1
|
Termignoni-Garcia F, Louder MIM, Balakrishnan CN, O’Connell L, Edwards SV. Prospects for sociogenomics in avian cooperative breeding and parental care. Curr Zool 2020; 66:293-306. [PMID: 32440290 PMCID: PMC7233861 DOI: 10.1093/cz/zoz057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/20/2019] [Indexed: 01/08/2023] Open
Abstract
For the last 40 years, the study of cooperative breeding (CB) in birds has proceeded primarily in the context of discovering the ecological, geographical, and behavioral drivers of helping. The advent of molecular tools in the early 1990s assisted in clarifying the relatedness of helpers to those helped, in some cases, confirming predictions of kin selection theory. Methods for genome-wide analysis of sequence variation, gene expression, and epigenetics promise to add new dimensions to our understanding of avian CB, primarily in the area of molecular and developmental correlates of delayed breeding and dispersal, as well as the ontogeny of achieving parental status in nature. Here, we outline key ways in which modern -omics approaches, in particular genome sequencing, transcriptomics, and epigenetic profiling such as ATAC-seq, can be used to add a new level of analysis of avian CB. Building on recent and ongoing studies of avian social behavior and sociogenomics, we review how high-throughput sequencing of a focal species or clade can provide a robust foundation for downstream, context-dependent destructive and non-destructive sampling of specific tissues or physiological states in the field for analysis of gene expression and epigenetics. -Omics approaches have the potential to inform not only studies of the diversification of CB over evolutionary time, but real-time analyses of behavioral interactions in the field or lab. Sociogenomics of birds represents a new branch in the network of methods used to study CB, and can help clarify ways in which the different levels of analysis of CB ultimately interact in novel and unexpected ways.
Collapse
Affiliation(s)
- Flavia Termignoni-Garcia
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Matthew I M Louder
- International Research Center for Neurointelligence, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Lauren O’Connell
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Li J, Lv L, Wang P, Wang Y, Hatchwell BJ, Zhang Z. Sex-biased dispersal patterns of a social passerine: complementary approaches and evidence for a role of spatial scale. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractAnimal dispersal patterns have important implications for many biological processes, but the measurement of dispersal is challenging and often requires the use of complementary approaches. In this study, we investigated the local-scale sex-biased dispersal pattern in a social bird, the black-throated tit (Aegithalos concinnus), in central China. Spatial genetic autocorrelation analyses suggested that significant fine-scale genetic structure existed in males but not in females. Mark–recapture analyses of ringed individuals also showed that female offspring were more dispersive than male offspring, supporting genetic evidence of local female-biased dispersal. These results were contrary to a previous finding of male-biased long-distance dispersal in this species that was based on analyses of gene flow across the species range in China. This implies that the species might potentially have a scale-dependent dispersal strategy, with females frequently dispersing further than males at the local level, but with a proportion of males occasionally dispersing over long distances and contributing more to gene flow at a larger geographical scale. Long-distance dispersal by male black-throated tits might be induced by competition for resources or by unfavourable environmental conditions, warranting further investigation, but our findings increase the evidence that geographical scale is an important factor to be considered when investigating animal dispersal patterns.
Collapse
Affiliation(s)
- Jianqiang Li
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Lei Lv
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pengcheng Wang
- Ministry of Education Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yong Wang
- Department of Biological and Environmental Sciences, School of Agricultural, Life and Natural Sciences, Alabama A&M University, Normal, AL, USA
| | - Ben J Hatchwell
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Zhengwang Zhang
- Ministry of Education Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Pons JM, Cibois A, Fournier J, Fuchs J, Olioso G, Thibault JC. Gene flow and genetic divergence among mainland and insular populations across the south-western range of the Eurasian treecreeper ( Certhia familiaris, Aves). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jean-Marc Pons
- Institut Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Alice Cibois
- Department of Mammalogy and Ornithology, Natural History Museum of Geneva, Geneva, Switzerland
| | - Jérôme Fournier
- Centre de Recherche sur la Biologie des Populations d’Oiseaux, Centre d’Ecologie et des Sciences de la Conservation (CESCO), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, Paris, France
| | - Jérôme Fuchs
- Institut Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | | | - Jean-Claude Thibault
- Institut Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| |
Collapse
|
4
|
Abstract
Levels and patterns of genetic diversity can provide insights into a population’s history. In species with sex chromosomes, differences between genomic regions with unique inheritance patterns can be used to distinguish between different sets of possible demographic and selective events. This review introduces the differences in population history for sex chromosomes and autosomes, provides the expectations for genetic diversity across the genome under different evolutionary scenarios, and gives an introductory description for how deviations in these expectations are calculated and can be interpreted. Predominantly, diversity on the sex chromosomes has been used to explore and address three research areas: 1) Mating patterns and sex-biased variance in reproductive success, 2) signatures of selection, and 3) evidence for modes of speciation and introgression. After introducing the theory, this review catalogs recent studies of genetic diversity on the sex chromosomes across species within the major research areas that sex chromosomes are typically applied to, arguing that there are broad similarities not only between male-heterogametic (XX/XY) and female-heterogametic (ZZ/ZW) sex determination systems but also any mating system with reduced recombination in a sex-determining region. Further, general patterns of reduced diversity in nonrecombining regions are shared across plants and animals. There are unique patterns across populations with vastly different patterns of mating and speciation, but these do not tend to cluster by taxa or sex determination system.
Collapse
Affiliation(s)
- Melissa A Wilson Sayres
- School of Life Sciences, Center for Evolution and Medicine, The Biodesign Institute, Arizona State University
| |
Collapse
|
5
|
Tritsch C, Stuckas H, Martens J, Pentzold S, Kvist L, Lo Valvo M, Giacalone G, Tietze DT, Nazarenko AA, PÄckert M. Gene flow in the European coal tit, Periparus ater (Aves: Passeriformes): low among Mediterranean populations but high in a continental contact zone. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Christian Tritsch
- Senckenberg Natural History Collections, Königsbrücker Landstraße, Dresden, Germany
- Institute of Biology, Molecular Evolution & Animal Systematics, University of Leipzig, Leipzig, Germany
| | - Heiko Stuckas
- Senckenberg Natural History Collections, Königsbrücker Landstraße, Dresden, Germany
| | - Jochen Martens
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Pentzold
- Institute of Biology, Molecular Evolution & Animal Systematics, University of Leipzig, Leipzig, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura Kvist
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Mario Lo Valvo
- Dipartimento di Scienze e Tecnologie biologiche, chimiche e farmaceutiche, Via Archirafi, Palermo, Italy
| | | | | | - Alexander A Nazarenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Martin PÄckert
- Senckenberg Natural History Collections, Königsbrücker Landstraße, Dresden, Germany
| |
Collapse
|
6
|
Deconstructing isolation-by-distance: The genomic consequences of limited dispersal. PLoS Genet 2017; 13:e1006911. [PMID: 28771477 PMCID: PMC5542401 DOI: 10.1371/journal.pgen.1006911] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022] Open
Abstract
Geographically limited dispersal can shape genetic population structure and result in a correlation between genetic and geographic distance, commonly called isolation-by-distance. Despite the prevalence of isolation-by-distance in nature, to date few studies have empirically demonstrated the processes that generate this pattern, largely because few populations have direct measures of individual dispersal and pedigree information. Intensive, long-term demographic studies and exhaustive genomic surveys in the Florida Scrub-Jay (Aphelocoma coerulescens) provide an excellent opportunity to investigate the influence of dispersal on genetic structure. Here, we used a panel of genome-wide SNPs and extensive pedigree information to explore the role of limited dispersal in shaping patterns of isolation-by-distance in both sexes, and at an exceedingly fine spatial scale (within ~10 km). Isolation-by-distance patterns were stronger in male-male and male-female comparisons than in female-female comparisons, consistent with observed differences in dispersal propensity between the sexes. Using the pedigree, we demonstrated how various genealogical relationships contribute to fine-scale isolation-by-distance. Simulations using field-observed distributions of male and female natal dispersal distances showed good agreement with the distribution of geographic distances between breeding individuals of different pedigree relationship classes. Furthermore, we built coalescent simulations parameterized by the observed dispersal curve, population density, and immigration rate, and showed how incorporating these extensions to Malécot’s theory of isolation-by-distance allows us to accurately reconstruct observed sex-specific isolation-by-distance patterns in autosomal and Z-linked SNPs. Therefore, patterns of fine-scale isolation-by-distance in the Florida Scrub-Jay can be well understood as a result of limited dispersal over contemporary timescales. Dispersal is a fundamental component of the life history of most organisms and therefore influences many biological processes. Dispersal is particularly important in creating genetic structure on the landscape. We often observe a pattern of decreased genetic relatedness between individuals as geographic distances increases, or isolation-by-distance. This pattern is particularly pronounced in organisms with extremely short dispersal distances. Despite the ubiquity of isolation-by-distance patterns in nature, there are few examples that explicitly demonstrate how limited dispersal influences spatial genetic structure. Here we investigate the processes that result in spatial genetic structure using the Florida Scrub-Jay, a bird with extremely limited dispersal behavior and extensive genome-wide data. We take advantage of the long-term monitoring of a contiguous population of Florida Scrub-Jays, which has resulted in a detailed pedigree and measurements of dispersal for hundreds of individuals. We show how limited dispersal results in close genealogical relatives living closer together geographically, which generates a strong pattern of isolation-by-distance at an extremely small spatial scale (<10 km) in just a few generations. Given the detailed dispersal, pedigree, and genomic data, we can achieve a fairly complete understanding of how dispersal shapes patterns of genetic diversity over short spatial scales.
Collapse
|
7
|
Städele V, Vigilant L. Strategies for determining kinship in wild populations using genetic data. Ecol Evol 2016; 6:6107-20. [PMID: 27648229 PMCID: PMC5016635 DOI: 10.1002/ece3.2346] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 01/17/2023] Open
Abstract
Knowledge of kin relationships between members of wild animal populations has broad application in ecology and evolution research by allowing the investigation of dispersal dynamics, mating systems, inbreeding avoidance, kin recognition, and kin selection as well as aiding the management of endangered populations. However, the assessment of kinship among members of wild animal populations is difficult in the absence of detailed multigenerational pedigrees. Here, we first review the distinction between genetic relatedness and kinship derived from pedigrees and how this makes the identification of kin using genetic data inherently challenging. We then describe useful approaches to kinship classification, such as parentage analysis and sibship reconstruction, and explain how the combined use of marker systems with biparental and uniparental inheritance, demographic information, likelihood analyses, relatedness coefficients, and estimation of misclassification rates can yield reliable classifications of kinship in groups with complex kin structures. We outline alternative approaches for cases in which explicit knowledge of dyadic kinship is not necessary, but indirect inferences about kinship on a group- or population-wide scale suffice, such as whether more highly related dyads are in closer spatial proximity. Although analysis of highly variable microsatellite loci is still the dominant approach for studies on wild populations, we describe how the long-awaited use of large-scale single-nucleotide polymorphism and sequencing data derived from noninvasive low-quality samples may eventually lead to highly accurate assessments of varying degrees of kinship in wild populations.
Collapse
Affiliation(s)
- Veronika Städele
- Department of PrimatologyMax Planck Institute for Evolutionary AnthropologyDeutscher Platz 6D‐04103LeipzigGermany
| | - Linda Vigilant
- Department of PrimatologyMax Planck Institute for Evolutionary AnthropologyDeutscher Platz 6D‐04103LeipzigGermany
| |
Collapse
|
8
|
García-Navas V, Ferrer ES, Sanz JJ, Ortego J. The role of immigration and local adaptation on fine-scale genotypic and phenotypic population divergence in a less mobile passerine. J Evol Biol 2014; 27:1590-603. [DOI: 10.1111/jeb.12412] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/18/2014] [Accepted: 04/11/2014] [Indexed: 11/28/2022]
Affiliation(s)
- V. García-Navas
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM); Ciudad Real Spain
- Departamento de Ciencias Ambientales; Facultad de Ciencias Ambientales y Bioquímica; Universidad de Castilla-La Mancha; Toledo Spain
| | - E. S. Ferrer
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM); Ciudad Real Spain
- Departamento de Ciencias Ambientales; Facultad de Ciencias Ambientales y Bioquímica; Universidad de Castilla-La Mancha; Toledo Spain
| | - J. J. Sanz
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales (CSIC); Madrid Spain
| | - J. Ortego
- Grupo de Investigación de la Biodiversidad Genética y Cultural; Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM); Ciudad Real Spain
- Conservation and Evolutionary Genetics Group; Department of Integrative Ecology; Estación Biológica de Doñana (EBD-CSIC); Seville Spain
| |
Collapse
|
9
|
Sex-linked and autosomal microsatellites provide new insights into island populations of the tammar wallaby. Heredity (Edinb) 2013; 112:333-42. [PMID: 24169646 DOI: 10.1038/hdy.2013.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 11/08/2022] Open
Abstract
The emerging availability of microsatellite markers from mammalian sex chromosomes provides opportunities to investigate both male- and female-mediated gene flow in wild populations, identifying patterns not apparent from the analysis of autosomal markers alone. Tammar wallabies (Macropus eugenii), once spread over the southern mainland, have been isolated on several islands off the Western Australian and South Australian coastlines for between 10,000 and 13,000 years. Here, we combine analyses of autosomal, Y-linked and X-linked microsatellite loci to investigate genetic variation in populations of this species on two islands (Kangaroo Island, South Australia and Garden Island, Western Australia). All measures of diversity were higher for the larger Kangaroo Island population, in which genetic variation was lowest at Y-linked markers and highest at autosomal markers (θ=3.291, 1.208 and 0.627 for autosomal, X-linked and Y-linked data, respectively). Greater relatedness among females than males provides evidence for male-biased dispersal in this population, while sex-linked markers identified genetic lineages not apparent from autosomal data alone. Overall genetic diversity in the Garden Island population was low, especially on the Y chromosome where most males shared a common haplotype, and we observed high levels of inbreeding and relatedness among individuals. Our findings highlight the utility of this approach for management actions, such as the selection of animals for translocation or captive breeding, and the ecological insights that may be gained by combining analyses of microsatellite markers on sex chromosomes with those derived from autosomes.
Collapse
|
10
|
Is gene flow promoting the reversal of pleistocene divergence in the Mountain Chickadee (Poecile gambeli)? PLoS One 2012; 7:e49218. [PMID: 23152877 PMCID: PMC3495768 DOI: 10.1371/journal.pone.0049218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/05/2012] [Indexed: 01/19/2023] Open
Abstract
The Pleistocene glacial cycles left a genetic legacy on taxa throughout the world; however, the persistence of genetic lineages that diverged during these cycles is dependent upon levels of gene flow and introgression. The consequences of secondary contact among taxa may reveal new insights into the history of the Pleistocene’s genetic legacy. Here, we use phylogeographic methods, using 20 nuclear loci from regional populations, to infer the consequences of secondary contact following divergence in the Mountain Chickadee (Poecile gambeli). Analysis of nuclear data identified two geographically-structured genetic groups, largely concordant with results from a previous mitochondrial DNA (mtDNA) study. Additionally, the estimated multilocus divergence times indicate a Pleistocene divergence, and are highly concordant with mtDNA. The previous mtDNA study showed a paucity of sympatry between clades, while nuclear patterns of gene flow show highly varied patterns between populations. The observed pattern of gene flow, from coalescent-based analyses, indicates southern populations in both clades exhibit little gene flow within or between clades, while northern populations are experiencing higher gene flow within and between clades. If this pattern were to persist, it is possible the historical legacy of Pleistocene divergence may be preserved in the southern populations only, and the northern populations would become a genetically diverse hybrid species.
Collapse
|
11
|
Kraus RHS, van Hooft P, Megens HJ, Tsvey A, Fokin SY, Ydenberg RC, Prins HHT. Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms. Mol Ecol 2012; 22:41-55. [PMID: 23110616 DOI: 10.1111/mec.12098] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 01/13/2023]
Abstract
Knowledge about population structure and connectivity of waterfowl species, especially mallards (Anas platyrhynchos), is a priority because of recent outbreaks of avian influenza. Ringing studies that trace large-scale movement patterns have to date been unable to detect clearly delineated mallard populations. We employed 363 single nucleotide polymorphism markers in combination with population genetics and phylogeographical approaches to conduct a population genomic test of panmixia in 801 mallards from 45 locations worldwide. Basic population genetic and phylogenetic methods suggest no or very little population structure on continental scales. Nor could individual-based structuring algorithms discern geographical structuring. Model-based coalescent analyses for testing models of population structure pointed to strong genetic connectivity among the world's mallard population. These diverse approaches all support the conclusion that there is a lack of clear population structure, suggesting that the world's mallards, perhaps with minor exceptions, form a single large, mainly interbreeding population.
Collapse
Affiliation(s)
- Robert H S Kraus
- Resource Ecology Group, Wageningen University, PO Box 47, 6700 AA, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
12
|
Küpper C, Edwards SV, Kosztolányi A, Alrashidi M, Burke T, Herrmann P, Argüelles-Tico A, Amat JA, Amezian M, Rocha A, Hötker H, Ivanov A, Chernicko J, Székely T. High gene flow on a continental scale in the polyandrous Kentish plover Charadrius alexandrinus. Mol Ecol 2012; 21:5864-79. [PMID: 23094674 DOI: 10.1111/mec.12064] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
Gene flow promotes genetic homogeneity of species in time and space. Gene flow can be modulated by sex-biased dispersal that links population genetics to mating systems. We investigated the phylogeography of the widely distributed Kentish plover Charadrius alexandrinus. This small shorebird has a large breeding range spanning from Western Europe to Japan and exhibits an unusually flexible mating system with high female breeding dispersal. We analysed genetic structure and gene flow using a 427-bp fragment of the mitochondrial (mtDNA) control region, 21 autosomal microsatellite markers and a Z microsatellite marker in 397 unrelated individuals from 21 locations. We found no structure or isolation-by-distance over the continental range. However, island populations had low genetic diversity and were moderately differentiated from mainland locations. Genetic differentiation based on autosomal markers was positively correlated with distance between mainland and each island. Comparisons of uniparentally and biparentally inherited markers were consistent with female-biased gene flow. Maternally inherited mtDNA was less structured, whereas the Z-chromosomal marker was more structured than autosomal microsatellites. Adult males were more related than females within genetic clusters. Taken together, our results suggest a prominent role for polyandrous females in maintaining genetic homogeneity across large geographic distances.
Collapse
Affiliation(s)
- Clemens Küpper
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jan C, Dawson DA, Altringham JD, Burke T, Butlin RK. Development of conserved microsatellite markers of high cross-species utility in bat species (Vespertilionidae, Chiroptera, Mammalia). Mol Ecol Resour 2012; 12:532-48. [PMID: 22260443 DOI: 10.1111/j.1755-0998.2012.03114.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Comparative ecological and behavioural studies of the widespread and diverse Vespertilionidae, which comprise almost 400 of the 1100 bat species, have been limited by the availability of markers. The potential of new methods for developing conserved microsatellite markers that possess enhanced cross-species utility has recently been illustrated in studies of birds. We have applied these methods to develop enhanced microsatellite markers for vespertilionid bats, in particular for the genus Myotis (103 species). We compared published bat microsatellites with their homologues in the genome sequence of the little brown bat, Myotis lucifugus, to create consensus sequences that were used to design candidate primer sets. Primer sets were then tested for amplification and polymorphism in 22 species of bat from nine of the largest families (including 11 Vespertilionidae). Of 46 loci tested, 33 were polymorphic, on average, in each of seven Myotis species tested, 20 in each of four species in other vespertilionid genera, and two in 11 nonvespertilionid species.
Collapse
Affiliation(s)
- Camille Jan
- Institute of Integrative and Comparative Biology University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
14
|
|