshu. Demographic analysis suggests that a single ancestral variety (var. nipponicum) evolved in the alpine region of central Honshu, and that subsequent migration from one of the two diverged northern varieties (var. pseudopratense) led to secondary contact with var. nipponicum during the last glacial period. Recolonization into refugial populations in central Honshu and hybridization between diverged populations have resulted in complex genetic structures among refugial populations.
Collapse
Affiliation(s)
- Seikan Kurata
- Laboratory of Plant Evolution and Biodiversity, Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Shota Sakaguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Shun K Hirota
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, Aza-yomogida, Naruko Onsen, Osaki City, Miyagi, Japan
| | - Osamu Kurashima
- National Museum of Nature and Science, Ueno-koen, Taito-ku, Tokyo, Japan
| | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, Aza-yomogida, Naruko Onsen, Osaki City, Miyagi, Japan
| | - Sachiko Nishida
- Nagoya University Museum, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Motomi Ito
- Laboratory of Plant Evolution and Biodiversity, Department of General Systems Studies, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan
| |
Collapse
|
2
|
Louati M, Ucarli C, Arikan B, Ghada B, Hannachi AS, Turgut-Kara N. Genetic, Morphological, and Biochemical Diversity of Argan Tree ( Argania spinosa L.) (Sapotaceae) in Tunisia. PLANTS (BASEL, SWITZERLAND) 2019; 8:E319. [PMID: 31480514 PMCID: PMC6783864 DOI: 10.3390/plants8090319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/29/2019] [Accepted: 08/23/2019] [Indexed: 01/06/2023]
Abstract
Argan trees are normally endemic to Morocco and Algeria, but hundreds of argan trees exist in Tunisia, some introduced from Morocco and some from unknown origins. The aim of the present study was to evaluate the genetic, morphological, and biochemical diversity of the argan trees in Tunisia. In this study, we used morphometric data collected from vegetative tissue, as well as pomological characteristics related to fruits, stones, and kernels. Genetic variation in 60 trees of Tunisian Argania spinosa L. was estimated using inter-simple sequence repeats (ISSRs). Mutation screening and genotyping by high-resolution melting (HRM) was performed to detect delta-6-desaturase (D6D) variants in the tested individuals, and finally fatty acid analysis of argan leaves with gas chromatography (GC) was performed. The plant materials used in this study originated from four different sites in Tunisia. Analysis of morphological characteristics showed large variability both within and between the studied collections. The analysis of ISSR polymorphisms gave information about the diversity within and between populations. HRM analysis showed that all 60 argan individuals were grouped into 10 different categories. The results of the gas chromatography analysis showed that the presence of omega-3 fatty acids EPA and DHA was noticeable in some argan leaves.
Collapse
Affiliation(s)
- Marwa Louati
- Université de Tunis El Manar, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Tunis 2092, Tunisia
| | - Cuneyt Ucarli
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul 34134, Turkey
| | - Burcu Arikan
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul 34134, Turkey
| | - Baraket Ghada
- Université de Tunis El Manar, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Tunis 2092, Tunisia
| | - Amel Salhi Hannachi
- Université de Tunis El Manar, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Tunis 2092, Tunisia
| | - Neslihan Turgut-Kara
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Istanbul 34134, Turkey.
| |
Collapse
|
3
|
Záveská E, Maylandt C, Paun O, Bertel C, Frajman B, The Steppe Consortium, Schönswetter P. Multiple auto- and allopolyploidisations marked the Pleistocene history of the widespread Eurasian steppe plant Astragalus onobrychis (Fabaceae). Mol Phylogenet Evol 2019; 139:106572. [PMID: 31351183 DOI: 10.1016/j.ympev.2019.106572] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
The Eurasian steppes occupy a significant portion of the worldwide land surface and their biota have been affected by specific past range dynamics driven by ice ages-related climatic fluctuations. The dynamic alterations in conditions during the Pleistocene often triggered reticulate evolution and whole genome duplication events. Employing genomic, genetic and cytogenetic tools as well as morphometry we investigate the intricate evolution of Astragalus onobrychis, a widespread Eurasian steppe plant with diploid, tetraploid and octoploid cytotypes. To analyse the heteroploid RADseq dataset we employ both genotype-based and genotype-free methods that result in highly consistent results, and complement our inference with information from the plastid ycf1 region. We uncover a complex and reticulate evolutionary history, including at least one auto-tetraploidization event and two allo-octoploidization events; one of them involved also genetic contributions from other species, most likely A. goktschaicus. The present genetic structure points to the existence of four main clades within A. onobrychis, which only partly correspond to different ploidies. Time-calibrated diffusion models suggest that diversification within A. onobrychis was associated with ice age-related climatic fluctuations during the last million years. We finally argue for the usefulness of uniparentally inherited plastid markers, even in the genomic era, especially when investigating heteroploid systems.
Collapse
Affiliation(s)
- Eliška Záveská
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Clemens Maylandt
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Clara Bertel
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Božo Frajman
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - The Steppe Consortium
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria; Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria; Department of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria; Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain; Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; Institute for Alpine Environment, Eurac Research, Drususallee 1/Viale Druso 1, 39100 Bozen/Bolzano, Italy
| | - Peter Schönswetter
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria.
| |
Collapse
|
4
|
Weider LJ, Hobaek A, Colbourne JK, Crease TJ, Dufresne F, Hebert PDN. HOLARCTIC PHYLOGEOGRAPHY OF AN ASEXUAL SPECIES COMPLEX I. MITOCHONDRIAL DNA VARIATION IN ARCTIC DAPHNIA. Evolution 2017; 53:777-792. [DOI: 10.1111/j.1558-5646.1999.tb05372.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/1997] [Accepted: 02/04/1999] [Indexed: 11/30/2022]
Affiliation(s)
| | - Anders Hobaek
- Norwegian Institute for Water Research; Nordnesboder 5 N-5005 Bergen Norway
| | - John K. Colbourne
- Department of Zoology; University of Guelph; Guelph Ontario N1G 2W1 Canada
| | - Teresa J. Crease
- Department of Zoology; University of Guelph; Guelph Ontario N1G 2W1 Canada
| | - France Dufresne
- Département de Biologie; Université de Laval, Pavilion Vachon; Ste-Foy Québec G5L 3A1 Canada
| | - Paul D. N. Hebert
- Department of Zoology; University of Guelph; Guelph Ontario N1G 2W1 Canada
| |
Collapse
|
5
|
Webster JP, Davies CM, Ndamba J, Noble LR, Jones CS, Woolhouse MEJ. Spatio-temporal genetic variability in the schistosome intermediate host Biomphalaria pfeifferi. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.2001.11813664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Webster JP, Davies CM, Hoffman JI, Ndamba J, Noble LR, Woolhouse MEJ. Population genetics of the schistosome intermediate hostBiomphalaria pfeifferiin the Zimbabwean highveld: implications for co-evolutionary theory. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.2001.11813630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Niskanen A, Luoto M, Väre H, Heikkinen RK. Models of Arctic-alpine refugia highlight importance of climate and local topography. Polar Biol 2016. [DOI: 10.1007/s00300-016-1973-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Birks HJB. Some reflections on the refugium concept and its terminology in historical biogeography, contemporary ecology and global-change biology. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/14888386.2015.1117022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Nybom H, Weising K, Rotter B. DNA fingerprinting in botany: past, present, future. INVESTIGATIVE GENETICS 2014; 5:1. [PMID: 24386986 PMCID: PMC3880010 DOI: 10.1186/2041-2223-5-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022]
Abstract
Almost three decades ago Alec Jeffreys published his seminal Nature papers on the use of minisatellite probes for DNA fingerprinting of humans (Jeffreys and colleagues Nature 1985, 314:67-73 and Nature 1985, 316:76-79). The new technology was soon adopted for many other organisms including plants, and when Hilde Nybom, Kurt Weising and Alec Jeffreys first met at the very First International Conference on DNA Fingerprinting in Berne, Switzerland, in 1990, everybody was enthusiastic about the novel method that allowed us for the first time to discriminate between humans, animals, plants and fungi on the individual level using DNA markers. A newsletter coined "Fingerprint News" was launched, T-shirts were sold, and the proceedings of the Berne conference filled a first book on "DNA fingerprinting: approaches and applications". Four more conferences were about to follow, one on each continent, and Alec Jeffreys of course was invited to all of them. Since these early days, methodologies have undergone a rapid evolution and diversification. A multitude of techniques have been developed, optimized, and eventually abandoned when novel and more efficient and/or more reliable methods appeared. Despite some overlap between the lifetimes of the different technologies, three phases can be defined that coincide with major technological advances. Whereas the first phase of DNA fingerprinting ("the past") was dominated by restriction fragment analysis in conjunction with Southern blot hybridization, the advent of the PCR in the late 1980s gave way to the development of PCR-based single- or multi-locus profiling techniques in the second phase. Given that many routine applications of plant DNA fingerprinting still rely on PCR-based markers, we here refer to these methods as "DNA fingerprinting in the present", and include numerous examples in the present review. The beginning of the third phase actually dates back to 2005, when several novel, highly parallel DNA sequencing strategies were developed that increased the throughput over current Sanger sequencing technology 1000-fold and more. High-speed DNA sequencing was soon also exploited for DNA fingerprinting in plants, either in terms of facilitated marker development, or directly in the sense of "genotyping-by-sequencing". Whereas these novel approaches are applied at an ever increasing rate also in non-model species, they are still far from routine, and we therefore treat them here as "DNA fingerprinting in the future".
Collapse
Affiliation(s)
- Hilde Nybom
- Department of Plant Breeding–Balsgård, Swedish University for Agricultural Sciences, Fjälkestadsvägen 459, Kristianstad 29194, Sweden
| | - Kurt Weising
- Plant Molecular Systematics, Institute of Biology, University of Kassel, Kassel 34109, Germany
| | - Björn Rotter
- GenXPro GmbH, Altenhöferallee 3, Frankfurt 60438, Germany
| |
Collapse
|
10
|
Arukwe A, Langeland A. Mitochondrial DNA inference between European populations of Tanymastix stagnalis and their glacial survival in Scandinavia. Ecol Evol 2013; 3:3868-78. [PMID: 24198945 PMCID: PMC3810880 DOI: 10.1002/ece3.756] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/02/2013] [Accepted: 08/12/2013] [Indexed: 12/05/2022] Open
Abstract
The early observation from 1914 of Tanymastix stagnalis in Norway was not repeated recently, showing a rare and restricted distribution of this species. All four sampled localities were concentrated in the same area of the Trollheimen Mountains with altitudes of 900–1244 m above sea level. In March 2002, a new population of T. stagnalis was observed at about 50 km north of Madrid at an altitude of 1350 m. In general, all habitats with T. stagnalis were fishless shallow ponds and varied in size from 1 to about 300 m2. Natural variability of the global temperature is well accepted, but recent climate models have predicted increases in global average temperature. Based on the new biogeographical distribution, diurnal temperature variations, and biological evidence (inference with the analysis of mitochondria DNA), the immigration history of T. stagnalis was considered on the basis of two opposing immigration theories and in relation to the implications of global climate change. Two immigration theories, namely – the Tabula rasa and Nunatak, have prevailed in explaining the present distribution of plants and animals in Scandinavia. It was concluded that the rare occurrence of T. stagnalis in Norway fits into the Nunatak theory and that the species probably survived, at least, the last glaciation on Nunataks or coast refuges located in central northwestern Norway at Møre mountain and coast areas.
Collapse
Affiliation(s)
- Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU) 7491, Trondheim, Norway
| | | |
Collapse
|
11
|
Pietiläinen M, Korpelainen H. Population genetics of purple saxifrage (Saxifraga oppositifolia) in the high Arctic archipelago of Svalbard. AOB PLANTS 2013; 5:plt024. [PMID: 23700503 PMCID: PMC3660837 DOI: 10.1093/aobpla/plt024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/18/2013] [Indexed: 06/02/2023]
Abstract
We investigated patterns of genetic variability in Saxifraga oppositifolia in the isolated Arctic Svalbard archipelago. The genetic analysis included genotyping using nine polymorphic microsatellite markers and sequencing of the nuclear internal transcribed spacer region. Among populations, mean allele numbers per microsatellite locus ranged from 2.0 to 2.6, and 9 % of alleles were unique. Observed (H O) and expected (H E) heterozygosities averaged 0.522 and 0.445, respectively. Typically negative but non-significant F IS values (mean -0.173) were found in S. oppositifolia populations. F ST values were relatively low (mean 0.123). The Bayesian structure analysis provided additional information on population genetic structures. Seven out of 11 studied populations, including populations located both near each other and far apart (distances 5-210 km), showed relatively homogeneous clustering patterns, while one population located on a slope in the main settlement of Longyearbyen possessed a unique genetic structure. The Mantel test proved that there is no significant correlation between genetic and geographical distances. Different growth habits (compact, trailing and intermediate) did not possess distinct genetic compositions based on microsatellite variation. Internal transcribed spacer sequencing revealed 12 polymorphic sites. Among 24 sequenced Svalbard samples, eight haplotypes were detected, none shared by the mainland samples. Population genetic structures of S. oppositifolia in Svalbard show that both genetic variation and differentiation levels are modest, outcrossing is the main mating system, and dispersal and gene flow are important, probably attributable to strong winds and human and animal vectors.
Collapse
|
12
|
Winkler M, Tribsch A, Schneeweiss GM, Brodbeck S, Gugerli F, Holderegger R, Abbott RJ, Schönswetter P. Tales of the unexpected: phylogeography of the arctic-alpine model plant Saxifraga oppositifolia (Saxifragaceae) revisited. Mol Ecol 2012; 21:4618-30. [PMID: 22809067 DOI: 10.1111/j.1365-294x.2012.05705.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arctic-alpine biota occupy enormous areas in the Arctic and the northern hemisphere mountain ranges and have undergone major range shifts during their comparatively short history. The origins of individual arctic-alpine species remain largely unknown. In the case of the Purple saxifrage, Saxifraga oppositifolia, an important model for arctic-alpine plants, phylogeographic studies have remained inconclusive about early stages of the species' spatiotemporal diversification but have provided evidence for long-range colonization out of a presumed Beringian origin to cover today's circumpolar range. We re-evaluated the species' large-scale range dynamics based on a geographically extended sampling including crucial areas such as Central Asia and the (south-)eastern European mountain ranges and employing up-to-date phylogeographic analyses of a plastid sequence data set and a more restricted AFLP data set. In accordance with previous studies, we detected two major plastid DNA lineages also reflected in AFLP divergence, suggesting a long and independent vicariant history. Although we were unable to determine the species' area of origin, our results point to Europe (probably the Alps) and Central Asia, respectively, as the likely ancestral areas of the two main lineages. AFLP data suggested that contact areas between the two clades in the Carpathians, Northern Siberia and western Greenland were secondary. In marked contrast to high levels of diversity revealed in previous studies, populations from the major arctic refugium Beringia did not exhibit any plastid sequence polymorphism. Our study shows that adequate sampling of the southern, refugial populations is crucial for understanding the range dynamics of arctic-alpine species.
Collapse
Affiliation(s)
- Manuela Winkler
- Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Müller E, Eidesen PB, Ehrich D, Alsos IG. Frequency of local, regional, and long-distance dispersal of diploid and tetraploid Saxifraga oppositifolia (Saxifragaceae) to Arctic glacier forelands. AMERICAN JOURNAL OF BOTANY 2012; 99:459-471. [PMID: 22371855 DOI: 10.3732/ajb.1100363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY Climate change forces many species to migrate. Empirical small-scale data on migration and colonization in the Arctic are scarce. Retreating glaciers provide new territory for cold-adapted plant species, but the genetic consequences depend on dispersal distances and frequencies. We estimated local, regional, and long-distance dispersal frequencies, as well as their effect on levels of genetic diversity, in diploid and tetraploid individuals of Saxifraga oppositifolia. METHODS Samples were collected in four aged moraines in each of three glacier forelands, in surrounding areas and reference populations in the Arctic archipelago Svalbard. These samples were analyzed for neutral amplified fragment length polymorphisms (AFLPs, n = 707) and ploidy levels (n = 30). KEY RESULTS Genetic clustering and ploidy analyses revealed two distinct genetic groups representing diploids and tetraploids, with few intermediate triploids. The groups were intermixed in most sampled populations. No differences in genetic diversity were found between tetraploids and diploids, or between established and glacier foreland populations. Seeds were dispersed over local, regional, and long distances, with the highest proportions of seeds originating from close sources. A minimum of 4-15 founding individuals from several source populations had initially established in each glacier foreland. CONCLUSIONS Our data suggest that S. oppositifolia can rapidly colonize new deglaciated areas without losing genetic diversity. Thus, glacier forelands can be alternative habitats for cold-adapted vascular plants tracking their climatic niche. Our data show no difference in colonization success between diploid and tetraploid individuals.
Collapse
Affiliation(s)
- Eike Müller
- The University Centre in Svalbard (UNIS), Post Office Box 156, NO-9171 Longyearbyen, Norway.
| | | | | | | |
Collapse
|
14
|
Abstract
A long standing and at times fervid debate in biogeography revolves around the question whether arctic and high alpine organisms survived Pleistocene ice ages on small island-like areas protruding above the ice-sheet, socalled nunataks, or whether they did so in peripheral nonglaciated refugial areas. A common picture emerging from a plethora of molecular phylogeographic studies in the last decade is that both in the Arctic and in temperate mountain ranges such as the European Alps nunatak survival needs to be only rarely invoked to explain observed genetic patterns (for a rare example see Stehlik et al. 2002). As two studies in this issue show, depreciation of the nunatak hypothesis is, however, not warranted. In this issue of Molecular Ecology Westergaard et al. (2011) investigate genetic patterns of two arctic-alpine plant species distributed on both sides of the Atlantic exclusively in areas that were mostly covered by ice-sheets during Pleistocene glacial advances. In both species, amplified fragment length polymorphism (AFLP) data identified divergent and partly genetically diverse groups east and west of the Atlantic. This suggests, for the first time in Arctic plants, in situ survival on nunataks. In an entirely different geographic setting and on a different geographic scale, Lohse et al. (2011, this issue) study the colonization of high alpine areas in the Orobian Alps, situated within and adjacent to a prominent peripheral refugial area (massif de refuge) in the Southern Alps of northern Italy, by dispersal-limited carabid ground beetles. Using explicit hypothesis testing and inference of ancestral locations in a Bayesian framework, stepwise colonization from two separate southern refugia is found to shape the genetic pattern of these beetles, but at the northern edge, populations survived at least parts of the last glaciation in situ on nunataks.
Collapse
Affiliation(s)
- Gerald M Schneeweiss
- Department of Biogeography and Botanical Garden, University of Vienna, Vienna, Austria.
| | | |
Collapse
|
15
|
Lauterbach D, Ristow M, Gemeinholzer B. Genetic population structure, fitness variation and the importance of population history in remnant populations of the endangered plant Silene chlorantha (Willd.) Ehrh. (Caryophyllaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:667-777. [PMID: 21668608 DOI: 10.1111/j.1438-8677.2010.00418.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Habitat fragmentation can lead to a decline of genetic diversity, a potential risk for the survival of natural populations. Fragmented populations can become highly differentiated due to reduced gene flow and genetic drift. A decline in number of individuals can result in lower reproductive fitness due to inbreeding effects. We investigated genetic variation within and between 11 populations of the rare and endangered plant Silene chlorantha in northeastern Germany to support conservation strategies. Genetic diversity was evaluated using AFLP techniques and the results were correlated to fitness traits. Fitness evaluation in nature and in a common garden approach was conducted. Our analysis revealed population differentiation was high and within population genetic diversity was intermediate. A clear population structure was supported by a Bayesian approach, AMOVA and neighbour-joining analysis. No correlation between genetic and geographic distance was found. Our results indicate that patterns of population differentiation were mainly caused by temporal and/or spatial isolation and genetic drift. The fitness evaluation revealed that pollinator limitation and habitat quality seem, at present, to be more important to reproductive fitness than genetic diversity by itself. Populations of S. chlorantha with low genetic diversity have the potential to increase in individual number if habitat conditions improve. This was detected in a single large population in the investigation area, which was formerly affected by bottleneck effects.
Collapse
Affiliation(s)
- D Lauterbach
- Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, Königin-Luise-Strasse 6-8, Berlin, Germany.
| | | | | |
Collapse
|
16
|
Pérez-Collazos E, Sanchez-Gómez P, Jiménez F, Catalán P. The phylogeographical history of the Iberian steppe plant Ferula loscosii (Apiaceae): a test of the abundant-centre hypothesis. Mol Ecol 2011; 18:848-61. [PMID: 19207254 DOI: 10.1111/j.1365-294x.2008.04060.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The geology and climate of the western Mediterranean area were strongly modified during the Late Tertiary and the Quaternary. These geological and climatic events are thought to have induced changes in the population histories of plants in the Iberian Peninsula. However, fine-scale genetic spatial architecture across western Mediterranean steppe plant refugia has rarely been investigated. A population genetic analysis of amplified fragment length polymorphism variation was conducted on present-day, relict populations of Ferula loscosii (Apiaceae). This species exhibits high individual/population numbers in the middle Ebro river valley and, according to the hypothesis of an abundant-centre distribution, these northern populations might represent a long-standing/ancestral distribution centre. However, our results suggest that the decimated southern and central Iberian populations are more variable and structured than the northeastern ones, representing the likely vestiges of an ancestral distribution centre of the species. Phylogeographical analysis suggests that F. loscosii likely originated in southern Spain and then migrated towards the central and northeastern ranges, further supporting a Late Miocene southern-bound Mediterranean migratory way for its oriental steppe ancestors. In addition, different glacial-induced conditions affected the southern and northern steppe Iberian refugia during the Quaternary. The contrasting genetic homogeneity of the Ebro valley range populations compared to the southern Iberian ones possibly reflects more severe bottlenecks and subsequent genetic drift experienced by populations of the northern Iberia refugium during the Pleistocene, followed by successful postglacial expansion from only a few founder plants.
Collapse
Affiliation(s)
- E Pérez-Collazos
- Departamento de Agricultura y Economía Agraria, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, C/Carretera de Cuarte s/n E-22071 Huesca, Spain.
| | | | | | | |
Collapse
|
17
|
Westergaard KB, Alsos IG, Popp M, Engelskjøn T, Flatberg KI, Brochmann C. Glacial survival may matter after all: nunatak signatures in the rare European populations of two west-arctic species. Mol Ecol 2010; 20:376-93. [PMID: 21156004 DOI: 10.1111/j.1365-294x.2010.04928.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Chen W, Su X, Zhang H, Sun K, Ma R, Chen X. High Genetic Differentiation of Hippophae rhamnoides ssp. yunnanensis (Elaeagnaceae), a Plant Endemic to the Qinghai-Tibet Plateau. Biochem Genet 2010; 48:565-76. [DOI: 10.1007/s10528-010-9339-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 12/15/2009] [Indexed: 10/19/2022]
|
19
|
Ansell SW, Stenøien HK, Grundmann M, Schneider H, Hemp A, Bauer N, Russell SJ, Vogel JC. Population structure and historical biogeography of European Arabidopsis lyrata. Heredity (Edinb) 2010; 105:543-53. [PMID: 20160758 DOI: 10.1038/hdy.2010.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Understanding the natural history of model organisms is important for the effective use of their genomic resources. Arabidopsis lyrata has emerged as a useful plant for studying ecological and evolutionary genetics, based on its extensive natural variation, sequenced genome and close relationship to A. thaliana. We studied genetic diversity across the entire range of European Arabidopsis lyrata ssp. petraea, in order to explore how population history has influenced population structure. We sampled multiple populations from each region, using nuclear and chloroplast genome markers, and combined population genetic and phylogeographic approaches. Within-population diversity is substantial for nuclear allozyme markers (mean P=0.610, A(e)=1.580, H(e)=0.277) and significantly partitioned among populations (F(ST)=0.271). The Northern populations have modestly increased inbreeding (F(IS)=0.163 verses F(IS)=0.093), but retain comparable diversity to central European populations. Bottlenecks are common among central and northern Europe populations, indicating recent demographic history as a dominant factor in structuring the European diversity. Although the genetic structure was detected at all geographic scales, two clear differentiated units covering northern and central European areas (F(CT) =0.155) were identified by Bayesian analysis and supported by regional pairwise F(CT) calculations. A highly similar geographic pattern was observed from the distribution of chloroplast haplotypes, with the dominant northern haplotypes absent from central Europe. We conclude A. l. petraea's cold-tolerance and preference for disturbed habitats enabled glacial survival between the alpine and Nordic glaciers in central Europe and an additional cryptic refugium. While German populations are probable peri-glacial leftovers, Eastern Austrian populations have diversity patterns possibly compatible with longer-term survival.
Collapse
Affiliation(s)
- S W Ansell
- Department of Botany, Natural History Museum, Cromwell Road, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Marcussen T, Oxelman B, Skog A, Jakobsen KS. Evolution of plant RNA polymerase IV/V genes: evidence of subneofunctionalization of duplicated NRPD2/NRPE2-like paralogs in Viola (Violaceae). BMC Evol Biol 2010; 10:45. [PMID: 20158916 PMCID: PMC2834690 DOI: 10.1186/1471-2148-10-45] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 02/16/2010] [Indexed: 11/23/2022] Open
Abstract
Background DNA-dependent RNA polymerase IV and V (Pol IV and V) are multi-subunit enzymes occurring in plants. The origin of Pol V, specific to angiosperms, from Pol IV, which is present in all land plants, is linked to the duplication of the gene encoding the largest subunit and the subsequent subneofunctionalization of the two paralogs (NRPD1 and NRPE1). Additional duplication of the second-largest subunit, NRPD2/NRPE2, has happened independently in at least some eudicot lineages, but its paralogs are often subject to concerted evolution and gene death and little is known about their evolution nor their affinity with Pol IV and Pol V. Results We sequenced a ~1500 bp NRPD2/E2-like fragment from 18 Viola species, mostly paleopolyploids, and 6 non-Viola Violaceae species. Incongruence between the NRPD2/E2-like gene phylogeny and species phylogeny indicates a first duplication of NRPD2 relatively basally in Violaceae, with subsequent sorting of paralogs in the descendants, followed by a second duplication in the common ancestor of Viola and Allexis. In Viola, the mutation pattern suggested (sub-) neofunctionalization of the two NRPD2/E2-like paralogs, NRPD2/E2-a and NRPD2/E2-b. The dN/dS ratios indicated that a 54 bp region exerted strong positive selection for both paralogs immediately following duplication. This 54 bp region encodes a domain that is involved in the binding of the Nrpd2 subunit with other Pol IV/V subunits, and may be important for correct recognition of subunits specific to Pol IV and Pol V. Across all Viola taxa 73 NRPD2/E2-like sequences were obtained, of which 23 (32%) were putative pseudogenes - all occurring in polyploids. The NRPD2 duplication was conserved in all lineages except the diploid MELVIO clade, in which NRPD2/E2-b was lost, and its allopolyploid derivates from hybridization with the CHAM clade, section Viola and section Melanium, in which NRPD2/E2-a occurred in multiple copies while NRPD2/E2-b paralogs were either absent or pseudogenized. Conclusions Following the relatively recent split of Pol IV and Pol V, our data indicate that these two multi-subunit enzymes are still in the process of specialization and each acquiring fully subfunctionalized copies of their subunit genes. Even after specialization, the NRPD2/E2-like paralogs are prone to pseudogenization and gene conversion and NRPD2 and NRPE2 copy number is a highly dynamic process modulated by allopolyploidy and gene death.
Collapse
Affiliation(s)
- Thomas Marcussen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, 0316 Oslo, Norway
| | | | | | | |
Collapse
|
21
|
Genetic diversity and population structure of the endangered and medically important Rheum tanguticum (Polygonaceae) revealed by SSR Markers. BIOCHEM SYST ECOL 2009. [DOI: 10.1016/j.bse.2009.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
THIEL-EGENTER CONNY, HOLDEREGGER ROLF, BRODBECK SABINE, GUGERLI FELIX. Concordant genetic breaks, identified by combining clustering and tessellation methods, in two co-distributed alpine plant species. Mol Ecol 2009; 18:4495-507. [DOI: 10.1111/j.1365-294x.2009.04360.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Lauga B, Malaval S, Largier G, Regnault-Rogert C. Two lineages ofTrifolium alpinum(Fabaceae) in the Pyrenees: evidence from random amplified polymorphic DNA (RAPD) markers. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/12538078.2009.10516162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
FEDOROV VADIM, GOROPASHNAYA ANNA, JARRELL GORDONH, FREDGA KARL. Phylogeographic structure and mitochondrial DNA variation in true lemmings (Lemmus) from the Eurasian Arctic. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.1999.tb01896.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
PÉREZ-COLLAZOS ERNESTO, SEGARRA-MORAGUES JOSÉGABRIEL, CATALÁN PILAR. Two approaches for the selection of Relevant Genetic Units for Conservation in the narrow European endemic steppe plant Boleum asperum (Brassicaceae). Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2008.00961.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Dubreuil M, Riba M, Mayol M. Genetic structure and diversity in Ramonda myconi (Gesneriaceae): effects of historical climate change on a preglacial relict species. AMERICAN JOURNAL OF BOTANY 2008; 95:577-87. [PMID: 21632384 DOI: 10.3732/ajb.2007320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The importance of the Mediterranean Basin as a long-term reservoir of biological diversity has been widely recognized, although much less effort has been devoted to understanding processes that allow species to persist in this area. Ramonda myconi (Gesneriaceae) is a Tertiary relict plant species restricted to the NE Iberian Peninsula. We used RAPD and chloroplast markers to assess the patterns of genetic structure in eight mountain regions covering almost the full species range, to identify the main historical processes that have shaped its current distribution and to infer the number and location of putative glacial refugia. While no cpDNA variation was detected, the species had relatively high levels of RAPD variation. Maximum levels of diversity were found within populations (71%), but there was also a significant differentiation between geographical regions (20%) and among populations within regions (9%). A spatial AMOVA identified three main groups of populations, corresponding to previously recognized centers of endemism and species richness. In addition, we found a marked geographical pattern of decreasing genetic diversity and increasing population differentiation from west to east. Our results support a complex phylogeographic scenario in the Iberian Peninsula of "refugia-within-refugia" and suggest that the higher diversity observed in western regions might be associated with prolonged and more stable climatic conditions in this area during the Quaternary.
Collapse
Affiliation(s)
- Marta Dubreuil
- CREAF (Center for Ecological Research and Forestry Applications), Autonomous University of Barcelona, E-08193 Bellaterra, Spain
| | | | | |
Collapse
|
27
|
von Flüe I, Gugerli F, Holderegger R, Schneller JJ. Genetic and morphological variability in alpine Saxifraga oppositifolia L. after colonization. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/fedr.19991100716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
PUŞCAŞ M, CHOLER P, TRIBSCH A, GIELLY L, RIOUX D, GAUDEUL M, TABERLET P. Post-glacial history of the dominant alpine sedge Carex curvula in the European Alpine System inferred from nuclear and chloroplast markers. Mol Ecol 2008; 17:2417-29. [DOI: 10.1111/j.1365-294x.2008.03751.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
REISCH CHRISTOPH. Glacial history of Saxifraga paniculata (Saxifragaceae): molecular biogeography of a disjunct arctic-alpine species from Europe and North America. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2007.00933.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
PÉREZ-COLLAZOS ERNESTO, CATALÁN PILAR. Genetic diversity analysis and conservation implications for the Iberian threatened populations of the irano-turanian relict Krascheninnikovia ceratoides (Chenopodiaceae). Biol J Linn Soc Lond 2007. [DOI: 10.1111/j.1095-8312.2007.00882.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Luttikhuizen PC, Stift M, Kuperus P, VAN Tienderen PH. Genetic diversity in diploid vs. tetraploidRorippa amphibia(Brassicaceae). Mol Ecol 2007; 16:3544-53. [PMID: 17845429 DOI: 10.1111/j.1365-294x.2007.03411.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The frequency of polyploidy increases with latitude in the Northern Hemisphere, especially in deglaciated, recently colonized areas. The cause or causes of this pattern are largely unknown, but a greater genetic diversity of individual polyploid plants due to a doubled genome and/or a hybrid origin is seen as a likely factor underlying selective advantages related to life in extreme climates and/or colonization ability. A history of colonization in itself, as well as a recent origin, and possibly a limited number of polyploidization events would all predict less genetic diversity in polyploids than in diploids. The null hypothesis of higher gene diversity in polyploids has to date hardly been quantified and is here tested in self-incompatible Rorippa amphibia (Brassicaceae). The species occurs in diploid and tetraploid forms and displays clear geographical polyploidy in Europe. On the basis of eight microsatellite loci it can be concluded that the level of gene diversity is higher in tetraploids than in diploids, to an extent that is expected under neutral evolution when taking into account the larger effective population size in the doubled cytotype. There is thus no evidence for reduced genetic diversity in the tetraploids. The evidence presented here may mean that the tetraploids' origin is not recent, has not been affected by bottlenecks and/or that tetraploids were formed multiple times while an effect of introgression may also play a role.
Collapse
Affiliation(s)
- Pieternella C Luttikhuizen
- Universiteit van Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Experimental Plant Systematics, PO Box 94062, 1090 GB Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
32
|
Zheng W, Wang L, Meng L, Liu J. Genetic variation in the endangered Anisodus tanguticus (Solanaceae), an alpine perennial endemic to the Qinghai-Tibetan Plateau. Genetica 2007; 132:123-9. [PMID: 17516136 DOI: 10.1007/s10709-007-9154-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
We used random amplified polymorphic DNA markers (RAPDs) to assess genetic variation between- and within-populations of Anisodus tanguticus (Solanaceae), an endangered perennial endemic to the Qinghai-Tibetan Plateau with important medicinal value. We recorded a total of 92 amplified bands, using 12 RAPD primers, 76 of which (P=82.61%) were polymorphic, and calculated values of H(t) and H(sp) of 0.3015 and 0.4459, respectively, suggesting a remarkably high rate of genetic variation at the species level. The average within-population diversity also appeared to be high, with P, H(e) and H(pop) values of 55.11%, 0.1948 and 0.2918, respectively. Analyses of molecular variance (AMOVA) showed that among- and between-population genetic variation accounted for 67.02% and 32.98% of the total genetic variation, respectively. In addition, Nei's coefficient of differentiation (G(ST)) was found to be high (0.35), confirming the relatively high level of genetic differentiation among the populations. These differentiation coefficients are higher than mean corresponding coefficients for outbreeding species, but lower than reported coefficients for some rare species from this region. The genetic structure of A. tanguticus has probably been shaped by its breeding attributes, biogeographic history and human impact due to collection for medicinal purposes. The observed genetic variations suggest that as many populations as possible should be considered in any planned in situ or ex situ conservation programs for this species.
Collapse
Affiliation(s)
- Wei Zheng
- Key Laboratory of the Qinghai-Tibetan Plateau Ecosystem and Biological Evolution and Adaptation, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, Qinghai 810001, PR China
| | | | | | | |
Collapse
|
33
|
Pimentel M, Sahuquillo E, Catalán P. Genetic diversity and spatial correlation patterns unravel the biogeographical history of the European sweet vernal grasses (Anthoxanthum L., Poaceae). Mol Phylogenet Evol 2007; 44:667-84. [PMID: 17531509 DOI: 10.1016/j.ympev.2007.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 04/02/2007] [Accepted: 04/09/2007] [Indexed: 11/30/2022]
Abstract
Different processes have contributed to shaping the present distribution of the European biotas. Up to three different tertiary- to quaternary-time-scale evolutionary scenarios have been proposed to interpret the divergence and genetic structuring of plant species in Europe. In the present study, the Amplified Fragment Length Polymorphisms technique has been used to unravel the species and regional phylogeography of the European sweet vernal grasses (Anthoxanthum L. Poaceae). Forty-six populations belonging to all seven European species of Anthoxanthum and covering a broad geographical and ecological range were selected. Different phylogeography and population genetics diversity and structure estimates indicated a clear divergence of old Messinian Mediterranean lineages, followed by a pre-Pliocene split between Mediterranean annuals and Eurosiberian perennials and a more recent Pleistocene differentiation of Arctic-Alpine, Atlantic and Submediterranean diploid to polyploid landraces. Regional and population correlation tests between geographical and genetic distances allowed to postulate distinct pre- and post-glacial colonization pathways across Europe for the taxa of this widespread genus.
Collapse
Affiliation(s)
- Manuel Pimentel
- Departamento de Bioloxia Animal, Bioloxía Vexetal e Ecoloxía, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira sn, E-15071 A Coruña, Galicia, Spain.
| | | | | |
Collapse
|
34
|
Buschbom J. Migration between continents: geographical structure and long-distance gene flow in Porpidia flavicunda (lichen-forming Ascomycota). Mol Ecol 2007; 16:1835-46. [PMID: 17444896 DOI: 10.1111/j.1365-294x.2007.03258.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Historical and contemporary geographical distribution ranges with their associated gene flow patterns interact to produce the genetic diversity observed today. Often it is not possible to separate out the impacts of historical events, e.g. past fragmentation, and contemporary gene flow, e.g. long-distance dispersal. Porpidia flavicunda is a lichen-forming ascomycete occurring circumpolar in the boreal to arctic zones for which vegetation history suggests that its distribution pattern has stayed broadly the same over the past millennia. DNA-sequence diversity in P. flavicunda can, thus, be expected to predominantly represent geographical population differentiation and its contemporary migration rates. The population sample consists of 110 specimens collected in Northern Québec, Baffin Island, Western Greenland and Northern Scandinavia. DNA-sequence data sets of three nuclear gene fragments (LSU, RPB2 and beta-tubulin) were analysed for genetic diversity within, and differentiation between, geographical regions. Tests of population subdivision employing analyses of molecular variance and exact tests of haplotype frequency distributions showed significant structure between the geographical regions. However, the lack of fixed nucleotide polymorphisms and the wide sharing of identical haplotypes between geographical regions suggest recurrent long-distance gene flow of propagules. Still, the means by which propagules are dispersed remain to be discovered. Inference of migration rates shows that in many cases a sufficiently high amount of migrants is exchanged between geographical regions to prevent drastic population differentiation through genetic drift. The observed haplotype distributions and migration rates point to a gene flow model of isolation by distance.
Collapse
Affiliation(s)
- Jutta Buschbom
- Committee on Evolutionary Biology, Culver Hall, Rm. 402, 1025 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
35
|
Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C. Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phylogenet Evol 2007; 42:92-103. [PMID: 16905337 DOI: 10.1016/j.ympev.2006.06.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 06/01/2006] [Accepted: 06/14/2006] [Indexed: 10/24/2022]
Abstract
We explored the circumpolar phylogeographic history of the arctic-alpine Juncus biglumis using amplified fragment length polymorphisms (AFLPs), sequences of cpDNA, relative nuclear DNA content and chromosome numbers. The analyses of the AFLP and cpDNA data gave congruent results and revealed three distinct clades. One of them, represented by a single population from the Taymyr peninsula in northern Siberia, had approximately fourfold larger genome size than the other samples and produced an AFLP pattern that was too aberrant to be analysed together with the rest of the data set. The two other clades represented different ploidy levels (2n = 60 and 120) as judged from chromosome counts of selected populations but differed only in c. 6% relative DNA content. Based on the AFLP and partly also on the cpDNA data, each of the two main clades was further subdivided into two well-supported subgroups. Three of the subgroups were widespread and exhibited largely overlapping distribution patterns. The fourth subgroup seems to be absent from the North Atlantic region and from western Siberia. We suggest that the four subgroups diverged during isolation in different glacial refugia during the Quaternary. Interestingly, individuals of both main clades were encountered in geographically close populations in eastern Greenland and even within a single population from Svalbard, indicating that both areas were colonised at least twice. The different genome sizes and ploidy levels strongly suggest that the three main clades represent distinct gene pools and act as cryptic species.
Collapse
Affiliation(s)
- Peter Schönswetter
- National Centre for Biosystematics, Natural History Museum, University of Oslo, PO Box 1172, Blindern, NO-0318 Oslo, Norway.
| | | | | | | | | |
Collapse
|
36
|
Skrede I, Eidesen PB, Portela RP, Brochmann C. Refugia, differentiation and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.). Mol Ecol 2006; 15:1827-40. [PMID: 16689901 DOI: 10.1111/j.1365-294x.2006.02908.x] [Citation(s) in RCA: 549] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many arctic-alpine organisms have vast present-day ranges across Eurasia, but their history of refugial isolation, differentiation and postglacial expansion is poorly understood. The mountain avens, Dryas octopetala sensu lato, is a long-lived, wind-dispersed, diploid shrub forming one of the most important components of Eurasian tundras and heaths in terms of biomass. We address differentiation and migration history of the species with emphasis on the western and northern Eurasian parts of its distribution area, also including some East Greenlandic and North American populations (partly referred to as the closely related D. integrifolia M. Vahl). We analysed 459 plants from 52 populations for 155 amplified fragment length polymorphisms (AFLP) markers. The Eurasian plants were separated into two main groups, probably reflecting isolation and expansion from two major glacial refugia, situated south and east of the North European ice sheets, respectively. Virtually all of northwestern Europe as well as East Greenland have been colonized by the Southern lineage, whereas northwest Russia, the Tatra Mountains and the arctic archipelago of Svalbard have been colonized by the Eastern lineage. The data indicate a contact zone between the two lineages in northern Scandinavia and possibly in the Tatra Mountains. The two single populations analysed from the Caucasus and Altai Mountains were most closely related to the Eastern lineage but were strongly divergent from the remaining eastern populations, suggesting survival in separate refugia at least during the last glaciation. The North American populations grouped with those from East Greenland, irrespective of their taxonomic affiliation, but this may be caused by independent hybridization with D. integrifolia and therefore not reflect the true relationship between populations from these areas.
Collapse
Affiliation(s)
- Inger Skrede
- National Centre for Biosystematics, Natural History Museum, University of Oslo, PO Box 1172, Blindern, NO-0318 Oslo, Norway.
| | | | | | | |
Collapse
|
37
|
Schönswetter P, Popp M, Brochmann C. Rare arctic-alpine plants of the European Alps have different immigration histories: the snow bed species Minuartia biflora and Ranunculus pygmaeus. Mol Ecol 2006; 15:709-20. [PMID: 16499696 DOI: 10.1111/j.1365-294x.2006.02821.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Minuartia biflora and Ranunculus pygmaeus are circumarctic plants with a few isolated occurrences in the European Alps. We analysed amplified fragment length polymorphism (AFLP) and chloroplast DNA sequence data to unravel the history of their immigration into the Alps and to provide data on their circumpolar phylogeography. In spite of the similar ecological requirements of the two species, they exhibit strikingly different immigration histories into the Alps. In M. biflora, the Alpine populations are most probably derived from source populations located between the Alpine and Scandinavian ice sheets, in accordance with the traditional biogeographic hypothesis. In contrast, the Alpine populations of R. pygmaeus cluster with those from the Tatra Mountains and the Taymyr region in northern Siberia, indicating that the distant Taymyr area served as source for the Alpine populations. Both species showed different levels of genetic diversity in formerly glaciated areas. In contrast to the considerable AFLP diversity observed in M. biflora, R. pygmaeus was virtually nonvariable over vast areas, with a single phenotype dominating all over the Alps and another, distantly related one dominating the North Atlantic area from Greenland over Svalbard to Scandinavia. The same pattern was observed in chloroplast DNA sequence data. Thus, postglacial colonization of R. pygmaeus was accompanied by extreme founder events.
Collapse
Affiliation(s)
- P Schönswetter
- National Centre for Biosystematics, Natural History Museum, University of Oslo, Norway.
| | | | | |
Collapse
|
38
|
PÉREZ-COLLAZOS ERNESTO, CATALÁN PILAR. Palaeopolyploidy, spatial structure and conservation genetics of the narrow steppe plant Vella pseudocytisus subsp. paui (Vellinae, Cruciferae). ANNALS OF BOTANY 2006; 97:635-47. [PMID: 16495317 PMCID: PMC2803657 DOI: 10.1093/aob/mcl013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Vella pseudocytisus subsp. paui (Cruciferae) is a narrow endemic plant to the Teruel province (eastern Spain), which is listed in the National Catalogue of Endangered Species. Two distinct ploidy levels (diploid, 2n = 34, and tetraploid, 2n = 68) have been reported for this taxon that belongs to the core subtribe Vellinae, a western Mediterranean group of shrubby taxa with a chromosome base number of x = 17. Allozyme and AFLP analyses were conducted (a) to test for the ploidy and putative palaeo-allopolyploid origin of this taxon, (b) to explore levels of genetic diversity and spatial structure of its populations, and (c) to address in-situ and ex-situ strategies for its conservation. METHODS Six populations that covered the entire geographical range of this taxon were sampled and examined for 19 allozyme loci and three AFLP primer pair combinations. In addition, the gametic progenies of five individuals were analysed for two allozyme loci that showed fixed heterozygosity. KEY RESULTS Multiple banded allozyme profiles for most of the surveyed loci indicated the polyploidy of this taxon. Co-inherited fixed heterozygous patterns were exhibited by the gametophytic tissues of the mother plants. Both allozyme and AFLP markers detected high levels of genetic diversity, and a strong micro-spatial genetic structure was recovered from AFLP phenetic analyses and Mantel correlograms. CONCLUSIONS Allozyme data support the hypothesis of an allotetraploid origin of Vella pseudocytisus subsp. paui that could be representative of other taxa of the core Vellinae group. AFLP data distinguished three geographically distinct groups with no genetic interaction among them. Allotetraploidy and outcrossing reproduction have probably contributed to maintenance of high levels of genetic variability of the populations, whereas habitat fragmentation may have enhanced the high genetic isolation observed among groups. In-situ microgenetic reserves and a selective sampling of germplasm stocks for ex-situ conservation of this taxon are proposed.
Collapse
|
39
|
Oliver C, Hollingsworth PM, Gornall RJ. Chloroplast DNA phylogeography of the arctic-montane species Saxifraga hirculus (Saxifragaceae). Heredity (Edinb) 2006; 96:222-31. [PMID: 16449984 DOI: 10.1038/sj.hdy.6800785] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The genetic structure of populations of an arctic-montane herb, Saxifraga hirculus (Saxifragaceae), was analysed by means of chloroplast restriction fragment-length polymorphism. Sampled populations were distributed across Europe and North America (Alaska and Colorado). There was no evidence for geographically structured genetically divergent lineages, and although no haplotypes were shared between North America and Europe, the haplotypes from different continents were intermixed on a minimum spanning tree. European populations were much more highly differentiated and had much lower levels of haplotype diversity than their Alaskan counterparts. Centres of haplotype diversity were concentrated in those Alaskan populations located outside the limits of the last (Wisconsin) glaciation, suggesting that they may have acted as refugia during the Pleistocene. It was not possible to identify putative migration routes or corresponding refugia in the European genepool. One British population, from the Pentland Hills, was genetically very distant from all the others, for reasons that are as yet unknown.
Collapse
Affiliation(s)
- C Oliver
- Genetics and Conservation, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | | | | |
Collapse
|
40
|
Grundt HH, Popp M, Brochmann C, Oxelman B. Polyploid origins in a circumpolar complex in Draba (Brassicaceae) inferred from cloned nuclear DNA sequences and fingerprints. Mol Phylogenet Evol 2005; 32:695-710. [PMID: 15288048 DOI: 10.1016/j.ympev.2004.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 03/25/2004] [Indexed: 10/26/2022]
Abstract
Polyploid evolution has been of major importance in the arctic flora, but rarely addressed on the full circumpolar scale. Herein we study the allopolyploid Draba lactea and its close allies, which form a taxonomically intricate arctic-alpine complex including diploids, tetraploids, and hexaploids. Based on samples from the entire circumpolar area, we inferred the origins of polyploids in this complex using cloned DNA sequences from two nuclear regions (one intron from a gene encoding a second largest subunit in the RNA polymerase family, RPD2, and the ribosomal internal transcribed spacer region, ITS) and DNA fingerprints (random amplified polymorphic DNAs, RAPDs). Although D. lactea and all other polyploids examined in Draba are genetic alloploids showing fixed heterozygosity, the data obtained in the present study suggest that each of the polyploids analyzed here may have originated from a single diploid lineage: hexaploid D. lactea via tetraploid D. lactea from the D. palanderiana lineage (not from the D. fladnizensis and D. nivalis lineages as previously hypothesized), the tetraploid D. turczaninovii from the D. fladnizensis lineage, the tetraploid D. porsildii from the D. lonchocarpa lineage, and a tetraploid here named Draba spB from the D. nivalis lineage. Draba lactea has probably originated several times in the Beringian area, and it is not necessary to invoke complex origins based on a combination of different species lineages as previously suggested.
Collapse
Affiliation(s)
- Hanne Hegre Grundt
- National Centre for Biosystematics, The Natural History Museums and Botanical Garden, University of Oslo, Blindern NO-0318, Oslo, Norway.
| | | | | | | |
Collapse
|
41
|
Chung M, Gelembiuk G, Givnish TJ. Population genetics and phylogeography of endangered Oxytropis campestris var. chartacea and relatives: arctic-alpine disjuncts in eastern North America. Mol Ecol 2005; 13:3657-73. [PMID: 15548281 DOI: 10.1111/j.1365-294x.2004.02360.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fassett's locoweed (Oxytropis campestris var. chartacea, Fabaceae) is an endangered perennial endemic to Wisconsin. Patterns of genetic variation within and among six remaining populations and their relationship to other members of the O. campestris complex were analysed using AFLPs from 140 accessions across northern North America. Within-population measures of genetic diversity were high (mean expected heterozygosity HE = 0.16; mean nucleotide diversity pi = 0.015) compared with other herbaceous plants. Estimates of among-population differentiation were low (FST = 0.12; PhiST = 0.29), consistent with outcrossing. Genetic and geographical distances between populations were significantly correlated within Fassett's locoweed (r2 = 0.73, P < 0.002 for Mantel test) and O. campestris as a whole (r2 = 0.63, P < 0.0001). Individual and population-based phylogenetic analyses showed that Fassett's locoweed is monophyletic and sister to O. campestris var. johannensis. Morphometric analyses revealed significant differences between Fassett's locoweed and populations of var. johannensis. The first chromosome count for Fassett's locoweed indicates that it is tetraploid (2n = 32), unlike hexaploid var. johannensis. High within-population diversity and relatively low among-population differentiation are consistent with populations of Fassett's locoweed being relicts of a more continuous Pleistocene distribution. Our data support the continued recognition of Fassett's locoweed and protection under federal and state regulations. High levels of genetic diversity within populations suggest that maintain-ing the ecological conditions that favour the life cycle of this plant may be a more pressing concern than the erosion of genetic variation.
Collapse
Affiliation(s)
- Melissa Chung
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
42
|
SCHÖNSWETTER PETER, TRIBSCH ANDREAS, STEHLIK IVANA, NIKLFELD HARALD. Glacial history of high alpine Ranunculus glacialis (Ranunculaceae) in the European Alps in a comparative phylogeographical context. Biol J Linn Soc Lond 2004. [DOI: 10.1111/j.1095-8312.2003.00289.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Koch M, Bernhardt KG. Comparative biogeography of the cytotypes of annual Microthlaspi perfoliatum (Brassicaceae) in Europe using isozymes and cpDNA data: refugia, diversity centers, and postglacial colonization. AMERICAN JOURNAL OF BOTANY 2004; 91:115-124. [PMID: 21653368 DOI: 10.3732/ajb.91.1.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In the last few years, the biogeography of many European plant species has been analyzed using molecular markers, and some consistent patterns of Pleistocenic differentiation and range fluctuations have been established. These studies mostly focused on perennial herbs or woody species, rarely considering annual taxa. This study focused on the annual Microthlaspi perfoliatum, which is distributed all over Europe and comprises three cytotypes. Morphologically, these cytotypes are hard to distinguish, although, based on molecular markers, they should be treated as two different species. Diploid and polyploid cytotypes had a different biogeographical history, with distinct glacial refugia. For the polyploids, a well-known distribution pattern of relict areas was confirmed, with Iberia, Italy, and the Balkans serving as primary Pleistocene refugia. Secondary refuge areas have been detected in southeastern France and neighboring Switzerland, with closer affinity to the Iberian refugium than to any other region based on allozyme and cpDNA haplotype data. For the diploids, two refugia have been characterized, one of which is congruent to the secondary refugium of the polyploids in France and Switzerland. The second refuge of diploid populations is located in unglaciated lowland areas of East Austria and Croatia. Isozyme and cpDNA haplotype data favor a postglacial colonization of diploid populations into Germany from Austrian lowland areas along the Danube River as well as from Switzerland. This scenario is also true for polyploids in Germany, Belgium, and Sweden.
Collapse
Affiliation(s)
- Marcus Koch
- Institute for Plant Sciences, Biodiversity and Plant Systematics, University of Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | | |
Collapse
|
44
|
SEGARRA-MORAGUES JOSÉGABRIEL, CATALÁN PILAR. Life history variation between species of the relictual genus Borderea (Dioscoreaceae): phylogeography, genetic diversity, and population genetic structure assessed by RAPD markers. Biol J Linn Soc Lond 2003. [DOI: 10.1046/j.1095-8312.2003.00247.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
REISCH CHRISTOPH, POSCHLOD PETER, WINGENDER RUTH. Genetic variation of Saxifraga paniculata Mill. (Saxifragaceae): molecular evidence for glacial relict endemism in central Europe. Biol J Linn Soc Lond 2003. [DOI: 10.1046/j.1095-8312.2003.00215.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
HSIAO JY, LEE SM. Genetic diversity and microgeographic differentiation of Yushan cane (Yushania niitakayamensis; Poaceae) in Taiwan. Mol Ecol 2003. [DOI: 10.1046/j.1365-294x.1999.00563.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- J. Y. HSIAO
- Department of Botany, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - S. M. LEE
- Department of Botany, National Chung Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
47
|
Palmé AE, Su Q, Rautenberg A, Manni F, Lascoux M. Postglacial recolonization and cpDNA variation of silver birch, Betula pendula. Mol Ecol 2003; 12:201-12. [PMID: 12492888 DOI: 10.1046/j.1365-294x.2003.01724.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chloroplast PCR-RFLP markers were used to reconstruct the history of the silver birch, Betula pendula Roth, in Europe since the last glacial maximum (LGM). In birch, fossil pollen maps do not reveal a clear chronological sequence of postglacial spread. If anything, the pollen record suggests that most of Europe was recolonized by birches as early as 10000 bp, probably from populations that remained close to the ice sheets during the LGM. The geographical distribution of haplotypes supports a scenario of early colonization. Two of the 13 haplotypes that were observed are common, representing 35% and 49% of the total sample, respectively. Although one of the common haplotypes is predominant in the NW and the other in the SE, both are present throughout most of the investigated geographical area. Rare haplotypes are geographically restricted. The distribution of the haplotypes reveals five genetic boundaries between groups of haplotypes and allows us to infer patterns of postglacial recolonization. Europe was re-occupied by two main waves of recolonization: one eastern and one western, with origins at intermediate latitudes. Populations in the Iberian Peninsula and in Italy did not take part in the postglacial recolonization of Europe.
Collapse
Affiliation(s)
- A E Palmé
- Department of Conservation Biology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, 752 36 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
48
|
Schönswetter P, Tribsch A, Barfuss M, Niklfeld H. Several Pleistocene refugia detected in the high alpine plant Phyteuma globulariifolium sternb & hoppe (Campanulaceae) in the European Alps. Mol Ecol 2002; 11:2637-47. [PMID: 12453246 DOI: 10.1046/j.1365-294x.2002.01651.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phyteuma globulariifolium is a high alpine plant species growing in the European Alps and the Pyrenees. In order to elucidate its glacial history, 325 individuals from 69 populations were analysed using the amplified fragment length polymorphism (AFLP) technique. A strongly hierarchical phylogeographical pattern was detected: Two major east-west vicariant groups can be separated along a gap in the distributional area. A further subdivision into at least four populational groups is in congruence with presumed peripheral glacial refugia. There is no indication for survival on unglaciated mountain tops (nunataks) in the interior of the Pleistocene ice shield covering the Alps. Our results favour glacial survival in peripheral, unglaciated or not fully glaciated areas. Populations of P. globulariifolium in the Pyrenees are the result of relatively recent long-distance dispersal. Within the Alps, there is strong differentiation among groups of populations, whereas within them the differentiation is weak. This suggests high levels of gene-flow over short to middle distances.
Collapse
Affiliation(s)
- P Schönswetter
- Department of Plant Chorology and Vegetation Science, University of Vienna, Rennweg 14, A-1030 Vienna, Austria.
| | | | | | | |
Collapse
|
49
|
Tyler T. Geographic structure of genetic variation in the widespread woodland grass Milium effusum L. A comparison between two regions with contrasting history and geomorphology. Genome 2002; 45:1248-56. [PMID: 12502271 DOI: 10.1139/g02-079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Allozyme variation in the forest grass Milium effusum L. was studied in 21-23 populations within each of two equally sized densely sampled areas in northern and southern Sweden. In addition, 25 populations from other parts of Eurasia were studied for comparison. The structure of variation was analysed with both diversity statistics and measures based on allelic richness at a standardised sample size. The species was found to be highly variable, but no clear geographic patterns in the distribution of alleles or in overall genetic differentiation were found, either within the two regions or within the whole sample. Thus, no inferences about the direction of postglacial migration could be made. Obviously, migration and gene flow must have taken place in a manner capable of randomising the distribution of alleles. However, there were clear differences in levels and structuring of the variation between the two regions. Levels of variation, both in terms of genetic diversity and allelic richness, were lower in northern Sweden as compared with southern Sweden. In contrast, different measures of geographic structure all showed higher levels of population differentiation in the northern region. This is interpreted as due to different geomorphological conditions in the two regions, creating a relatively continuous habitat and gene flow in the southern region as compared with the northern region where the species, although common, is confined to narrow and mutually isolated corridors in the landscape.
Collapse
Affiliation(s)
- Torbjörn Tyler
- Department of Systematic Botany, Lund University, Lund, Sweden.
| |
Collapse
|
50
|
SHEHLIK IVANA, SCHNELLER JJAKOB, BACHMANN KONRAD. Immigration and in situ glacial survival of the low-alpine Erinus alpinus (Scrophulariaceae). Biol J Linn Soc Lond 2002. [DOI: 10.1046/j.1095-8312.2002.00094.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|