1
|
Noguerales V, Emerson BC. Arthropod mtDNA paraphyly: a case study of introgressive origin. J Evol Biol 2025; 38:272-283. [PMID: 39658084 DOI: 10.1093/jeb/voae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/26/2024] [Accepted: 12/12/2024] [Indexed: 12/12/2024]
Abstract
Mitochondrial paraphyly between arthropod species is not uncommon and has been speculated to largely be the result of incomplete lineage sorting (ILS) of ancestral variation within the common ancestor of both species, with hybridization playing only a minor role. However, in the absence of comparable nuclear genetic data, the relative roles of ILS and hybridization in explaining mitochondrial DNA (mtDNA) paraphyly remain unclear. Hybridization itself is a multifaceted gateway to mtDNA paraphyly, which may lead to paraphyly across both the nuclear and mitochondrial genomes, or paraphyly that is largely restricted to the mitochondrial genome. These different outcomes will depend upon the frequency of hybridization, its demographic context, and the extent to which mtDNA is subject to direct selection, indirect selection, or neutral processes. Here, we describe extensive mtDNA paraphyly between two species of iron-clad beetle (Zopheridae) and evaluate competing explanations for its origin. We first test between hypotheses of ILS and hybridization, revealing strong nuclear genetic differentiation between species, but with the complete replacement of Tarphius simplex mtDNA through the introgression of at least 5 mtDNA haplotypes from T. canariensis. We then contrast explanations of direct selection, indirect selection, or genetic drift for observed patterns of mtDNA introgression. Our results highlight how introgression can lead to complex patterns of mtDNA paraphyly across arthropod species, while simultaneously revealing the challenges for understanding the selective or neutral drivers that underpin such patterns.
Collapse
Affiliation(s)
| | - Brent C Emerson
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
2
|
Augustijnen H, Lucek K. Beyond gene flow: (non)-parallelism of secondary contact in a pair of highly differentiated sibling species. Mol Ecol 2024; 33:e17488. [PMID: 39119885 DOI: 10.1111/mec.17488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Replicated secondary contact zones can provide insights into the barriers to gene flow that are important during speciation and can reveal to which degree secondary contact may result in similar evolutionary outcomes. Here, we studied two secondary contact zones between highly differentiated Alpine butterflies of the genus Erebia using whole-genome resequencing data. We assessed the genomic relationships between populations and species and found hybridization to be rare, with no to little current or historical introgression in either contact zone. There are large similarities between contact zones, consistent with an allopatric origin of interspecific differentiation, with no indications for ongoing reinforcing selection. Consistent with expected reduced effective population size, we further find that scaffolds related to the Z-chromosome show increased differentiation compared to the already high levels across the entire genome, which could also hint towards a contribution of the Z chromosome to species divergence in this system. Finally, we detected the presence of the endosymbiont Wolbachia, which can cause reproductive isolation between its hosts, in all E. cassioides, while it appears to be fully or largely absent in contact zone populations of E. tyndarus. We discuss how this rare pattern may have arisen and how it may have affected the dynamics of speciation upon secondary contact.
Collapse
Affiliation(s)
- Hannah Augustijnen
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Kay Lucek
- Biodiversity Genomics Laboratory, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
3
|
Duplouy A. Validating a Mitochondrial Sweep Accompanying the Rapid Spread of a Maternally Inherited Symbiont. Methods Mol Biol 2024; 2739:239-247. [PMID: 38006556 DOI: 10.1007/978-1-0716-3553-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Maternally inherited symbiotic bacteria that interfere with the reproduction of their hosts can contribute to selective sweeps of mitochondrial haplotypes through hitch-hiking or coordinate inheritance of cytoplasmic bacteria and host mitochondria. The sweep will be manifested by genetic variations of mitochondrial genomic DNA of symbiont-infected hosts relative to their uninfected counterparts. In particular, at the population level, infected specimens will show a reduced mitochondrial DNA polymorphism compared to that in the nuclear DNA. This may challenge the use of mitochondrial DNA sequences as neutral genetic markers, as the mitochondrial patterns will reflect the evolutionary history of parasitism, rather than the sole evolutionary history of the host. Here, I describe a detailed step-by-step procedure to infer the occurrence and timing of symbiont-induced mitochondrial sweeps in host species.
Collapse
Affiliation(s)
- Anne Duplouy
- Insect Symbiosis Ecology and Evolution, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- Research Centre for Ecological Changes, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Zhu X, Liu T, He A, Zhang L, Li J, Li T, Miao X, You M, You S. Diversity of Wolbachia infection and its influence on mitochondrial DNA variation in the diamondback moth, Plutella xylostella. Mol Phylogenet Evol 2023; 182:107751. [PMID: 36889655 DOI: 10.1016/j.ympev.2023.107751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/11/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Plutella xylostella is a pest that severely damages cruciferous vegetables worldwide and has been shown to be infected with the maternally inherited bacteria Wolbachia, with the main infected strain was plutWB1. In this study, we performed a large-scale global sampling of P. xylostella and amplified 3 mtDNA genes of P. xylostella and 6 Wolbachia genes to analyze the infection status, diversity of Wolbachia in P. xylostella, and its effect on mtDNA variation in P. xylostella. This study provides a conservative estimate of Wolbachia infection rates in P. xylostella, which was found to be 7% (104/1440). The ST 108 (plutWB1) was shared among butterfly species and the moth species P. xylostella, revealing that Wolbachia strain plutWB1 acquisition in P. xylostella may be through horizontal transmission. The Parafit analyses indicated a significant association between Wolbachia and Wolbachia-infected P. xylostella individuals, and individuals infected with plutWB1 tended to cluster in the basal positions of the phylogenetic tree based on the mtDNA data. Additionally, Wolbachia infections were associated with increased mtDNA polymorphism in the infected P. xylostella population. These data suggest that Wolbachia endosymbionts may have a potential effect on mtDNA variation of P. xylostella.
Collapse
Affiliation(s)
- Xiangyu Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tiansheng Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ao He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinyang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianpu Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Miao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; BGI-Sanya, Sanya 572025, China.
| |
Collapse
|
5
|
Shastry V, Bell KL, Buerkle CA, Fordyce JA, Forister ML, Gompert Z, Lebeis SL, Lucas LK, Marion ZH, Nice CC. A continental-scale survey of Wolbachia infections in blue butterflies reveals evidence of interspecific transfer and invasion dynamics. G3 GENES|GENOMES|GENETICS 2022; 12:6670626. [PMID: 35976120 PMCID: PMC9526071 DOI: 10.1093/g3journal/jkac213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
Abstract
Infections by maternally inherited bacterial endosymbionts, especially Wolbachia, are common in insects and other invertebrates but infection dynamics across species ranges are largely under studied. Specifically, we lack a broad understanding of the origin of Wolbachia infections in novel hosts, and the historical and geographical dynamics of infections that are critical for identifying the factors governing their spread. We used Genotype-by-Sequencing data from previous population genomics studies for range-wide surveys of Wolbachia presence and genetic diversity in North American butterflies of the genus Lycaeides. As few as one sequence read identified by assembly to a Wolbachia reference genome provided high accuracy in detecting infections in host butterflies as determined by confirmatory PCR tests, and maximum accuracy was achieved with a threshold of only 5 sequence reads per host individual. Using this threshold, we detected Wolbachia in all but 2 of the 107 sampling localities spanning the continent, with infection frequencies within populations ranging from 0% to 100% of individuals, but with most localities having high infection frequencies (mean = 91% infection rate). Three major lineages of Wolbachia were identified as separate strains that appear to represent 3 separate invasions of Lycaeides butterflies by Wolbachia. Overall, we found extensive evidence for acquisition of Wolbachia through interspecific transfer between host lineages. Strain wLycC was confined to a single butterfly taxon, hybrid lineages derived from it, and closely adjacent populations in other taxa. While the other 2 strains were detected throughout the rest of the continent, strain wLycB almost always co-occurred with wLycA. Our demographic modeling suggests wLycB is a recent invasion. Within strain wLycA, the 2 most frequent haplotypes are confined almost exclusively to separate butterfly taxa with haplotype A1 observed largely in Lycaeides melissa and haplotype A2 observed most often in Lycaeides idas localities, consistent with either cladogenic mode of infection acquisition from a common ancestor or by hybridization and accompanying mutation. More than 1 major Wolbachia strain was observed in 15 localities. These results demonstrate the utility of using resequencing data from hosts to quantify Wolbachia genetic variation and infection frequency and provide evidence of multiple colonizations of novel hosts through hybridization between butterfly lineages and complex dynamics between Wolbachia strains.
Collapse
Affiliation(s)
- Vivaswat Shastry
- Committee on Genetics, Genomics and Systems Biology, University of Chicago , Chicago, IL 60637, USA
| | - Katherine L Bell
- Department of Biology, University of Nevada , Reno, NV 89557, USA
| | - C Alex Buerkle
- Department of Botany, University of Wyoming , Laramie, WY 82071, USA
| | - James A Fordyce
- Department of Ecology & Evolutionary Biology, University of Tennessee , Knoxville, TN 37996, USA
| | | | | | - Sarah L Lebeis
- Department of Microbiology & Molecular Genetics, Michigan State University , East Lansing, MI 48824, USA
| | - Lauren K Lucas
- Department of Biology, Utah State University , Logan, UT 84322, USA
| | - Zach H Marion
- Bio-Protection Research Centre, School of Biological Sciences, University of Canterbury , Christchurch, New Zealand
| | - Chris C Nice
- Department of Biology, Population and Conservation Biology, Texas State University , San Marcos, TX 78666, USA
| |
Collapse
|
6
|
Andrianto E, Kasai A. Wolbachia in Black Spiny Whiteflies and Their New Parasitoid Wasp in Japan: Evidence of the Distinct Infection Status on Aleurocanthus camelliae Cryptic Species Complex. INSECTS 2022; 13:insects13090788. [PMID: 36135489 PMCID: PMC9502694 DOI: 10.3390/insects13090788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/27/2022] [Indexed: 05/21/2023]
Abstract
Wolbachia, an alphaproteobacterial reproductive parasite, can cause profound mitochondrial divergence in insects, which might eventually be a part of cryptic speciation. Aleurocanthus camelliae is a cryptic species complex consisting of several morphospecies and/or haplotypes that are genetically different but morphologically indistinctive. However, little is known about the Wolbachia infection status in these tea and Citrus pests. Thus, this study aimed to profile the diversity and phenotypic characteristics of Wolbachia natural infections in the A. camelliae cryptic species complex. A monophyletic strain of Wolbachia that infected the A. camelliae cryptic species complex (wAlec) with different patterns was discovered. Whiteflies that are morphologically identical to Aleurocanthus spiniferus (Aleurocanthus cf. A. spiniferus in Eurya japonica and A. spiniferus in Citrus) were grouped into uninfected populations, whereas the fixed infection was detected in A. camelliae B1 from Theaceae. The rapid evolution of wAlec was also found to occur through a high recombination event, which produced subgroups A and B in wAlec. It may also be associated with the non-cytoplasmic incompatibility (CI) phenotype of wAlec due to undetectable CI-related genes from phage WO (WOAlec). The current discovery of a novel cryptic species of A. camelliae led to a discussion about the oscillation hypothesis, which may provide insights on cryptic speciation, particularly on how specialization and host expansion have been recorded among these species. This study also identified a parasitoid wasp belonging to the genus Eretmocerus in A. camelliae, for the first time in Japan.
Collapse
Affiliation(s)
- Eko Andrianto
- Science of Biological Environment, The United Graduate School of Agricultural Science (UGSAS), Gifu University, Gifu City 501-1193, Japan
- Correspondence: ; Tel./Fax: +81-054-238-4790
| | - Atsushi Kasai
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka City 422-8528, Japan
| |
Collapse
|
7
|
Formisano G, Iodice L, Cascone P, Sacco A, Quarto R, Cavalieri V, Bosco D, Guerrieri E, Giorgini M. Wolbachia infection and genetic diversity of Italian populations of Philaenus spumarius, the main vector of Xylella fastidiosa in Europe. PLoS One 2022; 17:e0272028. [PMID: 36037217 PMCID: PMC9423658 DOI: 10.1371/journal.pone.0272028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022] Open
Abstract
Philaenus spumarius is a cosmopolitan species that has become a major threat to European agriculture being recognized as the main vector of the introduced plant pathogen Xylella fastidiosa, the agent of the “olive quick decline syndrome”, a disease which is devastating olive orchards in southern Italy. Wolbachia are bacterial symbionts of many insects, frequently as reproductive parasites, sometime by establishing mutualistic relationships, able to spread within host populations. Philaenus spumarius harbors Wolbachia, but the role played by this symbiont is unknown and data on the infection prevalence within host populations are limited. Here, the Wolbachia infection rate was analyzed in relation to the geographic distribution and the genetic diversity of the Italian populations of P. spumarius. Analysis of the COI gene sequences revealed a geographically structured distribution of the three main mitochondrial lineages of P. spumarius. Wolbachia was detected in half of the populations sampled in northern Italy where most individuals belonged to the western-Mediterranean lineage. All populations sampled in southern and central Italy, where the individuals of the eastern-Mediterranean lineage were largely prevalent, were uninfected. Individuals of the north-eastern lineage were found only in populations from the Alps in the northernmost part of Italy, at high altitudes. In this area, Wolbachia infection reached the highest prevalence, with no difference between north-eastern and western-Mediterranean lineage. Analysis of molecular diversity of COI sequences suggested no significant effect of Wolbachia on population genetics of P. spumarius. Using the MLST approach, six new Wolbachia sequence types were identified. Using FISH, Wolbachia were observed within the host’s reproductive tissues and salivary glands. Results obtained led us to discuss the role of Wolbachia in P. spumarius, the factors influencing the geographic distribution of the infection, and the exploitation of Wolbachia for the control of the vector insect to reduce the spread of X. fastidiosa.
Collapse
Affiliation(s)
- Giorgio Formisano
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Italy
| | - Luigi Iodice
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Italy
| | - Pasquale Cascone
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Italy
| | - Adriana Sacco
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Italy
| | - Roberta Quarto
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Italy
| | - Vincenzo Cavalieri
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Domenico Bosco
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Italy
| | - Emilio Guerrieri
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Italy
| | - Massimo Giorgini
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Italy
- * E-mail:
| |
Collapse
|
8
|
Pronounced mito-nuclear discordance and various Wolbachia infections in the water ringlet Erebia pronoe have resulted in a complex phylogeographic structure. Sci Rep 2022; 12:5175. [PMID: 35338196 PMCID: PMC8956704 DOI: 10.1038/s41598-022-08885-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/08/2022] [Indexed: 11/28/2022] Open
Abstract
Several morphological and mitochondrial lineages of the alpine ringlet butterfly species Erebia pronoe have been described, indicating a complex phylogenetic structure. However, the existing data were insufficient and allow neither a reconstruction of the biogeographic history, nor an assessment of the genetic lineages. Therefore, we analysed mitochondrial (COI, NDI) and nuclear (EF1α, RPS5) gene sequences and compared them with sequences from the sister species Erebia melas. Additionally, we combined this information with morphometric data of the male genitalia and the infection patterns with Wolbachia strains, based on a WSP analysis. We obtained a distinct phylogeographic structure within the E. pronoe-melas complex with eight well-distinguishable geographic groups, but also a remarkable mito-nuclear discordance. The mito-nuclear discordance in E. melas and E. pronoe glottis can be explained by different ages of Wolbachia infections with different Wolbachia strains, associated selective sweeps, and hybridisation inhibition. Additionally, we found indications for incipient speciation of E. pronoe glottis in the Pyrenees and a pronounced range dynamic within and among the other high mountain systems of Europe. Our results emphasize the importance of combined approaches in reconstructing biogeographic patterns and evaluating phylogeographic splits.
Collapse
|
9
|
Urfer K, Spasojevic T, Klopfstein S, Baur H, Lasut L, Kropf C. Incongruent molecular and morphological variation in the crab spider Synemaglobosum (Araneae, Thomisidae) in Europe. Zookeys 2021; 1078:107-134. [PMID: 35068955 PMCID: PMC8709837 DOI: 10.3897/zookeys.1078.64116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/29/2021] [Indexed: 11/12/2022] Open
Abstract
Establishing species boundaries is one of the challenges taxonomists around the world have been tackling for centuries. The relation between intraspecific and interspecific variability is still under discussion and in many taxa it remains understudied. Here the hypothesis of single versus multiple species of the crab spider Synemaglobosum (Fabricius) is tested. The wide distribution range as well as its high morphological variability makes this species an interesting candidate for re-evaluation using an integrative approach. This study combines information from barcoding, phylogenetic reconstruction based on mitochondrial CO1 and ITS2 of more than 60 specimens collected over a wide range of European localities, and morphology. The findings show deep clades with up to 6% mean pairwise distance in the CO1 barcode without any biogeographical pattern. The nuclear ITS2 gene did not support the CO1 clades. Morphological assessment of somatic and genital characters in males and females and a morphometric analysis of the male palp uncovered high intraspecific variation that does not match the CO1 or ITS2 phylogenies or biogeography either. Screening for endosymbiotic Wolbachia bacteria was conducted and only a single infected specimen was found. Several scenarios might explain these inconsistent patterns. While the deep divergences in the barcoding marker might suggest cryptic or ongoing speciation or geographical isolation in the past, the lack of congruent variation in the nuclear ITS2 gene or the studied morphological character systems, especially the male palp, indicates that S.globosum might simply be highly polymorphic both in terms of its mtDNA and morphology. Therefore, more data on ecology and behaviour and full genome sequences are necessary to ultimately resolve this taxonomically intriguing case.
Collapse
Affiliation(s)
- Karin Urfer
- Natural History Museum Bern, Bernastrasse 15, 3005 Bern, SwitzerlandNatural History Museum BernBernSwitzerland
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
- Natural History Museum St.Gallen, Rorschacher Strasse 263, 9016 St.Gallen, SwitzerlandNatural History Museum BaselBaselSwitzerland
- Natural History Museum Basel, Augustinergasse 2, 4051 Basel, SwitzerlandNatural History Museum St.GallenSt.GallenSwitzerland
| | - Tamara Spasojevic
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
- Natural History Museum Basel, Augustinergasse 2, 4051 Basel, SwitzerlandNatural History Museum St.GallenSt.GallenSwitzerland
| | - Seraina Klopfstein
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
- Natural History Museum Basel, Augustinergasse 2, 4051 Basel, SwitzerlandNatural History Museum St.GallenSt.GallenSwitzerland
| | - Hannes Baur
- Natural History Museum Bern, Bernastrasse 15, 3005 Bern, SwitzerlandNatural History Museum BernBernSwitzerland
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
| | - Liana Lasut
- Natural History Museum Bern, Bernastrasse 15, 3005 Bern, SwitzerlandNatural History Museum BernBernSwitzerland
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
| | - Christian Kropf
- Natural History Museum Bern, Bernastrasse 15, 3005 Bern, SwitzerlandNatural History Museum BernBernSwitzerland
- University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, SwitzerlandUniversity of BernBernSwitzerland
| |
Collapse
|
10
|
Deng J, Assandri G, Chauhan P, Futahashi R, Galimberti A, Hansson B, Lancaster LT, Takahashi Y, Svensson EI, Duplouy A. Wolbachia-driven selective sweep in a range expanding insect species. BMC Ecol Evol 2021; 21:181. [PMID: 34563127 PMCID: PMC8466699 DOI: 10.1186/s12862-021-01906-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Background Evolutionary processes can cause strong spatial genetic signatures, such as local loss of genetic diversity, or conflicting histories from mitochondrial versus nuclear markers. Investigating these genetic patterns is important, as they may reveal obscured processes and players. The maternally inherited bacterium Wolbachia is among the most widespread symbionts in insects. Wolbachia typically spreads within host species by conferring direct fitness benefits, and/or by manipulating its host reproduction to favour infected over uninfected females. Under sufficient selective advantage, the mitochondrial haplotype associated with the favoured maternally-inherited symbiotic strains will spread (i.e. hitchhike), resulting in low mitochondrial genetic variation across the host species range. Method The common bluetail damselfly (Ischnura elegans: van der Linden, 1820) has recently emerged as a model organism for genetics and genomic signatures of range expansion during climate change. Although there is accumulating data on the consequences of such expansion on the genetics of I. elegans, no study has screened for Wolbachia in the damselfly genus Ischnura. Here, we present the biogeographic variation in Wolbachia prevalence and penetrance across Europe and Japan (including samples from 17 populations), and from close relatives in the Mediterranean area (i.e. I. genei: Rambur, 1842; and I. saharensis: Aguesse, 1958). Results Our data reveal (a) multiple Wolbachia-strains, (b) potential transfer of the symbiont through hybridization, (c) higher infection rates at higher latitudes, and (d) reduced mitochondrial diversity in the north-west populations, indicative of hitchhiking associated with the selective sweep of the most common strain. We found low mitochondrial haplotype diversity in the Wolbachia-infected north-western European populations (Sweden, Scotland, the Netherlands, Belgium, France and Italy) of I. elegans, and, conversely, higher mitochondrial diversity in populations with low penetrance of Wolbachia (Ukraine, Greece, Montenegro and Cyprus). The timing of the selective sweep associated with infected lineages was estimated between 20,000 and 44,000 years before present, which is consistent with the end of the last glacial period about 20,000 years. Conclusions Our findings provide an example of how endosymbiont infections can shape spatial variation in their host evolutionary genetics during postglacial expansion. These results also challenge population genetic studies that do not consider the prevalence of symbionts in many insects, which we show can impact geographic patterns of mitochondrial genetic diversity.
Collapse
Affiliation(s)
- Junchen Deng
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.,Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Giacomo Assandri
- Area per l'Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPA), Via Ca' Fornacetta 9, 40064, Ozzano Emilia, BO, Italy
| | - Pallavi Chauhan
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advance Industrial Science and Technology (AIST), Trukuba, Ibaraki, 305-8566, Japan
| | - Andrea Galimberti
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Bengt Hansson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Yuma Takahashi
- Graduate School of Science, Chiba University, Chiba, Japan
| | - Erik I Svensson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Anne Duplouy
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden. .,Insect Symbiosis Ecology and Evolution Lab, Organismal and Evolutionary Biology Research Program, The University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland.
| |
Collapse
|
11
|
Makhov IA, Gorodilova YYU, Lukhtanov VA. Sympatric occurrence of deeply diverged mitochondrial DNA lineages in Siberian geometrid moths (Lepidoptera: Geometridae): cryptic speciation, mitochondrial introgression, secondary admixture or effect of Wolbachia? Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The divergent sympatric mitochondrial lineages within traditionally recognized species present a challenge regularly faced by taxonomists and evolutionary biologists. We encountered this problem when studying the Siberian geometrid moths, Alcis deversata and Thalera chlorosaria. Within each of these species we found two deeply diverged mitochondrial lineages that demonstrated a level of genetic differentiation exceeding the standard interspecific DNA barcode threshold. Using analyses of nuclear genes, morphology, ecological preferences and Wolbachia endosymbionts, we tested five hypotheses that might explain the mitochondrial pattern observed: cryptic speciation, ancestral polymorphism, interspecific mitochondrial introgression, secondary admixture of allopatrically evolved populations and an effect of intracellular Wolbachia endosymbionts. We demonstrate that in A. deversata and Th. chlorosaria the mitochondrial differences are not correlated with differences in nuclear genes, morphology, ecology and Wolbachia infection status, thus not supporting the hypothesis of cryptic species and an effect of Wolbachia. Mitochondrial introgression can lead to a situation in which one species has both its own mitochondrial lineage and the lineage obtained from another species. We found this situation in the species pair Alcis repandata and Alcis extinctaria. We conclude that the mitochondrial heterogeneity in A. deversata and Th. chlorosaria is most likely to be attributable to the secondary admixture of allopatrically evolved populations.
Collapse
Affiliation(s)
- Ilia A Makhov
- Department of Entomology, Saint Petersburg State University, Universitetskaya Embankment 7/9, 199034 Saint Petersburg, Russia
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Embankment 1, 199034 Saint Petersburg, Russia
| | - Yelizaveta Y U Gorodilova
- Biological Faculty, Saint Petersburg State University, Botanicheskaya Street 17, Stary Peterhof, Saint Petersburg 198504, Russia
| | - Vladimir A Lukhtanov
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Embankment 1, 199034 Saint Petersburg, Russia
| |
Collapse
|
12
|
Seabra SG, Rodrigues AS, Silva SE, Neto AC, Pina-Martins F, Marabuto E, Thompson V, Wilson MR, Yurtsever S, Halkka A, Rebelo MT, Borges PA, Quartau JA, Jiggins CD, Paulo OS. Population structure, adaptation and divergence of the meadow spittlebug, Philaenus spumarius (Hemiptera, Aphrophoridae), revealed by genomic and morphological data. PeerJ 2021; 9:e11425. [PMID: 34131518 PMCID: PMC8176912 DOI: 10.7717/peerj.11425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/17/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding patterns of population differentiation and gene flow in insect vectors of plant diseases is crucial for the implementation of management programs of disease. We investigated morphological and genome-wide variation across the distribution range of the spittlebug Philaenus spumarius (Linnaeus, 1758) (Hemiptera, Auchenorrhyncha, Aphrophoridae), presently the most important vector of the plant pathogenic bacterium Xylella fastidiosa Wells et al., 1987 in Europe. We found genome-wide divergence between P. spumarius and a very closely related species, P. tesselatus Melichar, 1899, at RAD sequencing markers. The two species may be identified by the morphology of male genitalia but are not differentiated at mitochondrial COI, making DNA barcoding with this gene ineffective. This highlights the importance of using integrative approaches in taxonomy. We detected admixture between P. tesselatus from Morocco and P. spumarius from the Iberian Peninsula, suggesting gene-flow between them. Within P. spumarius, we found a pattern of isolation-by-distance in European populations, likely acting alongside other factors restricting gene flow. Varying levels of co-occurrence of different lineages, showing heterogeneous levels of admixture, suggest other isolation mechanisms. The transatlantic populations of North America and Azores were genetically closer to the British population analyzed here, suggesting an origin from North-Western Europe, as already detected with mitochondrial DNA. Nevertheless, these may have been produced through different colonization events. We detected SNPs with signatures of positive selection associated with environmental variables, especially related to extremes and range variation in temperature and precipitation. The population genomics approach provided new insights into the patterns of divergence, gene flow and adaptation in these spittlebugs and led to several hypotheses that require further local investigation.
Collapse
Affiliation(s)
- Sofia G. Seabra
- E3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S.B. Rodrigues
- E3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sara E. Silva
- E3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carina Neto
- CESAM - Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco Pina-Martins
- E3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Eduardo Marabuto
- E3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | | | - Michael R. Wilson
- National Museum of Wales, Department of Natural Sciences, Cardiff, United Kingdom
| | - Selçuk Yurtsever
- Trakya University, Biology Department, Science Faculty, Edirne, Turkey
| | - Antti Halkka
- Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Maria Teresa Rebelo
- CESAM - Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Paulo A.V. Borges
- cE3c - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, Faculty of Agriculture and Environment, Department of Environmental Sciences and Engineering, Universidade dos Açores, Angra do Heroísmo, Açores, Portugal
| | - José A. Quartau
- E3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Octávio S. Paulo
- E3c - Centre for Ecology, Evolution and Environmental Changes, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Tuda M, Iwase SI, Kébé K, Haran J, Skuhrovec J, Sanaei E, Tsuji N, Podlussány A, Merkl O, El-Heneidy AH, Morimoto K. Diversification, selective sweep, and body size in the invasive Palearctic alfalfa weevil infected with Wolbachia. Sci Rep 2021; 11:9664. [PMID: 33958611 PMCID: PMC8102540 DOI: 10.1038/s41598-021-88770-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
The alfalfa weevil Hypera postica, native to the Western Palearctic, is an invasive legume pest with two divergent mitochondrial clades in its invading regions, the Western clade and the Eastern/Egyptian clade. However, knowledge regarding the native populations is limited. The Western clade is infected with the endosymbiotic bacteria Wolbachia that cause cytoplasmic incompatibility in host weevils. Our aim was to elucidate the spatial genetic structure of this insect and the effect of Wolbachia on its population diversity. We analyzed two mitochondrial and two nuclear genes of the weevil from its native ranges. The Western clade was distributed in western/central Europe, whereas the Eastern/Egyptian clade was distributed from the Mediterranean basin to central Asia. Intermediate mitotypes were found from the Balkans to central Asia. Most Western clade individuals in western Europe were infected with an identical Wolbachia strain. Mitochondrial genetic diversity of the infected individuals was minimal. The infected clades demonstrated a higher nonsynonymous/synonymous substitution rate ratio than the uninfected clades, suggesting a higher fixation of nonsynonymous mutations due to a selective sweep by Wolbachia. Trans-Mediterranean and within-European dispersal routes were supported. We suggest that the ancestral populations diversified by geographic isolation due to glaciations and that the diversity was reduced in the west by a recent Wolbachia-driven sweep(s). The intermediate clade exhibited a body size and host plant that differed from the other clades. Pros and cons of the possible use of infected-clade males to control uninfected populations are discussed.
Collapse
Affiliation(s)
- Midori Tuda
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan. .,Laboratory of Insect Natural Enemies, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | - Shun-Ichiro Iwase
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.,Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Japan
| | - Khadim Kébé
- GRBA-BE, LE3PI Laboratory, Department of Chemical Engineering and Applied Biology, Polytechnic Higher School of Dakar, Dakar, Senegal
| | - Julien Haran
- CBGP, Cirad, Montpellier SupAgro, INRA, IRD, Univ. Montpellier, Montpellier, France
| | - Jiri Skuhrovec
- Group Function of Invertebrate and Plant Biodiversity in Agro-Ecosystems, Crop Research Institute, Drnovska, Praha, Czech Republic
| | - Ehsan Sanaei
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Naomichi Tsuji
- Entomological Laboratory, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | | | - Ottó Merkl
- Hungarian Natural History Museum, Budapest, Hungary
| | - Ahmed H El-Heneidy
- Department of Biological Control, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | | |
Collapse
|
14
|
Sucháčková Bartoňová A, Konvička M, Marešová J, Wiemers M, Ignatev N, Wahlberg N, Schmitt T, Faltýnek Fric Z. Wolbachia affects mitochondrial population structure in two systems of closely related Palaearctic blue butterflies. Sci Rep 2021; 11:3019. [PMID: 33542272 PMCID: PMC7862691 DOI: 10.1038/s41598-021-82433-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
The bacterium Wolbachia infects many insect species and spreads by diverse vertical and horizontal means. As co-inherited organisms, these bacteria often cause problems in mitochondrial phylogeny inference. The phylogenetic relationships of many closely related Palaearctic blue butterflies (Lepidoptera: Lycaenidae: Polyommatinae) are ambiguous. We considered the patterns of Wolbachia infection and mitochondrial diversity in two systems: Aricia agestis/Aricia artaxerxes and the Pseudophilotes baton species complex. We sampled butterflies across their distribution ranges and sequenced one butterfly mitochondrial gene and two Wolbachia genes. Both butterfly systems had uninfected and infected populations, and harboured several Wolbachia strains. Wolbachia was highly prevalent in A. artaxerxes and the host's mitochondrial structure was shallow, in contrast to A. agestis. Similar bacterial alleles infected both Aricia species from nearby sites, pointing to a possible horizontal transfer. Mitochondrial history of the P. baton species complex mirrored its Wolbachia infection and not the taxonomical division. Pseudophilotes baton and P. vicrama formed a hybrid zone in Europe. Wolbachia could obscure mitochondrial history, but knowledge on the infection helps us to understand the observed patterns. Testing for Wolbachia should be routine in mitochondrial DNA studies.
Collapse
Affiliation(s)
- Alena Sucháčková Bartoňová
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Martin Konvička
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jana Marešová
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Martin Wiemers
- Senckenberg German Entomological Institute, Müncheberg, Germany
| | - Nikolai Ignatev
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | - Thomas Schmitt
- Senckenberg German Entomological Institute, Müncheberg, Germany
- Faculty of Natural Sciences I, Institute of Biology, Zoology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | |
Collapse
|
15
|
Fu Z, Meier AR, Epstein B, Bergland AO, Castillo Carrillo CI, Cooper WR, Cruzado RK, Horton DR, Jensen AS, Kelley JL, Rashed A, Reitz SR, Rondon SI, Thinakaran J, Wenninger EJ, Wohleb CH, Crowder DW, Snyder WE. Host plants and Wolbachia shape the population genetics of sympatric herbivore populations. Evol Appl 2020; 13:2740-2753. [PMID: 33294020 PMCID: PMC7691456 DOI: 10.1111/eva.13079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023] Open
Abstract
Changing climate and land-use practices have the potential to bring previously isolated populations of pest insects into new sympatry. This heightens the need to better understand how differing patterns of host-plant association, and unique endosymbionts, serve to promote genetic isolation or integration. We addressed these factors in populations of potato psyllid, Bactericera cockerelli (Šulc), a generalist herbivore that vectors a bacterial pathogen (Candidatus Liberibacter solanacearum, causal pathogen of zebra chip disease) of potato (Solanum tuberosum L.). Genome-wide SNP data revealed two major genetic clusters-psyllids collected from potato crops were genetically similar to psyllids found on a common weed, Lycium spp., but dissimilar from those found on another common non-crop host, Solanum dulcamara L. Most psyllids found on Lycium spp. and potato represented a single mitochondrial cytochrome oxidase I (COI) haplotype that has been suggested to not be native to the region, and whose arrival may have been concurrent with zebra chip disease first emerging. The putatively introduced COI haplotype usually co-occurred with endosymbiotic Wolbachia, while the putatively resident COI haplotype generally did not. Genetic intermediates between the two genetic populations of insects were rare, consistent with recent sympatry or reproductive isolation, although admixture patterns of apparent hybrids were consistent with introgression of genes from introduced into resident populations. Our results suggest that both host-plant associations and endosymbionts are shaping the population genetic structure of sympatric psyllid populations associated with different non-crop hosts. It is of future interest to explicitly examine vectorial capacity of the two populations and their potential hybrids, as population structure and hybridization might alter regional vector capacity and disease outbreaks.
Collapse
Affiliation(s)
- Zhen Fu
- Department of EntomologyWashington State UniversityPullmanWAUSA
- Present address:
Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| | | | - Brendan Epstein
- Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulMNUSA
| | | | - Carmen I. Castillo Carrillo
- Departamento de Protección VegetalEstación Experimental Santa CatalinaInstituto Nacional de Investigaciones Agropecuarias (INIAP)QuitoEcuador
| | | | - Regina K. Cruzado
- Department of Entomology, Plant Pathology, and NematologyUniversity of IdahoMoscowIDUSA
| | - David R. Horton
- Temperate Tree Fruit and Vegetable ResearchUSDA‐ARSWapatoWAUSA
| | | | - Joanna L. Kelley
- School of Biological SciencesWashington State UniversityPullmanWAUSA
| | - Arash Rashed
- Department of Entomology, Plant Pathology, and NematologyUniversity of IdahoMoscowIDUSA
| | - Stuart R. Reitz
- Malheur Experiment StationOregon State UniversityOntarioORUSA
| | - Silvia I. Rondon
- Department of Crop and Soil ScienceHermiston Agricultural Research and Extension CenterHermistonORUSA
| | | | - Erik J. Wenninger
- Department of Entomology, Plant Pathology, and NematologyKimberly Research and Extension CenterUniversity of IdahoKimberlyIDUSA
| | | | | | | |
Collapse
|
16
|
N. Miyata M, Nomura M, Kageyama D. Wolbachia have made it twice: Hybrid introgression between two sister species of Eurema butterflies. Ecol Evol 2020; 10:8323-8330. [PMID: 32788982 PMCID: PMC7417220 DOI: 10.1002/ece3.6539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022] Open
Abstract
Wolbachia, cytoplasmically inherited endosymbionts of arthropods, are known to hijack their host reproduction in various ways to increase their own vertical transmission. This may lead to the selective sweep of associated mitochondria, which can have a large impact on the evolution of mitochondrial lineages. In Japan, two different Wolbacahia strains (wCI and wFem) are found in two sister species of pierid butterflies, Eurema mandarina and Eurema hecabe. In both species, females infected with wCI (C females) produce offspring with a nearly 1:1 sex ratio, while females infected with both wCI and wFem (CF females) produce all-female offspring. Previous studies have suggested the historical occurrence of hybrid introgression in C individuals between the two species. Furthermore, hybrid introgression in CF individuals is suggested by the distinct mitochondrial lineages between C females and CF females of E. mandarina. In this study, we performed phylogenetic analyses based on nuclear DNA and mitochondrial DNA markers of E. hecabe with previously published data on E. mandarina. We found that the nuclear DNA of this species significantly diverged from that of E. mandarina. By contrast, mitochondrial DNA haplotypes comprised two clades, mostly reflecting Wolbachia infection status rather than the individual species. Collectively, our results support the previously suggested occurrence of two independent historical events wherein the cytoplasms of CF females and C females moved between E. hecabe and E. mandarina through hybrid introgression.
Collapse
Affiliation(s)
- Mai N. Miyata
- Graduate School of HorticultureChiba UniversityMatsudoJapan
| | - Masashi Nomura
- Graduate School of HorticultureChiba UniversityMatsudoJapan
| | - Daisuke Kageyama
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaJapan
| |
Collapse
|
17
|
Cariou M, Henri H, Martinez S, Duret L, Charlat S. How consistent is RAD-seq divergence with DNA-barcode based clustering in insects? Mol Ecol Resour 2020; 20:1294-1298. [PMID: 32340081 DOI: 10.1111/1755-0998.13178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/25/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022]
Abstract
Promoted by the barcoding approach, mitochondrial DNA is more than ever used as a molecular marker to identify species boundaries. Yet, it has been repeatedly argued that it may be poorly suited for this purpose, especially in insects where mitochondria are often associated with invasive intracellular bacteria that may promote their introgression. Here, we inform this debate by assessing how divergent nuclear genomes can be when mitochondrial barcodes indicate very high proximity. To this end, we obtained RAD-seq data from 92 barcode-based species-like units (operational taxonomic units [OTUs]) spanning four insect orders. In 100% of the cases, the observed median nuclear divergence was lower than 2%, a value that was recently estimated as one below which nuclear gene flow is not uncommon. These results suggest that although mitochondria may occasionally leak between species, this process is rare enough in insects to make DNA barcoding a reliable tool for clustering specimens into species-like units.
Collapse
Affiliation(s)
- Marie Cariou
- Laboratoire de Biométrie et Biologie Evolutive (LBBE - UMR 5558), CNRS, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Hélène Henri
- Laboratoire de Biométrie et Biologie Evolutive (LBBE - UMR 5558), CNRS, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Sonia Martinez
- Laboratoire de Biométrie et Biologie Evolutive (LBBE - UMR 5558), CNRS, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive (LBBE - UMR 5558), CNRS, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Sylvain Charlat
- Laboratoire de Biométrie et Biologie Evolutive (LBBE - UMR 5558), CNRS, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| |
Collapse
|
18
|
Miyata MN, Kageyama D, Nomura M. Multiplex PCR for identification of two butterfly sister species: Eurema mandarina and Eurema hecabe. BMC Res Notes 2020; 13:260. [PMID: 32460868 PMCID: PMC7251659 DOI: 10.1186/s13104-020-05093-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/16/2020] [Indexed: 11/18/2022] Open
Abstract
Objective In insects, closely related species are often difficult or impossible to distinguish solely by morphological traits. Mitochondrial DNA (mtDNA) markers are often useful and reliable for distinguishing closely related species. However, useful mtDNA markers can be unavailable, particularly when such species pairs experienced hybrid introgression in the past. Although polymorphic nuclear DNA markers would be necessary to distinguish such species pairs, recombination, multiple copies, and slower mutation rates of the nuclear DNA compared with those of mtDNA often make it challenging. The objective of this study was to develop a multiplex polymerase chain reaction that can reliably amplify and distinguish the Tpi sequences of Eurema mandarina and Eurema hecabe. Results We successfully analyzed the nucleotide sequences of the Z chromosome-linked triose phosphate isomerase (Tpi) gene to develop a multiplex polymerase chain reaction (PCR) that amplified ca. 120-bp products for E. mandarina and ca. 375-bp products for E. hecabe. We suggest that multiplex PCR using Tpi with appropriately designed primers can be used to accurately and reliably distinguish between other closely related Lepidoptera species.
Collapse
Affiliation(s)
- Mai N Miyata
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, 271-8510, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-0851, Japan.
| | - Masashi Nomura
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, 271-8510, Japan.
| |
Collapse
|
19
|
Tseng SP, Wetterer JK, Suarez AV, Lee CY, Yoshimura T, Shoemaker D, Yang CCS. Genetic Diversity and Wolbachia Infection Patterns in a Globally Distributed Invasive Ant. Front Genet 2019; 10:838. [PMID: 31608104 PMCID: PMC6758599 DOI: 10.3389/fgene.2019.00838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/13/2019] [Indexed: 11/23/2022] Open
Abstract
Understanding the phylogeographic history of an invasive species may facilitate reconstructing the history and routes of its invasion. The longhorn crazy ant, Paratrechina longicornis, is a ubiquitous agricultural and household pest throughout much of the tropics and subtropics, but little is known about the history of its spread. Here, we examine worldwide genetic variation in P. longicornis and its associated Wolbachia bacterial symbionts. Analyses of mtDNA sequences of 248 P. longicornis workers (one per colony) from 13 geographic regions reveal two highly diverged mtDNA clades that co-occur in most of the geographic regions. These two mtDNA clades are associated with different Wolbachia infection patterns, but are not congruent with patterns of nDNA (microsatellite) variation. Multilocus sequence typing reveals two distinct Wolbachia strains in P. longicornis, namely, wLonA and wLonF. The evolutionary histories of these two strains differ; wLonA appears to be primarily transmitted maternally, and patterns of mtDNA and nDNA variation and wLonA infection status are consistent with a relatively recent Wolbachia-induced selective sweep. In contrast, the observed patterns of mtDNA variation and wLonF infections suggest frequent horizontal transfer and losses of wLonF infections. The lack of nDNA structure among sampled geographic regions coupled with the finding that numerous mtDNA haplotypes are shared among regions implies that inadvertent long-distance movement through human commerce is common in P. longicornis and has shaped the genetic structure of this invasive ant worldwide.
Collapse
Affiliation(s)
- Shu-Ping Tseng
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - James K. Wetterer
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Andrew V. Suarez
- Department of Evolution, Ecology and Behavior and Department of Entomology, University of Illinois Urbana-Champaign, IL, United States
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, CA, United States
| | - Tsuyoshi Yoshimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - DeWayne Shoemaker
- Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | | |
Collapse
|
20
|
Sanaei E, Husemann M, Seiedy M, Rethwisch M, Tuda M, Toshova TB, Kim MJ, Atanasova D, Kim I. Global genetic diversity, lineage distribution, and Wolbachia infection of the alfalfa weevil Hypera postica (Coleoptera: Curculionidae). Ecol Evol 2019; 9:9546-9563. [PMID: 31534674 PMCID: PMC6745856 DOI: 10.1002/ece3.5474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/06/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
The alfalfa weevil (Hypera postica) is a well-known example of a worldwide-distributed pest with high genetic variation. Based on the mitochondrial genes, the alfalfa weevil clusters into two main mitochondrial lineages. However, there is no clear picture of the global diversity and distribution of these lineages; neither the drivers of its diversification are known. However, it appears likely that historic demographic events including founder effects played a role. In addition, Wolbachia, a widespread intracellular parasite/symbiont, likely played an important role in the evolution of the species. Wolbachia infection so far was only detected in the Western lineage of H. postica with no information on the infecting strain, its frequency, and its consequences on the genetic diversity of the host. We here used a combination of mitochondrial and nuclear sequences of the host and sequence information on Wolbachia to document the distribution of strains and the degree of infection. The Eastern lineage has a higher genetic diversity and is found in the Mediterranean, the Middle East, Eastern Europe, and eastern America, whereas the less diverse Western lineage is found in Central Europe and the western America. Both lineages are infected with the same common strain of Wolbachia belonging to Supergroup B. Based on neutrality tests, selection tests, and the current distribution and diversification of Wolbachia in H. postica, we suggested the Wolbachia infection did not shape genetic diversity of the host. The introduced populations in the United States are generally genetically less diverse, which is in line with founder effects.
Collapse
Affiliation(s)
- Ehsan Sanaei
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
- School of Biological ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | | | - Marjan Seiedy
- School of Biology and Center of Excellence in Phylogeny of Living OrganismsCollege of ScienceUniversity of TehranTehranIran
| | | | - Midori Tuda
- Faculty of AgricultureInstitute of Biological ControlKyushu UniversityFukuokaJapan
- Laboratory of Insect Natural EnemiesDepartment of Bioresource SciencesFaculty of AgricultureKyushu UniversityFukuokaJapan
| | - Teodora B. Toshova
- Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
| | - Min Jee Kim
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
| | - Daniela Atanasova
- Department of EntomologyFaculty of Plant Protection and AgroecologyAgricultural UniversityPlovdivBulgaria
| | - Iksoo Kim
- Department of Applied BiologyCollege of Agriculture and Life ScienceChonnam National UniversityGwnagjuKorea
| |
Collapse
|
21
|
Schebeck M, Feldkirchner L, Stauffer C, Schuler H. Dynamics of an Ongoing Wolbachia Spread in the European Cherry Fruit Fly, Rhagoletis cerasi (Diptera: Tephritidae). INSECTS 2019; 10:insects10060172. [PMID: 31208002 PMCID: PMC6627601 DOI: 10.3390/insects10060172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 11/20/2022]
Abstract
Numerous terrestrial arthropods are infected with the alphaproteobacterium Wolbachia. This endosymbiont is usually transmitted vertically from infected females to their offspring and can alter the reproduction of hosts through various manipulations, like cytoplasmic incompatibility (CI), enhancing its spread in new host populations. Studies on the spatial and temporal dynamics of Wolbachia under natural conditions are scarce. Here, we analyzed Wolbachia infection frequencies in populations of the European cherry fruit fly, Rhagoletis cerasi (L.), in central Germany—an area of an ongoing spread of the CI-inducing strain wCer2. In total, 295 individuals from 19 populations were PCR-screened for the presence of wCer2 and their mitochondrial haplotype. Results were compared with historic data to understand the infection dynamics of the ongoing wCer2 invasion. An overall wCer2 infection frequency of about 30% was found, ranging from 0% to 100% per population. In contrast to an expected smooth transition from wCer2-infected to completely wCer2-uninfected populations, a relatively scattered infection pattern across geography was observed. Moreover, a strong Wolbachia-haplotype association was detected, with only a few rare misassociations. Our results show a complex dynamic of an ongoing Wolbachia spread in natural field populations of R. cerasi.
Collapse
Affiliation(s)
- Martin Schebeck
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Peter-Jordan-Straße 82/I, A-1190 Vienna, Austria.
| | - Lukas Feldkirchner
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Peter-Jordan-Straße 82/I, A-1190 Vienna, Austria.
| | - Christian Stauffer
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Peter-Jordan-Straße 82/I, A-1190 Vienna, Austria.
| | - Hannes Schuler
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Universitätsplatz 5, I-39100 Bozen-Bolzano, Italy.
| |
Collapse
|
22
|
Elias-Costa AJ, Confalonieri VA, Lanteri AA, Rodriguero MS. Game of clones: Is Wolbachia inducing speciation in a weevil with a mixed reproductive mode? Mol Phylogenet Evol 2018; 133:42-53. [PMID: 30583042 DOI: 10.1016/j.ympev.2018.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/08/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
Abstract
Parthenogenesis is widely distributed in Metazoa but it is especially frequent in weevils (Coleoptera, Curculionidae) with one fifth of all known cases. Previous studies have shown that in the tribe Naupactini parthenogenetic reproduction most likely originated with an infection of the endoparasitic bacterium Wolbachia pipientis. In particular, Pantomorus postfasciatus possess a mixed reproductive mode: some populations have males while in others they are absent, and females produce clones by thelytoky. To better understand this scenario, we studied the population structure and infection status in 64 individuals of P. postfasciatus from Argentina and Brazil. We sequenced two mitochondrial (COI and COII) and one nuclear (ITS-1) fragments and obtained two very divergent haplogroups, one corresponding to the sexual populations uninfected with Wolbachia, and another conforming a monophyletic parthenogenetic (or presumptively parthenogenetic) and infected clade. Each of these haplogroups was identified as an independently evolutionary unit by all species delimitation analyses accomplished: multilocus *BEAST and BP&P, and single locus GMYC and K/θ rule. Additionally, present evidence suggests that Wolbachia infection occurred at least twice in all-female populations of P. postfasciatus with two different bacterial strains. Speciation mediated by Wolbachia is a recently described phenomenon and the case of P. postfasciatus is the first known case in a diplo-diploid insect. A model that describes how thelytoky-inducing phenotypes of Wolbachia could generate new lineages is discussed.
Collapse
Affiliation(s)
- A J Elias-Costa
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IEGEBA (CONICET-UBA), Intendente Güiraldes y Av. Costanera Norte s/n, 4to. Piso, Pabellón II, Ciudad Universitaria, CI1428 EHA Ciudad Autónoma de Buenos Aires, Argentina.
| | - V A Confalonieri
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IEGEBA (CONICET-UBA), Intendente Güiraldes y Av. Costanera Norte s/n, 4to. Piso, Pabellón II, Ciudad Universitaria, CI1428 EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - A A Lanteri
- División Entomología, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina
| | - M S Rodriguero
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IEGEBA (CONICET-UBA), Intendente Güiraldes y Av. Costanera Norte s/n, 4to. Piso, Pabellón II, Ciudad Universitaria, CI1428 EHA Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
23
|
Jiang W, Zhu J, Wu Y, Li L, Li Y, Ge C, Wang Y, Endersby NM, Hoffmann AA, Yu W. Influence of Wolbachia infection on mitochondrial DNA variation in the genus Polytremis (Lepidoptera: Hesperiidae). Mol Phylogenet Evol 2018; 129:158-170. [PMID: 30092356 DOI: 10.1016/j.ympev.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/21/2018] [Accepted: 08/02/2018] [Indexed: 11/17/2022]
Abstract
The maternally inherited obligate bacteria Wolbachia is known for infecting the reproductive tissues of a wide range of arthropods and can contribute to phylogenetically discordant patterns between mtDNA and nDNA. In this study, we tested for an association between mito-nuclear discordance in Polytremis and Wolbachia infection. Six of the 17 species of Polytremis were found to be infected with Wolbachia. Overall, 34% (70/204) of Polytremis specimens were Wolbachia positive and three strains of Wolbachia identified using a wsp marker were further characterized as six strains based on MLST markers. Wolbachia acquisition in Polytremis appears to occur mainly through horizontal transmission rather than codivergence based on comparison of the divergence times of Wolbachia and Polytremis species. At the intraspecific level, one of the Wolbachia infections (wNas1) is associated with reduced mtDNA polymorphism in the infected Polytremis population. At the interspecific level, there is one case of mito-nuclear discordance likely caused by introgression of P. fukia mtDNA into P. nascens driven by another Wolbachia strain (wNas3). Based on an absence of infected males, we suspect that one Wolbachia strain (wNas2) affects sex ratio, but the phenotypic effects of the other strains are unclear. These data reveal a dynamic interaction between Polytremis and Wolbachia endosymbionts affecting patterns of mtDNA variation.
Collapse
Affiliation(s)
- Weibin Jiang
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guiling Rd., Shanghai 200234, People's Republic of China; School of BioSciences, The University of Melbourne, Bio21 Institute, 30 Flemington Rd., Parkville, Victoria 3052, Australia
| | - Jianqing Zhu
- Shanghai Zoological Park, 2381 Hongqiao Rd., Shanghai 200335, People's Republic of China
| | - Yajuan Wu
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guiling Rd., Shanghai 200234, People's Republic of China
| | - Lizhen Li
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guiling Rd., Shanghai 200234, People's Republic of China
| | - Yuanyuan Li
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guiling Rd., Shanghai 200234, People's Republic of China
| | - Chen Ge
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guiling Rd., Shanghai 200234, People's Republic of China
| | - Ying Wang
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guiling Rd., Shanghai 200234, People's Republic of China
| | - Nancy M Endersby
- School of BioSciences, The University of Melbourne, Bio21 Institute, 30 Flemington Rd., Parkville, Victoria 3052, Australia
| | - Ary A Hoffmann
- School of BioSciences, The University of Melbourne, Bio21 Institute, 30 Flemington Rd., Parkville, Victoria 3052, Australia.
| | - Weidong Yu
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guiling Rd., Shanghai 200234, People's Republic of China.
| |
Collapse
|
24
|
Evolutionary Mechanisms of Varying Chromosome Numbers in the Radiation of Erebia Butterflies. Genes (Basel) 2018; 9:genes9030166. [PMID: 29547586 PMCID: PMC5867887 DOI: 10.3390/genes9030166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 02/03/2023] Open
Abstract
The evolution of intrinsic barriers to gene flow is a crucial step in the process of speciation. Chromosomal changes caused by fusion and fission events are one such barrier and are common in several groups of Lepidoptera. However, it remains unclear if and how chromosomal changes have contributed to speciation in this group. I tested for a phylogenetic signal of varying chromosome numbers in Erebia butterflies by combining existing sequence data with karyological information. I also compared different models of trait evolution in order to infer the underlying evolutionary mechanisms. Overall, I found significant phylogenetic signals that are consistent with non-neutral trait evolution only when parts of the mitochondrial genome were included, suggesting cytonuclear discordances. The adaptive evolutionary model tested in this study consistently outperformed the neutral model of trait evolution. Taken together, these results suggest that, unlike other Lepidoptera groups, changes in chromosome numbers may have played a role in the diversification of Erebia butterflies.
Collapse
|
25
|
Miyata M, Konagaya T, Yukuhiro K, Nomura M, Kageyama D. Wolbachia-induced meiotic drive and feminization is associated with an independent occurrence of selective mitochondrial sweep in a butterfly. Biol Lett 2017; 13:rsbl.2017.0153. [PMID: 28566542 DOI: 10.1098/rsbl.2017.0153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
Maternally inherited Wolbachia endosymbionts manipulate arthropod reproduction in various ways. In the butterfly Eurema mandarina, a cytoplasmic incompatibility-inducing Wolbachia strain wCI and the associated mtDNA haplotypes are known to originate from the sister species Eurema hecabe, which offered a good case study for microbe-mediated hybrid introgression. Besides wCI, some females with the Z0 karyotype harbour a distinct Wolbachia strain wFem, which causes all-female production by meiotic drive and feminization. We report that a considerable proportion of E. mandarina females (65.7%) were infected with both wCI and wFem (CF) on Tanegashima Island. While females singly infected with wCI (C) produced offspring at a 1 : 1 sex ratio, CF females produced only females. Although Z-linked sequence polymorphism showed no signs of divergence between C and CF females, mtDNA split into two discrete clades; one consisted of C females and the other CF females, both of which formed a clade with E. hecabe but not with uninfected E. mandarina This suggests that CF matrilines also, but independently, experienced a selective sweep after hybrid introgression from E. hecabe Distinct evolutionary forces were suggested to have caused C and CF matrilines to diverge, which would be irreversible because of the particular phenotype of wFem.
Collapse
Affiliation(s)
- Mai Miyata
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Tatsuro Konagaya
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kenji Yukuhiro
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Masashi Nomura
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba, Ibaraki 305-0851, Japan
| |
Collapse
|
26
|
Kageyama D, Ohno M, Sasaki T, Yoshido A, Konagaya T, Jouraku A, Kuwazaki S, Kanamori H, Katayose Y, Narita S, Miyata M, Riegler M, Sahara K. Feminizing Wolbachia endosymbiont disrupts maternal sex chromosome inheritance in a butterfly species. Evol Lett 2017; 1:232-244. [PMID: 30283652 PMCID: PMC6121850 DOI: 10.1002/evl3.28] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/21/2017] [Accepted: 09/28/2017] [Indexed: 12/31/2022] Open
Abstract
Wolbachia is a maternally inherited ubiquitous endosymbiotic bacterium of arthropods that displays a diverse repertoire of host reproductive manipulations. For the first time, we demonstrate that Wolbachia manipulates sex chromosome inheritance in a sexually reproducing insect. Eurema mandarina butterfly females on Tanegashima Island, Japan, are infected with the wFem Wolbachia strain and produce all‐female offspring, while antibiotic treatment results in male offspring. Fluorescence in situ hybridization (FISH) revealed that wFem‐positive and wFem‐negative females have Z0 and WZ sex chromosome sets, respectively, demonstrating the predicted absence of the W chromosome in wFem‐infected lineages. Genomic quantitative polymerase chain reaction (qPCR) analysis showed that wFem‐positive females lay only Z0 eggs that carry a paternal Z, whereas females from lineages that are naturally wFem‐negative lay both WZ and ZZ eggs. In contrast, antibiotic treatment of adult wFem females resulted in the production of Z0 and ZZ eggs, suggesting that this Wolbachia strain can disrupt the maternal inheritance of Z chromosomes. Moreover, most male offspring produced by antibiotic‐treated wFem females had a ZZ karyotype, implying reduced survival of Z0 individuals in the absence of feminizing effects of Wolbachia. Antibiotic treatment of wFem‐infected larvae induced male‐specific splicing of the doublesex (dsx) gene transcript, causing an intersex phenotype. Thus, the absence of the female‐determining W chromosome in Z0 individuals is functionally compensated by Wolbachia‐mediated conversion of sex determination. We discuss how Wolbachia may manipulate the host chromosome inheritance and that Wolbachia may have acquired this coordinated dual mode of reproductive manipulation first by the evolution of female‐determining function and then cytoplasmically induced disruption of sex chromosome inheritance.
Collapse
Affiliation(s)
- Daisuke Kageyama
- Institute of Agrobiological Sciences National Agriculture and Food Research Organization Tsukuba Ibaraki 305-0854 Japan
| | - Mizuki Ohno
- Laboratory of Applied Entomology, Faculty of Agriculture Iwate University Morioka 020-8550 Japan
| | - Tatsushi Sasaki
- Laboratory of Applied Entomology, Faculty of Agriculture Iwate University Morioka 020-8550 Japan
| | - Atsuo Yoshido
- Laboratory of Applied Entomology, Faculty of Agriculture Iwate University Morioka 020-8550 Japan
| | - Tatsuro Konagaya
- Graduate School of Science Kyoto University Kyoto 606-8502 Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences National Agriculture and Food Research Organization Tsukuba Ibaraki 305-0854 Japan
| | - Seigo Kuwazaki
- Institute of Agrobiological Sciences National Agriculture and Food Research Organization Tsukuba Ibaraki 305-0854 Japan
| | - Hiroyuki Kanamori
- Institute of Crop Science National Agriculture and Food Research Organization Tsukuba Ibaraki 305-0854 Japan
| | - Yuichi Katayose
- Institute of Crop Science National Agriculture and Food Research Organization Tsukuba Ibaraki 305-0854 Japan
| | - Satoko Narita
- Institute of Agrobiological Sciences National Agriculture and Food Research Organization Tsukuba Ibaraki 305-0854 Japan.,Tsukuba Primate Research Center National Institute of Biomedical Innovation Hachimandai Tsukuba Ibaraki 305-0843 Japan
| | - Mai Miyata
- Graduate School of Horticulture Chiba University Matsudo Chiba 271-8510 Japan
| | - Markus Riegler
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales 2751 Australia
| | - Ken Sahara
- Laboratory of Applied Entomology, Faculty of Agriculture Iwate University Morioka 020-8550 Japan
| |
Collapse
|
27
|
Beatty CD, Sánchez Herrera M, Skevington JH, Rashed A, Van Gossum H, Kelso S, Sherratt TN. Biogeography and systematics of endemic island damselflies: The Nesobasis and Melanesobasis (Odonata: Zygoptera) of Fiji. Ecol Evol 2017; 7:7117-7129. [PMID: 28904788 PMCID: PMC5587492 DOI: 10.1002/ece3.3175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/03/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022] Open
Abstract
The study of island fauna has greatly informed our understanding of the evolution of diversity. We here examine the phylogenetics, biogeography, and diversification of the damselfly genera Nesobasis and Melanesobasis, endemic to the Fiji Islands, to explore mechanisms of speciation in these highly speciose groups. Using mitochondrial (COI, 12S) and nuclear (ITS) replicons, we recovered garli-part maximum likelihood and mrbayes Bayesian phylogenetic hypotheses for 26 species of Nesobasis and eight species/subspecies of Melanesobasis. Biogeographical patterns were explored using lagrange and bayes-lagrange and interpreted through beast relaxed clock dating analyses. We found that Nesobasis and Melanesobasis have radiated throughout Fiji, but are not sister groups. For Nesobasis, while the two largest islands of the archipelago-Viti Levu and Vanua Levu-currently host two distinct species assemblages, they do not represent phylogenetic clades; of the three major groupings each contains some Viti Levu and some Vanua Levu species, suggesting independent colonization events across the archipelago. Our beast analysis suggests a high level of species diversification around 2-6 Ma. Our ancestral area reconstruction (rasp-lagrange) suggests that both dispersal and vicariance events contributed to the evolution of diversity. We thus conclude that the evolutionary history of Nesobasis and Melanesobasis is complex; while inter-island dispersal followed by speciation (i.e., peripatry) has contributed to diversity, speciation within islands appears to have taken place a number of times as well. This speciation has taken place relatively recently and appears to be driven more by reproductive isolation than by ecological differentiation: while species in Nesobasis are morphologically distinct from one another, they are ecologically very similar, and currently are found to exist sympatrically throughout the islands on which they are distributed. We consider the potential for allopatric speciation within islands, as well as the influence of parasitic endosymbionts, to explain the high rates of speciation in these damselflies.
Collapse
Affiliation(s)
| | - Melissa Sánchez Herrera
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
- Biology ProgramFaculty of Natural Sciences and MathemathicsUniversidad del RosarioBogotáColombia
| | - Jeffrey H. Skevington
- Agriculture and Agri‐Food CanadaCanadian National Collection of InsectsArachnids and NematodesOttawaONCanada
| | - Arash Rashed
- Department of Entomology, Plant Pathology and NematologyUniversity of Idaho Aberdeen R & E CenterAberdeenIDUSA
| | - Hans Van Gossum
- Evolutionary Ecology GroupUniversity of AntwerpAntwerpBelgium
| | - Scott Kelso
- Agriculture and Agri‐Food CanadaCanadian National Collection of InsectsArachnids and NematodesOttawaONCanada
| | | |
Collapse
|
28
|
Mukae SY, Ohashi T, Matsumoto Y, Ohta S, Ômura H. d-Pinitol in Fabaceae: an Oviposition Stimulant for the Common Grass Yellow Butterfly, Eurema mandarina. J Chem Ecol 2016; 42:1122-1129. [DOI: 10.1007/s10886-016-0775-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/28/2016] [Accepted: 09/09/2016] [Indexed: 10/20/2022]
|
29
|
Schuler H, Köppler K, Daxböck-Horvath S, Rasool B, Krumböck S, Schwarz D, Hoffmeister TS, Schlick-Steiner BC, Steiner FM, Telschow A, Stauffer C, Arthofer W, Riegler M. The hitchhiker's guide to Europe: the infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi. Mol Ecol 2016; 25:1595-609. [PMID: 26846713 PMCID: PMC4950298 DOI: 10.1111/mec.13571] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 01/25/2016] [Indexed: 01/30/2023]
Abstract
Wolbachia is a maternally inherited and ubiquitous endosymbiont of insects. It can hijack host reproduction by manipulations such as cytoplasmic incompatibility (CI) to enhance vertical transmission. Horizontal transmission of Wolbachia can also result in the colonization of new mitochondrial lineages. In this study, we present a 15‐year‐long survey of Wolbachia in the cherry fruit fly Rhagoletis cerasi across Europe and the spatiotemporal distribution of two prevalent strains, wCer1 and wCer2, and associated mitochondrial haplotypes in Germany. Across most of Europe, populations consisted of either 100% singly (wCer1) infected individuals with haplotype HT1, or 100% doubly (wCer1&2) infected individuals with haplotype HT2, differentiated only by a single nucleotide polymorphism. In central Germany, singly infected populations were surrounded by transitional populations, consisting of both singly and doubly infected individuals, sandwiched between populations fixed for wCer1&2. Populations with fixed infection status showed perfect association of infection and mitochondria, suggesting a recent CI‐driven selective sweep of wCer2 linked with HT2. Spatial analysis revealed a range expansion for wCer2 and a large transition zone in which wCer2 splashes appeared to coalesce into doubly infected populations. Unexpectedly, the transition zone contained a large proportion (22%) of wCer1&2 individuals with HT1, suggesting frequent intraspecific horizontal transmission. However, this horizontal transmission did not break the strict association between infection types and haplotypes in populations outside the transition zone, suggesting that this horizontally acquired Wolbachia infection may be transient. Our study provides new insights into the rarely studied Wolbachia invasion dynamics in field populations.
Collapse
Affiliation(s)
- Hannes Schuler
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Hasenauerstr. 38, 1190, Vienna, Austria.,Faculty of Science and Technology, Free University of Bozen-Bolzano, Universitätsplatz 1, 39100, Bozen-Bolzano, Italy.,Department of Biological Sciences, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kirsten Köppler
- Center for Agricultural Technology Augustenberg, Nesslerstr. 23-31, 76227, Karlsruhe, Germany
| | - Sabine Daxböck-Horvath
- Department of Crop Sciences, Boku, University of Natural Resources and Life Sciences, Peter-Jordan-Str. 82, 1190, Vienna, Austria
| | - Bilal Rasool
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Hasenauerstr. 38, 1190, Vienna, Austria.,Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.,School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Susanne Krumböck
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Hasenauerstr. 38, 1190, Vienna, Austria
| | - Dietmar Schwarz
- Department of Biology, Western Washington University, 510 High Street, MS 9160, Bellingham, WA, 98225, USA
| | - Thomas S Hoffmeister
- Institute of Ecology, Faculty Biology/Chemistry, University of Bremen, Leobener Str. NW2, B4040, 28359, Bremen, Germany
| | | | - Florian M Steiner
- Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Arndt Telschow
- Institute for Evolution and Biodiversity, Westfalian Wilhelms-University Münster, Hüfferstr. 1, 48149, Münster, Germany
| | - Christian Stauffer
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Hasenauerstr. 38, 1190, Vienna, Austria
| | - Wolfgang Arthofer
- Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
30
|
Jiang W, He H, Li Y, Ren M, Ma Y, Zheng L, Zhu J, Yu W. Taxonomic status and molecular phylogeography of two sibling species of Polytremis (Lepidoptera: Hesperiidae). Sci Rep 2016; 6:20820. [PMID: 26860271 PMCID: PMC4748417 DOI: 10.1038/srep20820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/08/2016] [Indexed: 11/30/2022] Open
Abstract
The skipper Polytremis theca species complex is widely distributed in the south of the Qinling Mountains in China. A recent study of the Polytremis genus suggested that this species might encompass two differentiated lineages. We tested this hypothesis, by carrying out a phylogenetic study of this agricultural pest based on nationwide sampling and the evaluation of mitochondrial and nuclear DNA markers. We show that this species is actually an amalgamation of two sibling taxa (P. t. theca and P. t. fukia), which displayed levels of genetic divergence as great as those generally found between sister species in the Polytremis genus, suggesting that they actually correspond to two distinct species. The Divergence time estimates suggest that an active period of speciation within Polytremis occurred within the Pleistocene eras. Based on its distinct phylogenetic placement and geographical isolation, we suggest that the subspecies should be elevated to full species status under the phylogenetic species concept, which has significant management implications.
Collapse
Affiliation(s)
- Weibin Jiang
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai, People’s Republic of China
| | - Haiyan He
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai, People’s Republic of China
| | - Yingdong Li
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai, People’s Republic of China
| | - Mengyi Ren
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai, People’s Republic of China
| | - Yazhong Ma
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai, People’s Republic of China
| | - Lingli Zheng
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai, People’s Republic of China
| | - Jianqing Zhu
- Shanghai Zoological Park, Shanghai, People’s Republic of China
| | - Weidong Yu
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai, People’s Republic of China
| |
Collapse
|
31
|
Reassessment of Species Diversity of the Subfamily Denticollinae (Coleoptera: Elateridae) through DNA Barcoding. PLoS One 2016; 11:e0148602. [PMID: 26848744 PMCID: PMC4744053 DOI: 10.1371/journal.pone.0148602] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/21/2016] [Indexed: 12/17/2022] Open
Abstract
The subfamily Denticollinae is a taxonomically diverse group in the family Elateridae. Denticollinae includes many morphologically similar species and crop pests, as well as many undescribed species at each local fauna. To construct a rapid and reliable identification system for this subfamily, the effectiveness of molecular species identification was assessed based on 421 cytochrome c oxidase subunit I (COI) sequences of 84 morphologically identified species. Among the 84 morphospecies, molecular species identification of 60 species (71.4%) was consistent with their morphological identifications. Six cryptic and/or pseudocryptic species with large genetic divergence (>5%) were confirmed by their sympatric or allopatric distributions. However, 18 species, including a subspecies, had ambiguous genetic distances and shared overlapping intra- and interspecific genetic distances (range: 2.12%–3.67%) suggesting incomplete lineage sorting, introgression of mitochondrial genome, or affection by endosymbionts, such as Wolbachia infection, between species and simple genetic variation within species. In this study, we propose a conservative threshold of 3.6% for convenient molecular operational taxonomic unit (MOTU) identification in the subfamily Denticollinae based on the results of pairwise genetic distances analyses using neighbor-joining, mothur, Automatic Barcode Gap Discovery analysis, and tree-based species delimitation by Poisson Tree Processes analysis. Using the 3.6% threshold, we identified 87 MOTUs and found 8 MOTUs in the interval between 2.5% to 3.5%. Evaluation of MOTUs identified in this range requires integrative species delimitation, including review of morphological and ecological differences as well as sensitive genetic markers. From this study, we confirmed that COI sequence is useful for reassessing species diversity for polymorphic and polytypic species occurring in sympatric and allopatric distributions, and for a single species having an extensively large habitat.
Collapse
|
32
|
Klopfstein S, Kropf C, Baur H. Wolbachiaendosymbionts distort DNA barcoding in the parasitoid wasp genusDiplazon(Hymenoptera: Ichneumonidae). Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12380] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Seraina Klopfstein
- Department of Invertebrates; Naturhistorisches Museum der Burgergemeinde Bern; Bernastrasse 15 CH-3005 Bern Switzerland
- Division of Community Ecology; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 7 3012 Bern Switzerland
| | - Christian Kropf
- Department of Invertebrates; Naturhistorisches Museum der Burgergemeinde Bern; Bernastrasse 15 CH-3005 Bern Switzerland
- Division of Community Ecology; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 7 3012 Bern Switzerland
| | - Hannes Baur
- Department of Invertebrates; Naturhistorisches Museum der Burgergemeinde Bern; Bernastrasse 15 CH-3005 Bern Switzerland
- Division of Community Ecology; Institute of Ecology and Evolution; University of Bern; Baltzerstrasse 7 3012 Bern Switzerland
| |
Collapse
|
33
|
Curry MM, Paliulis LV, Welch KD, Harwood JD, White JA. Multiple endosymbiont infections and reproductive manipulations in a linyphiid spider population. Heredity (Edinb) 2015; 115:146-52. [PMID: 25899011 DOI: 10.1038/hdy.2015.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/06/2014] [Accepted: 12/19/2014] [Indexed: 12/17/2022] Open
Abstract
In many arthropods, maternally inherited endosymbiotic bacteria can increase infection frequency by manipulating host reproduction. Multiple infections of different bacteria in a single host population are common, yet few studies have documented concurrent endosymbiont phenotypes or explored their potential interactions. We hypothesized that spiders might be a particularly useful taxon for investigating endosymbiont interactions, because they are host to a plethora of endosymbiotic bacteria and frequently exhibit multiple infections. We established two matrilines from the same population of the linyphiid spider Mermessus fradeorum and then used antibiotic curing and controlled mating assays to demonstrate that each matriline was subject to a distinct endosymbiotic reproductive manipulation. One matriline was co-infected with Rickettsia and Wolbachia and produced offspring with a radical female bias. Antibiotic treatment eliminated both endosymbionts and restored an even sex ratio to subsequent generations. Chromosomal and fecundity observations suggest a feminization mechanism. In the other matriline, a separate factorial mating assay of cured and infected spiders demonstrated strong cytoplasmic incompatibility (CI) induced by a different strain of Wolbachia. However, males with this Wolbachia induced only mild CI when mated with the Rickettsia-Wolbachia females. In a subsequent survey of a field population of M. fradeorum, we detected these same three endosymbionts infecting 55% of the spiders in almost all possible combinations, with nearly half of the infected spiders exhibiting multiple infection. Our results suggest that a dynamic network of endosymbionts may interact both within multiply infected hosts and within a population subject to multiple strong reproductive manipulations.
Collapse
Affiliation(s)
- M M Curry
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - L V Paliulis
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| | - K D Welch
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - J D Harwood
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - J A White
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
34
|
Genetic differentiation in the endangered myrmecophilous butterfly Niphanda fusca: a comparison of natural and secondary habitats. CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0717-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Sakamoto Y, Hirai N, Tanikawa T, Yago M, Ishii M. Population genetic structure and Wolbachia infection in an endangered butterfly, Zizina emelina (Lepidoptera, Lycaenidae), in Japan. BULLETIN OF ENTOMOLOGICAL RESEARCH 2015; 105:152-165. [PMID: 25499047 DOI: 10.1017/s0007485314000819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Zizina emelina (de l'Orza) is listed on Japan's Red Data List as an endangered species because of loss of its principal food plant and habitat. We compared parts of the mitochondrial and nuclear genes of this species to investigate the level of genetic differentiation among the 14 extant populations. We also examined infection of the butterfly with the bacterium Wolbachia to clarify the bacterium's effects on the host population's genetic structure. Mitochondrial and nuclear DNA analyses revealed that haplotype composition differed significantly among most of the populations, and the fixation index F ST was positively correlated with geographic distance. In addition, we found three strains of Wolbachia, one of which was a male killer; these strains were prevalent in several populations. There was linkage between some host mitochondrial haplotypes and the three Wolbachia strains, although no significant differences were found in a comparison of host mitochondrial genetic diversity with nuclear genetic diversity in Wolbachia-infected or -uninfected populations. These genetic analyses and Wolbachia infection findings show that Z. emelina has little migratory activity and that little gene flow occurs among the current populations.
Collapse
Affiliation(s)
- Y Sakamoto
- Entomological Laboratory,Graduate School of Life and Environmental Sciences,Osaka Prefecture University,Sakai,Osaka 599-8531,Japan
| | - N Hirai
- Entomological Laboratory,Graduate School of Life and Environmental Sciences,Osaka Prefecture University,Sakai,Osaka 599-8531,Japan
| | - T Tanikawa
- Entomological Laboratory,Graduate School of Life and Environmental Sciences,Osaka Prefecture University,Sakai,Osaka 599-8531,Japan
| | - M Yago
- The University Museum, The University of Tokyo,7-3-1 Hongo,Bunkyo-ku,Tokyo 113-0033,Japan
| | - M Ishii
- Entomological Laboratory,Graduate School of Life and Environmental Sciences,Osaka Prefecture University,Sakai,Osaka 599-8531,Japan
| |
Collapse
|
36
|
Pigeault R, Braquart-Varnier C, Marcadé I, Mappa G, Mottin E, Sicard M. Modulation of host immunity and reproduction by horizontally acquired Wolbachia. JOURNAL OF INSECT PHYSIOLOGY 2014; 70:125-133. [PMID: 25108053 DOI: 10.1016/j.jinsphys.2014.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/11/2014] [Accepted: 07/30/2014] [Indexed: 06/03/2023]
Abstract
The Wolbachia are symbiotic bacteria vertically transmitted from one host generation to another. However, a growing amount of data shows that horizontal transfers of Wolbachia also frequently occur within and between host species. The consequences of the arrival of new symbionts on host physiology can be studied by their experimental introduction in asymbiotic hosts. After experimental transfers of the eight major isopod Wolbachia strains in the isopod Porcellio dilatatus only two of them (wCon and wDil) were found to (1) have no pathogenic effect on the host and (2) be able to pass vertically to the host offspring. In the present work, we studied the influence of these two strains, able to complete an horizontal transfer, on immunity and reproduction of P. dilatatus at two stages of the transfer: (1) in recipient hosts that encounter the symbionts: to test the influence of symbiont when acquired during host life and (2) in vertically infected offspring: to test the influence of a symbiotic interaction occurring all lifelong. The impact of Wolbachia varied depending on the stage: there were clearer effects in vertically infected individuals than in those that acquired the symbionts during their lives. Moreover, the two Wolbachia strains showed contrasted effects: the strain wCon tended to reduce the reproductive investment but to maintain or increase immune parameters whilst wDil had positive effects on reproductive investment but decreased the investment in some immune parameters. These results suggest that horizontally acquisition of Wolbachia can influence the balance between host immune and reproductive traits.
Collapse
Affiliation(s)
- Romain Pigeault
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, Équipe Écologie Évolution Symbiose, 40 Avenue du recteur Pineau, F-86022 Poitiers cedex, France
| | - Christine Braquart-Varnier
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, Équipe Écologie Évolution Symbiose, 40 Avenue du recteur Pineau, F-86022 Poitiers cedex, France
| | - Isabelle Marcadé
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, Équipe Écologie Évolution Symbiose, 40 Avenue du recteur Pineau, F-86022 Poitiers cedex, France
| | - Gaëtan Mappa
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, Équipe Écologie Évolution Symbiose, 40 Avenue du recteur Pineau, F-86022 Poitiers cedex, France
| | - Elmina Mottin
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, Équipe Écologie Évolution Symbiose, 40 Avenue du recteur Pineau, F-86022 Poitiers cedex, France
| | - Mathieu Sicard
- Université de Poitiers, Laboratoire Écologie et Biologie des Interactions, UMR CNRS 7267, Équipe Écologie Évolution Symbiose, 40 Avenue du recteur Pineau, F-86022 Poitiers cedex, France.
| |
Collapse
|
37
|
Jiang W, Zhu J, Chen M, Yang Q, Du X, Chen S, Zhang L, Yu Y, Yu W. Wolbachia infection status and genetic structure in natural populations of Polytremis nascens (Lepidoptera: Hesperiidae). INFECTION GENETICS AND EVOLUTION 2014; 27:202-11. [PMID: 25077993 DOI: 10.1016/j.meegid.2014.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022]
Abstract
The maternally inherited obligate bacteria Wolbachia is known for infecting the reproductive tissues of a wide range of arthropods. In this study, we surveyed Wolbachia infections in Polytremis nascens (Lepidoptera: Hesperiidae) from 14 locations in China by amplifying the 16S rRNA gene with a nested PCR method and revealed the effect of Wolbachia on host mitochondrial DNA. The results show that 31% (21/67) are Wolbachia positive among all specimens and mainly prevails in southern populations in China. No significant difference in the prevalence is found between the sexes. Notably, the nucleotide diversity of Wolbachia infected butterflies is smaller compared to that of uninfected butterflies. The mitochondrial DNA of infected group appear to be not evolving neutrally (Tajima's D value=-2.3303 and Fu's F values=-3.7068). The analysis of molecular variance shows significant differentiation of mitochondrial haplotypes between infected and uninfected specimens (FST=0.6064). The mismatch analysis speculated the different expansion pattern in Wolbachia infected specimens and all P. nascens specimens. These results suggest that the populations of P. nascens may have recently been subjected to a Wolbachia-induced sweep. Additionally, phylogenetic analysis differentiated the mitochondrial haplotypes of P. nascens into three major clades. The clades are in perfect agreement with the pattern of Wolbachia infection. One of the clades grouped with the butterflies infected with Wolbachia. The remaining two clades grouped with uninfected butterflies from the central-west of China populations and Eastern and Southern China populations respectively, which are isolated mainly by the Yangtze River. The analysis of haplotype networks, geographic distribution and population size change shows that Haplotype 1 in central-west of China is the ancestral haplotype and the populations of P. nascens are expanded.
Collapse
Affiliation(s)
- Weibin Jiang
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai, People's Republic of China
| | - Jianqing Zhu
- Shanghai Zoological Park, Shanghai, People's Republic of China.
| | - Minghan Chen
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai, People's Republic of China
| | - Qichang Yang
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai, People's Republic of China
| | - Xuan Du
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai, People's Republic of China
| | - Shiyan Chen
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai, People's Republic of China
| | - Lina Zhang
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai, People's Republic of China
| | - Yiming Yu
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai, People's Republic of China
| | - Weidong Yu
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai, People's Republic of China.
| |
Collapse
|
38
|
Fraïsse C, Roux C, Welch JJ, Bierne N. Gene-flow in a mosaic hybrid zone: is local introgression adaptive? Genetics 2014; 197:939-51. [PMID: 24788603 PMCID: PMC4096372 DOI: 10.1534/genetics.114.161380] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/17/2014] [Indexed: 12/16/2022] Open
Abstract
Genome-wide scans of genetic differentiation between hybridizing taxa can identify genome regions with unusual rates of introgression. Regions of high differentiation might represent barriers to gene flow, while regions of low differentiation might indicate adaptive introgression-the spread of selectively beneficial alleles between reproductively isolated genetic backgrounds. Here we conduct a scan for unusual patterns of differentiation in a mosaic hybrid zone between two mussel species, Mytilus edulis and M. galloprovincialis. One outlying locus, mac-1, showed a characteristic footprint of local introgression, with abnormally high frequency of edulis-derived alleles in a patch of M. galloprovincialis enclosed within the mosaic zone, but low frequencies outside of the zone. Further analysis of DNA sequences showed that almost all of the edulis allelic diversity had introgressed into the M. galloprovincialis background in this patch. We then used a variety of approaches to test the hypothesis that there had been adaptive introgression at mac-1. Simulations and model fitting with maximum-likelihood and approximate Bayesian computation approaches suggested that adaptive introgression could generate a "soft sweep," which was qualitatively consistent with our data. Although the migration rate required was high, it was compatible with the functioning of an effective barrier to gene flow as revealed by demographic inferences. As such, adaptive introgression could explain both the reduced intraspecific differentiation around mac-1 and the high diversity of introgressed alleles, although a localized change in barrier strength may also be invoked. Together, our results emphasize the need to account for the complex history of secondary contacts in interpreting outlier loci.
Collapse
Affiliation(s)
- Christelle Fraïsse
- Université Montpellier 2, 34095 Montpellier Cedex 5, France CNRS, Institut des Sciences de l'Evolution, ISEM Unité Mixte de Recherche 5554, 34200 SETE, France Department of Genetics, University of Cambridge, CB2 3EH Cambridge, United Kingdom
| | - Camille Roux
- Université Montpellier 2, 34095 Montpellier Cedex 5, France CNRS, Institut des Sciences de l'Evolution, ISEM Unité Mixte de Recherche 5554, 34200 SETE, France Department of Ecology and Evolution, Lausanne University, Biophore/Sorge, CH-1015
| | - John J Welch
- Department of Genetics, University of Cambridge, CB2 3EH Cambridge, United Kingdom
| | - Nicolas Bierne
- Université Montpellier 2, 34095 Montpellier Cedex 5, France CNRS, Institut des Sciences de l'Evolution, ISEM Unité Mixte de Recherche 5554, 34200 SETE, France
| |
Collapse
|
39
|
Zabal-Aguirre M, Arroyo F, García-Hurtado J, de la Torre J, Hewitt GM, Bella JL. Wolbachia effects in natural populations of Chorthippus parallelus from the Pyrenean hybrid zone. J Evol Biol 2014; 27:1136-48. [PMID: 24819964 DOI: 10.1111/jeb.12389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/11/2014] [Accepted: 03/28/2014] [Indexed: 01/21/2023]
Abstract
We evaluate for the first time the effect of Wolbachia infection, involving two different supergroups, on the structure and dynamics of the hybrid zone between two subspecies of Chorthippus parallelus (Orthoptera) in the Pyrenees. Wolbachia infection showed no effects on female fecundity or a slight increment in females infected by F supergroup, although in the last case it has to be well established. Cytoplasmic incompatibility (CI) is confirmed in crosses carried out in the field between individuals from a natural hybrid population. This CI, registered as the relative reduction in embryo production (sh ), was of sh = 0.355 and sh = 0.286 in unidirectional crosses involving B and F supergroups, respectively. CI also occurred in bidirectional crosses (sh = 0.147) but with a weaker intensity. The transmission rates of the two Wolbachia strains (B and F) were estimated by the optimization of a theoretical model to reach the infection frequencies observed in certain population. To fit this scenario, both supergroups should present transmission rates close to 1. Further, we have simulated the infection dynamics, and hence, the capacity of Wolbachia to structure the population of the host insects and to affect to reproduction and genetic introgression in the hybrid zone. This represents a first example of the influence of Wolbachia in an insect natural hybrid zone.
Collapse
Affiliation(s)
- M Zabal-Aguirre
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Draft Genome Sequence of Commensalibacter papalotli MX01, a Symbiont Identified from the Guts of Overwintering Monarch Butterflies. GENOME ANNOUNCEMENTS 2014; 2:2/2/e00128-14. [PMID: 24604647 PMCID: PMC3945503 DOI: 10.1128/genomea.00128-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report the draft genome sequence of Commensalibacter papalotli strain MX01, isolated from the intestines of an overwintering monarch butterfly. The 2,332,652-bp AT-biased genome of C. papalotli MX01 is the smallest genome for a member of the Acetobacteraceae family and provides the first evidence of plasmids in Commensalibacter.
Collapse
|
41
|
Hammer TJ, McMillan WO, Fierer N. Metamorphosis of a butterfly-associated bacterial community. PLoS One 2014; 9:e86995. [PMID: 24466308 PMCID: PMC3900687 DOI: 10.1371/journal.pone.0086995] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023] Open
Abstract
Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.
Collapse
Affiliation(s)
- Tobin J. Hammer
- Department of Ecology and Evolutionary Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado, United States of America
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - W. Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
42
|
Ritter S, Michalski SG, Settele J, Wiemers M, Fric ZF, Sielezniew M, Šašić M, Rozier Y, Durka W. Wolbachia infections mimic cryptic speciation in two parasitic butterfly species, Phengaris teleius and P. nausithous (Lepidoptera: Lycaenidae). PLoS One 2013; 8:e78107. [PMID: 24223136 PMCID: PMC3819333 DOI: 10.1371/journal.pone.0078107] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/06/2013] [Indexed: 12/02/2022] Open
Abstract
Deep mitochondrial divergence within species may result from cryptic speciation, from phylogeographic isolation or from endosymbiotic bacteria like Wolbachia that manipulate host reproduction. Phengaris butterflies are social parasites that spend most of their life in close relationship with ants. Previously, cryptic speciation has been hypothesised for two Phengaris species based on divergent mtDNA sequences. Since Phengaris species are highly endangered, the existence of cryptic species would have drastic consequences for conservation and management. We tested for cryptic speciation and alternative scenarios in P. teleius and P. nausithous based on a comprehensive sample across their Palaearctic ranges using COI gene sequences, nuclear microsatellites and tests for Wolbachia. In both species a deep mitochondrial split occurring 0.65-1.97 myrs ago was observed that did not correspond with microsatellite data but was concordant with Wolbachia infection. Haplotypes previously attributed to cryptic species were part of the Wolbachia-infected clades. In both species remaining phylogeographic structure was largely consistent between mitochondrial and nuclear genomes. In P. teleius several mitochondrial and nuclear groups were observed in East Asia while a single haplogroup and nuclear cluster prevailed across continental Eurasia. Neutrality tests suggested rapid demographic expansion into that area. In contrast, P. nausithous had several mitochondrial and nuclear groups in Europe, suggesting a complex phylogeographic history in the western part of the species range. We conclude that deep intraspecific divergences found in DNA barcode studies do not necessarily need to represent cryptic speciation but instead can be due to both infection by Wolbachia and phylogeographic structure.
Collapse
Affiliation(s)
- Sylvia Ritter
- Helmholtz Centre for Environmental Research, Department of Community Ecology, Halle (Saale), Germany
| | - Stefan G. Michalski
- Helmholtz Centre for Environmental Research, Department of Community Ecology, Halle (Saale), Germany
| | - Josef Settele
- Helmholtz Centre for Environmental Research, Department of Community Ecology, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Martin Wiemers
- Helmholtz Centre for Environmental Research, Department of Community Ecology, Halle (Saale), Germany
| | - Zdenek F. Fric
- Biology Centre, Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Marcin Sielezniew
- University of Bialystok, Institute of Biology, Department of Invertebrate Zoology, Białystok, Poland
| | - Martina Šašić
- Croatian Natural History Museum, Department of Zoology, Zagreb, Croatia
| | - Yves Rozier
- CED Entreprises, Centre d’activités de Gorge de Loup, Lyon, France
| | - Walter Durka
- Helmholtz Centre for Environmental Research, Department of Community Ecology, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
43
|
Jäckel R, Mora D, Dobler S. Evidence for selective sweeps byWolbachiainfections: phylogeny ofAlticaleaf beetles and their reproductive parasites. Mol Ecol 2013; 22:4241-4255. [DOI: 10.1111/mec.12389] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/07/2013] [Accepted: 03/12/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Regina Jäckel
- Zoological Institute; University of Hamburg; Martin-Luther-King-Platz 3 20146 Hamburg Germany
| | - Diana Mora
- Zoological Institute; University of Hamburg; Martin-Luther-King-Platz 3 20146 Hamburg Germany
| | - Susanne Dobler
- Zoological Institute; University of Hamburg; Martin-Luther-King-Platz 3 20146 Hamburg Germany
| |
Collapse
|
44
|
Rodriguero MS, Lanteri AA, Confalonieri VA. Speciation in the asexual realm: is the parthenogenetic weevil Naupactus cervinus a complex of species in statu nascendi? Mol Phylogenet Evol 2013; 68:644-56. [PMID: 23623993 DOI: 10.1016/j.ympev.2013.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 04/12/2013] [Accepted: 04/14/2013] [Indexed: 12/14/2022]
Abstract
Population genetic theory shows that asexual organisms may evolve into species, which behave as independent evolutionary units. As a result, they form genotypic clusters separated by deep gaps due to geographic isolation and/or divergent selection. Identification of several genetically divergent groups of weevils embodied in the nominal species Naupactus cervinus deserves further study, in order to test if these lineages are evolving independently. In the present paper we tested if the parthenogenetic weevil N. cervinus, native to South America and broadly distributed throughout the world, contains more than one evolutionary unit. For this purpose, we applied three different approaches, a multilocus phylogenetic analysis, the GMYC approach and the K/θ method. We accomplished these analyses through a survey of mitochondrial (COI and COII genes) and nuclear (ITS1 sequence) genetic variation and morphometric analysis in a sample which included individuals from different locations within the native geographic range of N. cervinus. In addition, we compared the divergence accumulated in this species with that in another weevil of the same tribe (Naupactini) showing identical reproductive mode to see if similar levels of morphological variation matches similar levels of genetic divergence. We report the presence of two independent evolutionary units living in sympatry in forest areas. The incongruence between mitochondrial and nuclear datasets analyzed herein reflects incomplete lineage sorting of the nuclear marker and different evolutionary rates between genomes. Ecological divergence driven by natural selection (sympatry) or secondary contact after geographic isolation (allopatry) might explain the deep gaps in mitochondrial phylogenies. Instead, Wolbachia infection was ruled out as a causal factor for such differentiation. We conclude that N. cervinus is probably a species complex with at least two well differentiated lineages that would represent a cluster of species in statu nascendi.
Collapse
Affiliation(s)
- M S Rodriguero
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IEGEBA (CONICET-UBA), Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | |
Collapse
|
45
|
Gerth M, Bleidorn C. A multilocus sequence typing (MLST) approach to diminish the problems that are associated with DNA barcoding: A reply to Stahlhutet al. (2012). SYST BIODIVERS 2013. [DOI: 10.1080/14772000.2013.764507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Stahlhut JK, Gibbs J, Sheffield CS, Alex Smith M, Packer L. Wolbachia (Rickettsiales) infections and bee (Apoidea) barcoding: a response to Gerth et al. SYST BIODIVERS 2012. [DOI: 10.1080/14772000.2012.753488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Julie K. Stahlhut
- a Biodiversity Institute of Ontario , University of Guelph , 50 Stone Road East, Guelph, Ontario , Canada
| | - Jason Gibbs
- b Department of Entomology , Cornell University , Ithaca , New York , USA
| | - Cory S. Sheffield
- c Royal Saskatchewan Museum , 2340 Albert Street, Regina , Saskatchewan , Canada
| | - M. Alex Smith
- a Biodiversity Institute of Ontario , University of Guelph , 50 Stone Road East, Guelph, Ontario , Canada
| | - Laurence Packer
- d Department of Biology , York University , 4700 Keele Street, Toronto , Ontario , Canada
| |
Collapse
|
47
|
Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism. Heredity (Edinb) 2012; 110:283-95. [PMID: 23211790 DOI: 10.1038/hdy.2012.84] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have constructed a linkage map for the peppered moth (Biston betularia), the classical ecological genetics model of industrial melanism, aimed both at localizing the network of loci controlling melanism and making inferences about chromosome dynamics. The linkage map, which is based primarily on amplified fragment length polymorphisms (AFLPs) and genes, consists of 31 linkage groups (LGs; consistent with the karyotype). Comparison with the evolutionarily distant Bombyx mori suggests that the gene content of chromosomes is highly conserved. Gene order is conserved on the autosomes, but noticeably less so on the Z chromosome, as confirmed by physical mapping using bacterial artificial chromosome fluorescence in situ hybridization (BAC-FISH). Synteny mapping identified three pairs of B. betularia LGs (11/29, 23/30 and 24/31) as being orthologous to three B. mori chromosomes (11, 23 and 24, respectively). A similar finding in an outgroup moth (Plutella xylostella) indicates that the B. mori karyotype (n=28) is a phylogenetically derived state resulting from three chromosome fusions. As with other Lepidoptera, the B. betularia W chromosome consists largely of repetitive sequence, but exceptionally we found a W homolog of a Z-linked gene (laminin A), possibly resulting from ectopic recombination between the sex chromosomes. The B. betularia linkage map, featuring the network of known melanization genes, serves as a resource for melanism research in Lepidoptera. Moreover, its close resemblance to the ancestral lepidopteran karyotype (n=31) makes it a useful reference point for reconstructing chromosome dynamic events and ancestral genome architectures. Our study highlights the unusual evolutionary stability of lepidopteran autosomes; in contrast, higher rates of intrachromosomal rearrangements support a special role of the Z chromosome in adaptive evolution and speciation.
Collapse
|
48
|
DUPUIS JULIANR, ROE AMANDAD, SPERLING FELIXAH. Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. Mol Ecol 2012; 21:4422-36. [DOI: 10.1111/j.1365-294x.2012.05642.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Affiliation(s)
- David P L Toews
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | | |
Collapse
|
50
|
Wei DD, Yuan ML, Wang BJ, Zhou AW, Dou W, Wang JJ. Population genetics of two asexually and sexually reproducing psocids species inferred by the analysis of mitochondrial and nuclear DNA sequences. PLoS One 2012; 7:e33883. [PMID: 22479465 PMCID: PMC3313955 DOI: 10.1371/journal.pone.0033883] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/19/2012] [Indexed: 02/06/2023] Open
Abstract
Background The psocids Liposcelis bostrychophila and L. entomophila (Psocoptera: Liposcelididae) are found throughout the world and are often associated with humans, food stores and habitations. These insects have developed high levels of resistance to various insecticides in grain storage systems. However, the population genetic structure and gene flow of psocids has not been well categorized, which is helpful to plan appropriate strategies for the control of these pests. Methodology/Principal Findings The two species were sampled from 15 localities in China and analyzed for polymorphisms at the mitochondrial DNA (Cytb) and ITS (ITS1-5.8S-ITS2) regions. In total, 177 individual L. bostrychophila and 272 individual L. entomophila were analysed. Both Cytb and ITS sequences showed high genetic diversity for the two species with haplotype diversities ranged from 0.154±0.126 to 1.000±0.045, and significant population differentiation (mean FST = 0.358 for L. bostrychophila; mean FST = 0.336 for L. entomophila) was also detected among populations investigated. A Mantel test indicated that for both species there was no evidence for isolation-by-distance (IBD). The neutrality test and mismatch distribution statistics revealed that the two species might have undergone population expansions in the past. Conclusion Both L. bostrychophila and L. entomophila displayed high genetic diversity and widespread population genetic differentiation within and between populations. The significant population differentiation detected for both psocids may be mainly due to other factors, such as genetic drift, inbreeding or control practices, and less by geographic distance since an IBD effect was not found.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- * E-mail:
| |
Collapse
|