1
|
Butler IA, Peters MK, Kronauer DJC. Low levels of hybridization in two species of African driver ants. J Evol Biol 2018; 31:556-571. [PMID: 29380454 DOI: 10.1111/jeb.13245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 11/28/2022]
Abstract
Hybridization in ants can have consequences different from those observed in most other species, with many of the potential deleterious effects being mitigated due to haplodiploidy and eusociality. In some species where colonies are either headed by multiple queens or single queens that mate with many males, hybridization is associated with genetic caste determination, where hybrids develop into workers and purebred individuals develop into queens. A previous study suggested that hybridization occurs between two Dorylus army ant species with multiply mated queens. However, the extent and exact pattern of hybridization have remained unclear, and its possible effect on caste determination has not been investigated. In this study, we aimed to determine the extent and direction of hybridization by measuring how frequently hybrids occur in colonies of both species, and to investigate the possibility of genetic caste determination. We show that hybridization is bidirectional and occurs at equal rates in both species. Hybrid workers make up only 1-2% of the population, and successful interspecific matings represent approximately 2% of all matings in both species. This shows that, although interspecific matings that give rise to worker offspring occur regularly, they are much rarer than intraspecific mating. Finally, we find no evidence of an association between hybridization and genetic caste determination in this population. This means that genetic caste determination is not a necessary outcome of hybridization in ants, even in species where queens mate with multiple males.
Collapse
Affiliation(s)
- I A Butler
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - M K Peters
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - D J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| |
Collapse
|
2
|
Winston ME, Thompson A, Trujillo G, Burchill AT, Moreau CS. Novel approach to heritability detection suggests robustness to paternal genotype in a complex morphological trait. Ecol Evol 2017. [PMID: 28649331 PMCID: PMC5478049 DOI: 10.1002/ece3.2932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Heritable variation is essential for evolution by natural selection. In Neotropical army ants, the ecological role of a given species is linked intimately to the morphological variation within the sterile worker caste. Furthermore, the army ant Eciton burchellii is highly polyandrous, presenting a unique opportunity to explore heritability of morphological traits among related workers sharing the same colonial environment. In order to exploit the features of this organismal system, we generated a large genetic and morphological dataset and applied our new method that employs geometric morphometrics (GM) to detect the heritability of complex morphological traits. After validating our approach with an existing dataset of known heritability, we simulated our ability to detect heritable variation given our sampled genotypes, demonstrating the method can robustly recover heritable variation of small effect size. Using this method, we tested for genetic caste determination and heritable morphological variation using genetic and morphological data on 216 individuals of E. burchellii. Results reveal this ant lineage (1) has the highest mating frequency known in ants, (2) demonstrates no paternal genetic caste determination, and (3) suggests a lack of heritable morphological variation in this complex trait associated with paternal genotype. We recommend this method for leveraging the increased resolution of GM data to explore and understand heritable morphological variation in nonmodel organisms.
Collapse
Affiliation(s)
- Max E Winston
- Committee on Evolutionary Biology University of Chicago Chicago IL USA.,Department of Science and Education Integrative Research Center Field Museum of Natural History Chicago IL USA
| | - Andrea Thompson
- Department of Science and Education Integrative Research Center Field Museum of Natural History Chicago IL USA
| | - Gabriel Trujillo
- Department of Science and Education Integrative Research Center Field Museum of Natural History Chicago IL USA
| | - Andrew T Burchill
- Department of Science and Education Integrative Research Center Field Museum of Natural History Chicago IL USA.,School of Life Sciences Arizona State University Tempe AZ USA
| | - Corrie S Moreau
- Department of Science and Education Integrative Research Center Field Museum of Natural History Chicago IL USA
| |
Collapse
|
3
|
Borowiec ML. Generic revision of the ant subfamily Dorylinae (Hymenoptera, Formicidae). Zookeys 2016; 608:1-280. [PMID: 27559303 PMCID: PMC4982377 DOI: 10.3897/zookeys.608.9427] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/17/2016] [Indexed: 12/21/2022] Open
Abstract
The generic classification of the ant subfamily Dorylinae is revised, with the aim of facilitating identification of easily-diagnosable monophyletic genera. The new classification is based on recent molecular phylogenetic evidence and a critical reappraisal of doryline morphology. New keys and diagnoses based on workers and males are provided, along with reviews of natural history and phylogenetic relationships, distribution maps, and a list of valid species for each lineage. Twenty-eight genera (27 extant and 1 extinct) are recognized within the subfamily, an increase from 20 in the previous classification scheme. Species classified in the polyphyletic Cerapachys and Sphinctomyrmex prior to this publication are here distributed among 9 and 3 different genera, respectively. Amyrmex and Asphinctanilloides are synonymized under Leptanilloides and the currently recognized subgenera are synonymized for Dorylus. No tribal classification is proposed for the subfamily, but several apparently monophyletic genus-groups are discussed. Valid generic names recognized here include: Acanthostichus (= Ctenopyga), Aenictogiton, Aenictus (= Paraenictus, Typhlatta), Cerapachys (= Ceratopachys), Cheliomyrmex, Chrysapace gen. rev., Cylindromyrmex (= Holcoponera, Hypocylindromyrmex, Metacylindromyrmex), Dorylus (= Alaopone syn. n., Anomma syn. n., Cosmaecetes, Dichthadia syn. n., Rhogmus syn. n., Shuckardia, Sphecomyrmex, Sphegomyrmex, Typhlopone syn. n.), Eburopone gen. n., Eciton (= Camptognatha, Holopone, Mayromyrmex), Eusphinctus gen. rev., Labidus (= Nycteresia, Pseudodichthadia), Leptanilloides (= Amyrmex syn. n., Asphinctanilloides syn. n.), Lioponera gen. rev. (= Neophyracaces syn. n., Phyracaces syn. n.), Lividopone, Neivamyrmex (= Acamatus, Woitkowskia), Neocerapachys gen. n., Nomamyrmex, Ooceraea gen. rev. (= Cysias syn. n.), Parasyscia gen. rev., †Procerapachys, Simopone, Sphinctomyrmex, Syscia gen. rev., Tanipone, Vicinopone, Yunodorylus gen. rev., Zasphinctus gen. rev. (= Aethiopopone syn. n., Nothosphinctus syn. n.).
Collapse
Affiliation(s)
- Marek L. Borowiec
- Department of Entomology and Nematology, One Shields Avenue, University of California at Davis, Davis, California, 95616, USA
| |
Collapse
|
4
|
Affiliation(s)
- Manvir Singh
- Centre for Social Evolution, Dept of Biology; Univ. of Copenhagen; Universitetsparken 15 DK-2100 Copenhagen Denmark
| | - Jacobus J. Boomsma
- Centre for Social Evolution, Dept of Biology; Univ. of Copenhagen; Universitetsparken 15 DK-2100 Copenhagen Denmark
| |
Collapse
|
5
|
A halictid bee with sympatric solitary and eusocial nests offers evidence for Hamilton's rule. Nat Commun 2012; 3:939. [PMID: 22760638 DOI: 10.1038/ncomms1939] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/31/2012] [Indexed: 11/09/2022] Open
Abstract
The validity of Hamilton's rule has been confirmed among cooperative breeders where helping behaviour is transient; however, Hamilton's rule has not been validated among eusocial insects where helpers commit for life. Here we conduct a direct test of Hamilton's rule using field populations of Lasioglossum baleicum bees, which inhabit sympatric solitary and eusocial nests. Our results show that the indirect fitness of sterile first-brood workers is higher than the direct fitness of solitary first-brood females, and spring foundresses achieve a large direct fitness by having helpers. These fitness benefits are attributed to markedly higher larval survival rates in multiple-female nests, and intruding into an unrelated nest yields a moderate degree of direct fitness, but coexistence with unrelated females also increase overall brood survival. We discuss reasons why various types of cooperation are maintained in Lasioglossum baleicum with relation to that how a multiple-female nesting improves larval survival.
Collapse
|
6
|
LENIAUD LAURIANNE, HEFTEZ ABRAHAM, GRUMIAU LAURENT, ARON SERGE. Multiple mating and supercoloniality in Cataglyphis desert ants. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01772.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Kronauer DJC, Peters MK, Schöning C, Boomsma JJ. Hybridization in East African swarm-raiding army ants. Front Zool 2011; 8:20. [PMID: 21859477 PMCID: PMC3177866 DOI: 10.1186/1742-9994-8-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/22/2011] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Hybridization can have complex effects on evolutionary dynamics in ants because of the combination of haplodiploid sex-determination and eusociality. While hybrid non-reproductive workers have been found in a range of species, examples of gene-flow via hybrid queens and males are rare. We studied hybridization in East African army ants (Dorylus subgenus Anomma) using morphology, mitochondrial DNA sequences, and nuclear microsatellites. RESULTS While the mitochondrial phylogeny had a strong geographic signal, different species were not recovered as monophyletic. At our main study site at Kakamega Forest, a mitochondrial haplotype was shared between a "Dorylus molestus-like" and a "Dorylus wilverthi-like" form. This pattern is best explained by introgression following hybridization between D. molestus and D. wilverthi. Microsatellite data from workers showed that the two morphological forms correspond to two distinct genetic clusters, with a significant proportion of individuals being classified as hybrids. CONCLUSIONS We conclude that hybridization and gene-flow between the two army ant species D. molestus and D. wilverthi has occurred, and that mating between the two forms continues to regularly produce hybrid workers. Hybridization is particularly surprising in army ants because workers have control over which males are allowed to mate with a young virgin queen inside the colony.
Collapse
Affiliation(s)
- Daniel JC Kronauer
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Laboratory of Insect Social Evolution, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Marcell K Peters
- Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Caspar Schöning
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Länderinstitut für Bienenkunde, Friedrich-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Kronauer DJC, O'Donnell S, Boomsma JJ, Pierce NE. Strict monandry in the ponerine army ant genus Simopelta suggests that colony size and complexity drive mating system evolution in social insects. Mol Ecol 2010; 20:420-8. [PMID: 21121990 DOI: 10.1111/j.1365-294x.2010.04945.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Altruism in social insects has evolved between closely related full-siblings. It is therefore of considerable interest why some groups have secondarily evolved low within-colony relatedness, which in turn affects the relatedness incentives of within-colony cooperation and conflict. The highest queen mating frequencies, and therefore among the lowest degrees of colony relatedness, occur in Apis honeybees and army ants of the subfamilies Aenictinae, Ecitoninae, and Dorylinae, suggesting that common life history features such as reproduction by colony fission and male biased numerical sex-ratios have convergently shaped these mating systems. Here we show that ponerine army ants of the genus Simopelta, which are distantly related but similar in general biology to other army ants, have strictly monandrous queens. Preliminary data suggest that workers reproduce in queenright colonies, which is in sharp contrast to other army ants. We hypothesize that differences in mature colony size and social complexity may explain these striking discrepancies.
Collapse
Affiliation(s)
- Daniel J C Kronauer
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
9
|
Kronauer DJC, Schöning C, d'Ettorre P, Boomsma JJ. Colony fusion and worker reproduction after queen loss in army ants. Proc Biol Sci 2009; 277:755-63. [PMID: 19889701 DOI: 10.1098/rspb.2009.1591] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Theory predicts that altruism is only evolutionarily stable if it is preferentially directed towards relatives, so that any such behaviour towards seemingly unrelated individuals requires scrutiny. Queenless army ant colonies, which have anecdotally been reported to fuse with queenright foreign colonies, are such an enigmatic case. Here we combine experimental queen removal with population genetics and cuticular chemistry analyses to show that colonies of the African army ant Dorylus molestus frequently merge with neighbouring colonies after queen loss. Merging colonies often have no direct co-ancestry, but are on average probably distantly related because of overall population viscosity. The alternative of male production by orphaned workers appears to be so inefficient that residual inclusive fitness of orphaned workers might be maximized by indiscriminately merging with neighbouring colonies to increase their reproductive success. We show that worker chemical recognition profiles remain similar after queen loss, but rapidly change into a mixed colony Gestalt odour after fusion, consistent with indiscriminate acceptance of alien workers that are no longer aggressive. We hypothesize that colony fusion after queen loss might be more widespread, especially in spatially structured populations of social insects where worker reproduction is not profitable.
Collapse
Affiliation(s)
- Daniel J C Kronauer
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
10
|
Jaffé R, Moritz RFA, Kraus FB. Gene flow is maintained by polyandry and male dispersal in the army ant Eciton burchellii. POPUL ECOL 2009. [DOI: 10.1007/s10144-008-0133-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Suni SS, Gignoux C, Gordon DM. Male parentage in dependent-lineage populations of the harvester ant Pogonomyrmex barbatus. Mol Ecol 2007; 16:5149-55. [PMID: 18092991 DOI: 10.1111/j.1365-294x.2007.03492.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the extent to which workers reproduce in a dependent-lineage population of the monogynous harvester ant Pogonomyrmex barbatus. Dependent-lineage populations contain two interbreeding, yet genetically distinct mitochondrial lineages, each associated with specific alleles at nuclear loci. Workers develop from matings between lineages, and queens develop from matings within lineages, so queens must mate with males of both lineages to produce daughter queens and workers. Males develop from unfertilized eggs and are haploid. Worker production of males could lead to male-mediated gene flow between the lineages if worker-produced males were reproductively capable. This could result in the loss of the dependent-lineage system, because its persistence depends on the maintenance of allelic differences between the lineages. To investigate the extent of worker reproduction in P. barbatus, we genotyped 19-20 males and workers from seven colonies, at seven microsatellite loci, and 1239 additional males at two microsatellite loci. Our methods were powerful enough to detect worker reproduction if workers produced more than 0.39% of males in the population. We detected no worker-produced males; all males appeared to be produced by queens. Thus, worker reproduction is sufficiently infrequent to have little impact on the dependent-lineage system. These results are consistent with predictions based on inclusive fitness theory because the effective queen mating frequency calculated from worker genotypes was 4.26, which is sufficiently high for workers to police those that attempt to reproduce.
Collapse
Affiliation(s)
- Sevan S Suni
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| | | | | |
Collapse
|
12
|
Abstract
The evolution of mating systems in eusocial Hymenoptera is constrained because females mate only during a brief period early in life, whereas inseminated queens and their stored sperm may live for decades. Considerable research effort during recent years has firmly established that obligate multiple mating has evolved only a few times: in Apis honeybees, Vespula wasps, Pogonomyrmex harvester ants, Atta and Acromyrmex leaf-cutting ants, the ant Cataglyphis cursor, and in at least some army ants. Here we provide estimates of queen-mating frequency for New World Neivamyrmex and Old World Aenictus species, which, compared to other army ants, have relatively small colonies and little size polymorphism among workers. To provide the first overall comparative analysis of the evolution of army ant mating systems, we combine these new results with previous estimates for African Dorylus and New World Eciton army ants, which have very large colonies and considerable worker polymorphism. We show that queens of Neivamyrmex and Aenictus mate with the same high numbers of males (usually ca. 10-20) as do queens of army ant species with very large colony sizes. We infer that multiple queen mating is ancestral in army ants and has evolved over 100 million years ago as part of the army ant adaptive syndrome. A comparison of army ants and honeybees suggests that mating systems in these two distantly related groups may have been convergently shaped by strikingly similar selective pressures.
Collapse
Affiliation(s)
- Daniel J C Kronauer
- Institute of Biology, Department of Population Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
13
|
Kronauer DJC, Berghoff SM, Powell S, Denny AJ, Edwards KJ, Franks NR, Boomsma JJ. A reassessment of the mating system characteristics of the army ant Eciton burchellii. Naturwissenschaften 2006; 93:402-6. [PMID: 16676159 DOI: 10.1007/s00114-006-0121-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 04/09/2006] [Indexed: 10/24/2022]
Abstract
In a recent study, Denny et al. (2004a) showed that queens of the army ant, Eciton burchellii, mate with multiple males and presented estimates suggesting that they mate with more males than queens of any other ant species so far investigated. They also inferred that data were consistent with queens being inseminated repeatedly throughout their life, which would be exceptional among the social Hymenoptera and contradictory to predictions from kin selection theory. In the present study, we reanalyze these data using new software and supplement them with similar microsatellite data from other colonies of the same species. Mating frequencies in E. burchellii are indeed very high (mean observed and effective queen-mating frequencies of 12.9 each) but considerably lower than the previous estimates. We show that the number of patrilines represented in the first worker offspring of a young queen is lower than in older queens but suggest that this may be due to initial sperm clumping in the queen's sperm storage organ, rather than to repeated inseminations. Moreover, we found no evidence for repeated mating by genotyping sequential worker generations produced by a single old queen, showing that she did not obtain new inseminations despite ample opportunities for mating.
Collapse
Affiliation(s)
- Daniel J C Kronauer
- Institute of Biology, Department of Population Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|