1
|
de Souza TE, Cruz GADS, de Moura RDC. Impact of Limited Dispersion Capacity and Natural Barriers on the Population Structure of the Grasshopper Ommexecha virens (Orthoptera: Ommexechidae). NEOTROPICAL ENTOMOLOGY 2021; 50:706-715. [PMID: 33978918 DOI: 10.1007/s13744-021-00878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The grasshopper Ommexecha virens Serville has low dispersion capacity, and it is regarded as a specialist, only being found in sandy, dry environments with high incidence of sunlight. Considering these aspects, we evaluated the diversity and genetic structure of O. virens natural populations using ISSR (Inter Simple Sequence Repeat) markers. The data pointed to low expected heterozygosity for some populations (HE = 0.06-0.09), probably a consequence of positive inbreeding, which is typical of species showing low or null dispersion indices. Moreover, significant genetic differentiation was observed (FST = 0.50 and GST = 0.51), as well as low number of migrants (Nm = 0.47), indicating that the populations are genetically differentiated. This is likely related to the limitation in dispersing and fragmentation of suitable environment localities colonized by O. virens. The populations of O. virens were structured in three genetic groups associated to different landscapes, revealing the presence of a secondary contact zone, possibly arisen from isolation followed by genetic divergence among populations and subsequent gene flow of divergent individuals of O. virens. At last, we found positive isolation by distance (IBD; r: 0.427; P: 0.025) which is an important factor, since it may be adding to the emergence of reproductive barriers among individuals of O. virens that have been experiencing isolation.
Collapse
Affiliation(s)
- Tyago Eufrásio de Souza
- Laboratório de Biodiversidade e Genética de Insetos, Universidade de Pernambuco (UPE), Recife, Pernambuco, Brazil
| | - Geyner Alves Dos Santos Cruz
- Laboratório de Biodiversidade e Genética de Insetos, Universidade de Pernambuco (UPE), Recife, Pernambuco, Brazil.
- Laboratório de Biodiversidade e Genética Evolutiva, Universidade de Pernambuco (UPE), Petrolina, Pernambuco, Brazil.
| | - Rita de Cássia de Moura
- Laboratório de Biodiversidade e Genética de Insetos, Universidade de Pernambuco (UPE), Recife, Pernambuco, Brazil.
| |
Collapse
|
2
|
Leal BSS, Chaves CJN, Graciano VA, Boury C, Huacre LAP, Heuertz M, Palma-Silva C. Evidence of local adaptation despite strong drift in a Neotropical patchily distributed bromeliad. Heredity (Edinb) 2021; 127:203-218. [PMID: 33953353 PMCID: PMC8322333 DOI: 10.1038/s41437-021-00442-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 02/03/2023] Open
Abstract
Both genetic drift and divergent selection are predicted to be drivers of population differentiation across patchy habitats, but the extent to which these forces act on natural populations to shape traits is strongly affected by species' ecological features. In this study, we infer the genomic structure of Pitcairnia lanuginosa, a widespread herbaceous perennial plant with a patchy distribution. We sampled populations in the Brazilian Cerrado and the Central Andean Yungas and discovered and genotyped SNP markers using double-digest restriction-site associated DNA sequencing. In addition, we analyzed ecophysiological traits obtained from a common garden experiment and compared patterns of phenotypic and genetic divergence (PST-FST comparisons) in a subset of populations from the Cerrado. Our results from molecular analyses pointed to extremely low genetic diversity and a remarkable population differentiation, supporting a major role of genetic drift. Approximately 0.3% of genotyped SNPs were flagged as differentiation outliers by at least two distinct methods, and Bayesian generalized linear mixed models revealed a signature of isolation by environment in addition to isolation by distance for high-differentiation outlier SNPs among the Cerrado populations. PST-FST comparisons suggested divergent selection on two ecophysiological traits linked to drought tolerance. We showed that these traits vary among populations, although without any particular macro-spatial pattern, suggesting local adaptation to differences in micro-habitats. Our study shows that selection might be a relevant force, particularly for traits involved in drought stress, even for populations experiencing strong drift, which improves our knowledge on eco-evolutionary processes acting on non-continuously distributed species.
Collapse
Affiliation(s)
- Bárbara Simões Santos Leal
- grid.410543.70000 0001 2188 478XDepartamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo Brazil
| | - Cleber Juliano Neves Chaves
- grid.410543.70000 0001 2188 478XDepartamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo Brazil
| | - Vanessa Araujo Graciano
- grid.410543.70000 0001 2188 478XDepartamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo Brazil
| | - Christophe Boury
- grid.412041.20000 0001 2106 639XINRAE, Univ. Bordeaux, Biogeco, Cestas France
| | - Luis Alberto Pillaca Huacre
- grid.10800.390000 0001 2107 4576Departamento de Ecología, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Myriam Heuertz
- grid.412041.20000 0001 2106 639XINRAE, Univ. Bordeaux, Biogeco, Cestas France
| | - Clarisse Palma-Silva
- grid.410543.70000 0001 2188 478XDepartamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo Brazil ,grid.411087.b0000 0001 0723 2494Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Melo AS, Cruz GAS, Félix AP, Rocha MF, Loreto V, Moura RC. Wide dispersion of B chromosomes in Rhammatocerus brasiliensis (Orthoptera, Acrididae). Genet Mol Biol 2020; 43:e20190077. [PMID: 32542305 PMCID: PMC7295183 DOI: 10.1590/1678-4685-gmb-2019-0077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/16/2019] [Indexed: 01/01/2023] Open
Abstract
The grasshopper Rhammatocerus brasiliensis shows polymorphism of B chromosomes, but the magnitude of B-chromosome occurrence and the factors that may contribute to their dispersion in the species remain unknown thus far. The present study analyzed the occurrence and dispersion of B chromosomes in R. brasiliensis individuals from 21 populations widely distributed in the Brazilian Northeast. The genetic connectivity between 10 populations was verified through analysis of ISSR markers from 200 individuals. Of the 21 populations, 19 presented individuals with one B chromosome, three with two, and one with three B chromosomes. The B chromosome is of medium size and constitutive heterochromatin (CH) located in the pericentromeric region. A variant B chromosome was observed in three populations, similar in size to that of chromosome X, gap and CH, and located in the terminal region. B chromosome frequencies in different populations varied from 0% to 18,8%, mean 8,5%. The wide distribution of the B chromosome is likely a consequence of the positive gene flow among the analyzed populations. B-chromosome occurrence in populations of R. brasiliensis possibly follows the population genetic structure of the species and, owing to the existence of a variant, its origin may not be recent.
Collapse
Affiliation(s)
- Adriana S Melo
- Universidade de Pernambuco (UPE), Instituto de Ciências Biológicas, Laboratório de Biodiversidade e Genética de Insetos, Recife, PE, Brazil
| | - Geyner A S Cruz
- Universidade de Pernambuco (UPE), Instituto de Ciências Biológicas, Laboratório de Biodiversidade e Genética de Insetos, Recife, PE, Brazil
- Universidade de Pernambuco (UPE), Laboratório de Biodiversidade e Genética Evolutiva, Campus Petrolina, Petrolina, PE, Brazil
| | - Aline P Félix
- Universidade de Pernambuco (UPE), Instituto de Ciências Biológicas, Laboratório de Biodiversidade e Genética de Insetos, Recife, PE, Brazil
| | - Marília F Rocha
- Universidade de Pernambuco (UPE), Instituto de Ciências Biológicas, Laboratório de Biodiversidade e Genética de Insetos, Recife, PE, Brazil
| | - Vilma Loreto
- Universidade Federal de Pernambuco (UFPE), Departamento de Genética, Laboratório de Genética Animal e Humana e Citogenética, Recife, PE, Brazil
| | - Rita C Moura
- Universidade de Pernambuco (UPE), Instituto de Ciências Biológicas, Laboratório de Biodiversidade e Genética de Insetos, Recife, PE, Brazil
| |
Collapse
|
4
|
González‐Serna MJ, Cordero PJ, Ortego J. Spatiotemporally explicit demographic modelling supports a joint effect of historical barriers to dispersal and contemporary landscape composition on structuring genomic variation in a red‐listed grasshopper. Mol Ecol 2019; 28:2155-2172. [DOI: 10.1111/mec.15086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/22/2019] [Indexed: 01/05/2023]
Affiliation(s)
- María José González‐Serna
- Grupo de Investigación de la Biodiversidad Genética y Cultural Instituto de Investigación en Recursos Cinegéticos – IREC – (CSIC, UCLM, JCCM) Ciudad Real Spain
| | - Pedro J. Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural Instituto de Investigación en Recursos Cinegéticos – IREC – (CSIC, UCLM, JCCM) Ciudad Real Spain
| | - Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de Doñana – EBD – (CSIC) Seville Spain
| |
Collapse
|
5
|
González-Serna MJ, Cordero PJ, Ortego J. Using high-throughput sequencing to investigate the factors structuring genomic variation of a Mediterranean grasshopper of great conservation concern. Sci Rep 2018; 8:13436. [PMID: 30194365 PMCID: PMC6128945 DOI: 10.1038/s41598-018-31775-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/03/2018] [Indexed: 01/25/2023] Open
Abstract
Inferring the demographic history of species is fundamental for understanding their responses to past climate/landscape alterations and improving our predictions about the future impacts of the different components of ongoing global change. Estimating the time-frame at which population fragmentation took place is also critical to determine whether such process was shaped by ancient events (e.g. past climate/geological changes) or if, conversely, it was driven by recent human activities (e.g. habitat loss). We employed genomic data (ddRAD-Seq) to determine the factors shaping contemporary patterns of genetic variation in the Iberian cross-backed grasshopper Dociostaurus crassiusculus, an endangered species with limited dispersal capacity and narrow habitat requirements. Our analyses indicate the presence of two ancient lineages and three genetic clusters resulted from historical processes of population fragmentation (~18-126 ka) that predate the Anthropocene. Landscape genetic analyses indicate that the limits of major river basins are the main geographical feature explaining large-scale patterns of genomic differentiation, with no apparent effect of human-driven habitat fragmentation. Overall, our study highlights the importance of detailed phylogeographic, demographic and spatially-explicit landscape analyses to identify evolutionary significant units and determine the relative impact of historical vs. anthropogenic factors on processes of genetic fragmentation in taxa of great conservation concern.
Collapse
Affiliation(s)
- María José González-Serna
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC - (CSIC, UCLM, JCCM), Ronda de Toledo, 12, E-13071, Ciudad Real, Spain.
| | - Pedro J Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC - (CSIC, UCLM, JCCM), Ronda de Toledo, 12, E-13071, Ciudad Real, Spain
| | - Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana - EBD - (CSIC), Avda. Américo Vespucio, 26, E-41092, Seville, Spain
| |
Collapse
|
6
|
García-Navas V, Noguerales V, Cordero PJ, Ortego J. Ecological drivers of body size evolution and sexual size dimorphism in short-horned grasshoppers (Orthoptera: Acrididae). J Evol Biol 2017; 30:1592-1608. [PMID: 28609564 DOI: 10.1111/jeb.13131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 02/03/2023]
Abstract
Sexual size dimorphism (SSD) is widespread and variable in nature. Although female-biased SSD predominates among insects, the proximate ecological and evolutionary factors promoting this phenomenon remain largely unstudied. Here, we employ modern phylogenetic comparative methods on eight subfamilies of Iberian grasshoppers (85 species) to examine the validity of different models of evolution of body size and SSD and explore how they are shaped by a suite of ecological variables (habitat specialization, substrate use, altitude) and/or constrained by different evolutionary pressures (female fecundity, strength of sexual selection, length of the breeding season). Body size disparity primarily accumulated late in the history of the group and did not follow a Brownian motion pattern, indicating the existence of directional evolution for this trait. We found support for the converse of Rensch's rule (i.e. females are proportionally bigger than males in large species) across all taxa but not within the two most speciose subfamilies (Gomphocerinae and Oedipodinae), which showed an isometric pattern. Our results do not provide support for the fecundity or sexual selection hypotheses, and we did not find evidence for significant effects of habitat use. Contrary to that expected, we found that species with narrower reproductive window are less dimorphic in size than those that exhibit a longer breeding cycle, suggesting that male protandry cannot solely account for the evolution of female-biased SSD in Orthoptera. Our study highlights the need to consider alternatives to the classical evolutionary hypotheses when trying to explain why in certain insect groups males remain small.
Collapse
Affiliation(s)
- V García-Navas
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - V Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - P J Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - J Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| |
Collapse
|
7
|
Ney G, Schul J. Low genetic differentiation between populations of an endemic prairie katydid despite habitat loss and fragmentation. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0987-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Mauger LA, Velez E, Cherkiss MS, Brien ML, Mazzotti FJ, Spotila JR. Conservation genetics of American crocodile, Crocodylus acutus, populations in Pacific Costa Rica. NATURE CONSERVATION 2017. [DOI: 10.3897/natureconservation.17.9714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Soro A, Quezada-Euan JJG, Theodorou P, Moritz RFA, Paxton RJ. The population genetics of two orchid bees suggests high dispersal, low diploid male production and only an effect of island isolation in lowering genetic diversity. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0912-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Tinnert J, Hellgren O, Lindberg J, Koch‐Schmidt P, Forsman A. Population genetic structure, differentiation, and diversity in Tetrix subulata pygmy grasshoppers: roles of population size and immigration. Ecol Evol 2016; 6:7831-7846. [PMID: 30128133 PMCID: PMC6093165 DOI: 10.1002/ece3.2520] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 12/30/2022] Open
Abstract
Genetic diversity within and among populations and species is influenced by complex demographic and evolutionary processes. Despite extensive research, there is no consensus regarding how landscape structure, spatial distribution, gene flow, and population dynamics impact genetic composition of natural populations. Here, we used amplified fragment length polymorphisms (AFLPs) to investigate effects of population size, geographic isolation, immigration, and gene flow on genetic structure, divergence, and diversity in populations of Tetrix subulata pygmy grasshoppers (Orthoptera: Tetrigidae) from 20 sampling locations in southern Sweden. Analyses of 1564 AFLP markers revealed low to moderate levels of genetic diversity (PPL = 59.5-90.1; Hj = 0.23-0.32) within and significant divergence among sampling localities. This suggests that evolution of functional traits in response to divergent selection is possible and that gene flow is restricted. Genetic diversity increased with population size and with increasing proportion of long-winged phenotypes (a proxy of recent immigration) across populations on the island of Öland, but not on the mainland. Our data further suggested that the open water separating Öland from the mainland acts as a dispersal barrier that restricts migration and leads to genetic divergence among regions. Isolation by distance was evident for short interpopulation distances on the mainland, but gradually disappeared as populations separated by longer distances were included. Results illustrate that integrating ecological and molecular data is key to identifying drivers of population genetic structure in natural populations. Our findings also underscore the importance of landscape structure and spatial sampling scheme for conclusions regarding the role of gene flow and isolation by distance.
Collapse
Affiliation(s)
- Jon Tinnert
- Department of Biology and Environmental ScienceEcology and Evolution in Microbial Model Systems, EEMISLinnaeus UniversityKalmarSweden
| | - Olof Hellgren
- Department of Biology and Environmental ScienceEcology and Evolution in Microbial Model Systems, EEMISLinnaeus UniversityKalmarSweden
- Present address:
Department of BiologyLund UniversityLundSweden
| | - Jenny Lindberg
- Department of Biology and Environmental ScienceEcology and Evolution in Microbial Model Systems, EEMISLinnaeus UniversityKalmarSweden
- Present address:
Naturbruksskolan Sötåsen54591TörebodaSweden
| | - Per Koch‐Schmidt
- Department of Biology and Environmental ScienceEcology and Evolution in Microbial Model Systems, EEMISLinnaeus UniversityKalmarSweden
| | - Anders Forsman
- Department of Biology and Environmental ScienceEcology and Evolution in Microbial Model Systems, EEMISLinnaeus UniversityKalmarSweden
| |
Collapse
|
11
|
Noguerales V, Cordero PJ, Ortego J. Hierarchical genetic structure shaped by topography in a narrow-endemic montane grasshopper. BMC Evol Biol 2016; 16:96. [PMID: 27149952 PMCID: PMC4858822 DOI: 10.1186/s12862-016-0663-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/21/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Understanding the underlying processes shaping spatial patterns of genetic structure in free-ranging organisms is a central topic in evolutionary biology. Here, we aim to disentangle the relative importance of neutral (i.e. genetic drift) and local adaptation (i.e. ecological divergence) processes in the evolution of spatial genetic structure of the Morales grasshopper (Chorthippus saulcyi moralesi), a narrow-endemic taxon restricted to the Central Pyrenees. More specifically, we analysed range-wide patterns of genetic structure and tested whether they were shaped by geography (isolation-by-distance, IBD), topographic complexity and present and past habitat suitability models (isolation-by-resistance, IBR), and environmental dissimilarity (isolation-by-environment, IBE). RESULTS Different clustering analyses revealed a deep genetic structure that was best explained by IBR based on topographic complexity. Our analyses did not reveal a significant role of IBE, a fact that may be due to low environmental variation among populations and/or consequence of other ecological factors not considered in this study are involved in local adaptation processes. IBR scenarios informed by current and past climate distribution models did not show either a significant impact on genetic differentiation after controlling for the effects of topographic complexity, which may indicate that they are not capturing well microhabitat structure in the present or the genetic signal left by dispersal routes defined by habitat corridors in the past. CONCLUSIONS Overall, these results indicate that spatial patterns of genetic variation in our study system are primarily explained by neutral divergence and migration-drift equilibrium due to limited dispersal across abrupt reliefs, whereas environmental variation or spatial heterogeneity in habitat suitability associated with the complex topography of the region had no significant effect on genetic discontinuities after controlling for geography. Our study highlights the importance of considering a comprehensive suite of potential isolating mechanisms and analytical approaches in order to get robust inferences on the processes promoting genetic divergence of natural populations.
Collapse
Affiliation(s)
- Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM), Ronda de Toledo 12, E-13071, Ciudad Real, Spain.
| | - Pedro J Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM), Ronda de Toledo 12, E-13071, Ciudad Real, Spain
| | - Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio s/n, E-41092, Seville, Spain
| |
Collapse
|
12
|
Ortego J, García-Navas V, Noguerales V, Cordero PJ. Discordant patterns of genetic and phenotypic differentiation in five grasshopper species codistributed across a microreserve network. Mol Ecol 2015; 24:5796-812. [DOI: 10.1111/mec.13426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology; Estación Biológica de Doñana; EBD-CSIC; Avda. Américo Vespucio s/n E-41092 Seville Spain
| | - Vicente García-Navas
- Institute of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ronda de Toledo s/n E-13005 Ciudad Real Spain
| | - Pedro J. Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM); Ronda de Toledo s/n E-13005 Ciudad Real Spain
| |
Collapse
|
13
|
Sun W, Dong H, Gao YB, Su QF, Qian HT, Bai HY, Zhang ZT, Cong B. Genetic variation and geographic differentiation among populations of the nonmigratory agricultural pest Oedaleus infernalis (Orthoptera: Acridoidea) in China. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev132. [PMID: 26496789 PMCID: PMC4622177 DOI: 10.1093/jisesa/iev132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
The nonmigratory grasshopper Oedaleus infernalis Saussure (Orthoptera : Acridoidea) is an agricultural pest to crops and forage grasses over a wide natural geographical distribution in China. The genetic diversity and genetic variation among 10 geographically separated populations of O. infernalis was assessed using polymerase chain reaction-based molecular markers, including the intersimple sequence repeat and mitochondrial cytochrome oxidase sequences. A high level of genetic diversity was detected among these populations from the intersimple sequence repeat (H: 0.2628, I: 0.4129, Hs: 0.2130) and cytochrome oxidase analyses (Hd: 0.653). There was no obvious geographical structure based on an unweighted pair group method analysis and median-joining network. The values of FST, θ(II), and Gst estimated in this study are low, and the gene flow is high (Nm > 4). Analysis of the molecular variance suggested that most of the genetic variation occurs within populations, whereas only a small variation takes place between populations. No significant correlation was found between the genetic distance and geographical distance. Overall, our results suggest that the geographical distance plays an unimpeded role in the gene flow among O. infernalis populations.
Collapse
Affiliation(s)
- Wei Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110161, China Key Laboratory of Integrated Pest Management on Crops in Northeast, Ministry of Agriculture, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Hui Dong
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110161, China
| | - Yue-Bo Gao
- Key Laboratory of Integrated Pest Management on Crops in Northeast, Ministry of Agriculture, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Qian-Fu Su
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110161, China Key Laboratory of Integrated Pest Management on Crops in Northeast, Ministry of Agriculture, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Hai-Tao Qian
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110161, China
| | - Hong-Yan Bai
- General Station of Forest Pest Management, State Forestry Administration, Shenyang 110034, China
| | - Zhu-Ting Zhang
- School of Environment & Life Science, Kaili University, Kaili 556011, China
| | - Bin Cong
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
14
|
Ortego J, Aguirre MP, Noguerales V, Cordero PJ. Consequences of extensive habitat fragmentation in landscape-level patterns of genetic diversity and structure in the Mediterranean esparto grasshopper. Evol Appl 2015; 8:621-32. [PMID: 26136826 PMCID: PMC4479516 DOI: 10.1111/eva.12273] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/27/2015] [Indexed: 11/28/2022] Open
Abstract
Anthropogenic habitat fragmentation has altered the distribution and population sizes in many organisms worldwide. For this reason, understanding the demographic and genetic consequences of this process is necessary to predict the fate of populations and establish management practices aimed to ensure their viability. In this study, we analyse whether the spatial configuration of remnant semi-natural habitat patches within a chronically fragmented landscape has shaped the patterns of genetic diversity and structure in the habitat-specialist esparto grasshopper (Ramburiella hispanica). In particular, we predict that agricultural lands constitute barriers to gene flow and hypothesize that fragmentation has restricted interpopulation dispersal and reduced local levels of genetic diversity. Our results confirmed the expectation that isolation and habitat fragmentation have reduced the genetic diversity of local populations. Landscape genetic analyses based on circuit theory showed that agricultural land offers ∽1000 times more resistance to gene flow than semi-natural habitats, indicating that patterns of dispersal are constrained by the spatial configuration of remnant patches of suitable habitat. Overall, this study shows that semi-natural habitat patches act as corridors for interpopulation gene flow and should be preserved due to the disproportionately large ecological function that they provide considering their insignificant area within these human-modified landscapes.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC) Seville, Spain
| | - María P Aguirre
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM) Ciudad Real, Spain
| | - Víctor Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM) Ciudad Real, Spain
| | - Pedro J Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM) Ciudad Real, Spain
| |
Collapse
|
15
|
Wiesner KR, Habel JC, Gossner MM, Loxdale HD, Köhler G, Schneider ARR, Tiedemann R, Weisser WW. Effects of habitat structure and land-use intensity on the genetic structure of the grasshopper species Chorthippus parallelus. ROYAL SOCIETY OPEN SCIENCE 2014; 1:140133. [PMID: 26064535 PMCID: PMC4448891 DOI: 10.1098/rsos.140133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
Land-use intensity (LUI) is assumed to impact the genetic structure of organisms. While effects of landscape structure on the genetics of local populations have frequently been analysed, potential effects of variation in LUI on the genetic diversity of local populations have mostly been neglected. In this study, we used six polymorphic microsatellites to analyse the genetic effects of variation in land use in the highly abundant grasshopper Chorthippus parallelus. We sampled a total of 610 individuals at 22 heterogeneous grassland sites in the Hainich-Dün region of Central Germany. For each of these grassland sites we assessed habitat size, LUI (combined index of mowing, grazing and fertilization), and the proportion of grassland adjoining the sampling site and the landscape heterogeneity (the latter two factors within a 500 m buffer zone surrounding each focal site). We found only marginal genetic differentiation among all local populations and no correlation between geographical and genetic distance. Habitat size, LUI and landscape characteristics had only weak effects on most of the parameters of genetic diversity of C. parallelus; only expected heterozygosity and the grasshopper abundances were affected by interacting effects of LUI, habitat size and landscape characteristics. The lack of any strong relationships between LUI, abundance and the genetic structure might be due to large local populations of the species in the landscape, counteracting local differentiation and potential genetic drift effects.
Collapse
Affiliation(s)
- Kerstin R. Wiesner
- Institute of Ecology, Friedrich-Schiller-University, 07742 Jena, Germany
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Jan Christian Habel
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Martin M. Gossner
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Hugh D. Loxdale
- Institute of Ecology, Friedrich-Schiller-University, 07742 Jena, Germany
| | - Günter Köhler
- Institute of Ecology, Friedrich-Schiller-University, 07742 Jena, Germany
| | - Anja R. R. Schneider
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Wolfgang W. Weisser
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
16
|
García-Navas V, Ferrer ES, Sanz JJ, Ortego J. The role of immigration and local adaptation on fine-scale genotypic and phenotypic population divergence in a less mobile passerine. J Evol Biol 2014; 27:1590-603. [DOI: 10.1111/jeb.12412] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/18/2014] [Accepted: 04/11/2014] [Indexed: 11/28/2022]
Affiliation(s)
- V. García-Navas
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM); Ciudad Real Spain
- Departamento de Ciencias Ambientales; Facultad de Ciencias Ambientales y Bioquímica; Universidad de Castilla-La Mancha; Toledo Spain
| | - E. S. Ferrer
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM); Ciudad Real Spain
- Departamento de Ciencias Ambientales; Facultad de Ciencias Ambientales y Bioquímica; Universidad de Castilla-La Mancha; Toledo Spain
| | - J. J. Sanz
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales (CSIC); Madrid Spain
| | - J. Ortego
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM); Ciudad Real Spain
- Conservation and Evolutionary Genetics Group; Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| |
Collapse
|
17
|
Fan Z, Jiang GF, Liu YX, He QX, Blanchard B. Population explosion in the yellow-spined bamboo locust Ceracris kiangsu and inferences for the impact of human activity. PLoS One 2014; 9:e89873. [PMID: 24603526 PMCID: PMC3946154 DOI: 10.1371/journal.pone.0089873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/27/2014] [Indexed: 11/29/2022] Open
Abstract
Geographic distance and geographical barriers likely play a considerable role in structuring genetic variation in species, although some migratory species may have less phylogeographic structure on a smaller spatial scale. Here, genetic diversity and the phylogenetic structure among geographical populations of the yellow-spined bamboo locust, Ceracris kiangsu, were examined with 16S rDNA and amplified fragment length polymorphisms (AFLPs). In this study, no conspicuous phylogeographical structure was discovered from either Maximum parsimony (MP) and Neighbor-joining (NJ) phylogenetic analyses. The effect of geographical isolation was not conspicuous on a large spatial scale.At smaller spatial scales local diversity of some populations within mountainous areas were detected using Nei's genetic distance and AMOVA. There is a high level of genetic diversity and a low genetic differentiation among populations in the C. kiangsu of South and Southeast China. Our analyses indicate that C. kiangsu is a monophyletic group. Our results also support the hypothesis that the C. kiangsu population is in a primary differentiation stage. Given the mismatch distribution, it is likely that a population expansion in C. kiangsu occurred about 0.242 Ma during the Quaternary interglaciation. Based on historical reports, we conjecture that human activities had significant impacts on the C. kiangsu gene flow.
Collapse
Affiliation(s)
- Zhou Fan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guo-Fang Jiang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yu-Xiang Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qi-Xin He
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benjamin Blanchard
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
18
|
Arribas P, Andújar C, Sánchez-Fernández D, Abellán P, Millán A. Integrative taxonomy and conservation of cryptic beetles in the Mediterranean region (Hydrophilidae). ZOOL SCR 2012. [DOI: 10.1111/zsc.12000] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Spatial genetic structure and mitochondrial DNA phylogeography of Argentinean populations of the grasshopper Dichroplus elongatus. PLoS One 2012; 7:e40807. [PMID: 22859953 PMCID: PMC3408447 DOI: 10.1371/journal.pone.0040807] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/13/2012] [Indexed: 11/19/2022] Open
Abstract
Many grasshopper species are considered of agronomical importance because they cause damage to pastures and crops. Comprehension of pest population dynamics requires a clear understanding of the genetic diversity and spatial structure of populations. In this study we report on patterns of genetic variation in the South American grasshopper Dichroplus elongatus which is an agricultural pest of crops and forage grasses of great economic significance in Argentina. We use Direct Amplification of Minisatellite Regions (DAMD) and partial sequences of the cytochrome oxydase 1 (COI) mitochondrial gene to investigate intraspecific structure, demographic history and gene flow patterns in twenty Argentinean populations of this species belonging to different geographic and biogeographic regions. DAMD data suggest that, although genetic drift and migration occur within and between populations, measurable relatedness among neighbouring populations declines with distance and dispersal over distances greater than 200 km is not typical, whereas effective gene flow may occur for populations separated by less than 100 km. Landscape analysis was useful to detect genetic discontinuities associated with environmental heterogeneity reflecting the changing agroecosystem. The COI results indicate the existence of strong genetic differentiation between two groups of populations located at both margins of the Paraná River which became separated during climate oscillations of the Middle Pleistocene, suggesting a significant restriction in effective dispersion mediated by females and large scale geographic differentiation. The number of migrants between populations estimated through mitochondrial and DAMD markers suggest that gene flow is low prompting a non-homogeneous spatial structure and justifying the variation through space. Moreover, the genetic analysis of both markers allows us to conclude that males appear to disperse more than females, reducing the chance of the genetic loss associated with recent anthropogenic fragmentation of the D. elongatus studied range.
Collapse
|
20
|
Ortego J, Riordan EC, Gugger PF, Sork VL. Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Mol Ecol 2012; 21:3210-23. [PMID: 22548448 DOI: 10.1111/j.1365-294x.2012.05591.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding how specific environmental factors shape gene flow while disentangling their importance relative to the effects of geographical isolation is a major question in evolutionary biology and a specific goal of landscape genetics. Here, we combine information from nuclear microsatellite markers and ecological niche modelling to study the association between climate and spatial genetic structure and variability in Engelmann oak (Quercus engelmannii), a wind-pollinated species with high potential for gene flow. We first test whether genetic diversity is associated with climatic niche suitability and stability since the Last Glacial Maximum (LGM). Second, we use causal modelling to analyse the potential influence of climatic factors (current and LGM niche suitability) and altitude in the observed patterns of genetic structure. We found that genetic diversity is negatively associated with local climatic stability since the LGM, which may be due to higher immigration rates in unstable patches during favourable climatic periods and/or temporally varying selection. Analyses of spatial genetic structure revealed the presence of three main genetic clusters, a pattern that is mainly driven by two highly differentiated populations located in the northern edge of the species distribution range. After controlling for geographic distance, causal modelling analyses showed that genetic relatedness decreases with the environmental divergence among sampling sites estimated as altitude and current and LGM niche suitability. Natural selection against nonlocal genotypes and/or asynchrony in reproductive phenology may explain this pattern. Overall, this study suggests that local environmental conditions can shape patterns of genetic structure and variability even in species with high potential for gene flow and relatively small distribution ranges.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Box 957239, Los Angeles, CA 90095-7239, USA.
| | | | | | | |
Collapse
|
21
|
Blanchet E, Lecoq M, Sword G, Berthier K, Pages C, Billot C, Rivallan R, Foucart A, Vassal JM, Risterucci A, Chapuis MP. A comparative analysis of fine-scale genetic structure in three closely related syntopic species of the grasshopper genus Calliptamus. CAN J ZOOL 2012. [DOI: 10.1139/z11-109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Landscape analysis and genetics can allow a better understanding of grasshoppers for which ecology is not very well known. We analysed landscape changes between 1990 and 2006 at two areas from southern France where three grasshopper species ( Calliptamus italicus (L., 1758), Calliptamus wattenwylianus Pantel, 1896, and Calliptamus barbarus (Costa, 1836)) occur. We then applied microsatellite markers to the study of 1200 georeferenced samples collected over both areas. We used a recent Bayesian clustering method with correlated allele frequencies to detect weak population genetic structure. We found evidence of breaks in gene flow only in C. wattenwylianus, thought to be sedentary relative to its congenerics. By using different allele frequency models and prior information to different levels of genetic differentiation for our six real data sets, our study also informs on the ability of the newly available Bayesian clustering methods model to detect weak genetic structure in natural field populations.
Collapse
Affiliation(s)
- E. Blanchet
- CIRAD UPR Bioagresseurs: analyse et maîtrise du risque, Montpellier, F-34398 France
| | - M. Lecoq
- CIRAD UPR Bioagresseurs: analyse et maîtrise du risque, Montpellier, F-34398 France
| | - G.A. Sword
- School of Biological Sciences, The University of Sydney, Macleay Building A12, Sydney, NSW 2006, Australia
| | - K. Berthier
- School of Biological Sciences, The University of Sydney, Macleay Building A12, Sydney, NSW 2006, Australia
| | - C. Pages
- CIRAD UPR Bioagresseurs: analyse et maîtrise du risque, Montpellier, F-34398 France
| | - C. Billot
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | - R. Rivallan
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | - A. Foucart
- CIRAD UPR Bioagresseurs: analyse et maîtrise du risque, Montpellier, F-34398 France
| | - J.-M. Vassal
- CIRAD UPR Bioagresseurs: analyse et maîtrise du risque, Montpellier, F-34398 France
| | | | - M.-P. Chapuis
- CIRAD UPR Bioagresseurs: analyse et maîtrise du risque, Montpellier, F-34398 France
- School of Biological Sciences, The University of Sydney, Macleay Building A12, Sydney, NSW 2006, Australia
| |
Collapse
|
22
|
RONNÅS CECILIA, CASSEL-LUNDHAGEN ANNA, BATTISTI ANDREA, WALLÉN JOHAN, LARSSON STIG. Limited emigration from an outbreak of a forest pest insect. Mol Ecol 2011; 20:4606-17. [DOI: 10.1111/j.1365-294x.2011.05312.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Ortego J, Aguirre MP, Cordero PJ. Landscape genetics of a specialized grasshopper inhabiting highly fragmented habitats: a role for spatial scale. DIVERS DISTRIB 2011. [DOI: 10.1111/j.1472-4642.2011.00840.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
24
|
Lawton RJ, Messmer V, Pratchett MS, Bay LK. High gene flow across large geographic scales reduces extinction risk for a highly specialised coral feeding butterflyfish. Mol Ecol 2011; 20:3584-98. [PMID: 21806692 DOI: 10.1111/j.1365-294x.2011.05207.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vulnerability of ecologically specialised species to environmental fluctuations has been well documented. However, population genetic structure can influence vulnerability to environmental change and recent studies have indicated that specialised species may have lower genetic diversity and greater population structuring compared to their generalist counterparts. To examine whether there were differences in population genetic structure between a dietary specialist (Chaetodon trifascialis) and a dietary generalist (Chaetodon lunulatus) we compared the demographic history and levels of gene flow of two related coral-feeding butterflyfishes. Using allele frequencies of ≥11 microsatellite loci and >350 bases of mitochondrial control region sequence our analyses of C. trifascialis and C. lunulatus from five locations across the Pacific Ocean revealed contrasting demographic histories and levels of genetic structure. Heterozygosity excess tests, neutrality tests and mismatch distributions were all highly significant in the dietary specialist C. trifascialis (all P < 0.01), suggesting genetic bottlenecks have occurred in all locations. In contrast, we found little evidence of genetic bottlenecks for the dietary generalist C. lunulatus. High gene flow and low genetic structuring was detected among locations for C. trifascialis (amova: R(ST) = 0.0027, P = 0.371; Φ(ST) = 0.068, P < 0.0001). Contrary to our expectations, a greater level of genetic structuring between locations was detected for C. lunulatus (amova: R(ST) = 0.0277, Φ(ST) = 0.166, both P < 0.0001). These results suggest that dietary specialisation may affect demographic history through reductions in population size following resource declines, without affecting population structure through reductions in gene flow in the same way that habitat specialisation appears to. Although C. trifascialis is highly vulnerable to coral loss, the high gene flow detected here suggests populations will be able to recover from local declines through the migration of individuals.
Collapse
Affiliation(s)
- Rebecca J Lawton
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| | | | | | | |
Collapse
|
25
|
WIESNER KERSTINR, LOXDALE HUGHD, KÖHLER GÜNTER, SCHNEIDER ANJARR, TIEDEMANN RALPH, WEISSER WOLFGANGW. Patterns of local and regional genetic structuring in the meadow grasshopper, Chorthippus parallelus (Orthoptera: Acrididae), in Central Germany revealed using microsatellite markers. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01698.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Ortego J, García-Navas V, Ferrer ES, Sanz JJ. Genetic structure reflects natal dispersal movements at different spatial scales in the blue tit, Cyanistes caeruleus. Anim Behav 2011. [DOI: 10.1016/j.anbehav.2011.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Ortego J, Aguirre MP, Cordero PJ. Fine-scale spatial genetic structure and within population male-biased gene-flow in the grasshopper Mioscirtus wagneri. Evol Ecol 2011. [DOI: 10.1007/s10682-011-9462-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|