1
|
Healey AL, Piatkowski B, Lovell JT, Sreedasyam A, Carey SB, Mamidi S, Shu S, Plott C, Jenkins J, Lawrence T, Aguero B, Carrell AA, Nieto-Lugilde M, Talag J, Duffy A, Jawdy S, Carter KR, Boston LB, Jones T, Jaramillo-Chico J, Harkess A, Barry K, Keymanesh K, Bauer D, Grimwood J, Gunter L, Schmutz J, Weston DJ, Shaw AJ. Newly identified sex chromosomes in the Sphagnum (peat moss) genome alter carbon sequestration and ecosystem dynamics. NATURE PLANTS 2023; 9:238-254. [PMID: 36747050 PMCID: PMC9946827 DOI: 10.1038/s41477-022-01333-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Peatlands are crucial sinks for atmospheric carbon but are critically threatened due to warming climates. Sphagnum (peat moss) species are keystone members of peatland communities where they actively engineer hyperacidic conditions, which improves their competitive advantage and accelerates ecosystem-level carbon sequestration. To dissect the molecular and physiological sources of this unique biology, we generated chromosome-scale genomes of two Sphagnum species: S. divinum and S. angustifolium. Sphagnum genomes show no gene colinearity with any other reference genome to date, demonstrating that Sphagnum represents an unsampled lineage of land plant evolution. The genomes also revealed an average recombination rate an order of magnitude higher than vascular land plants and short putative U/V sex chromosomes. These newly described sex chromosomes interact with autosomal loci that significantly impact growth across diverse pH conditions. This discovery demonstrates that the ability of Sphagnum to sequester carbon in acidic peat bogs is mediated by interactions between sex, autosomes and environment.
Collapse
Affiliation(s)
- Adam L Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| | - Bryan Piatkowski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Sarah B Carey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Sujan Mamidi
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Travis Lawrence
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Blanka Aguero
- Department of Biology, Duke University, Durham, NC, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Jayson Talag
- Arizona Genomics Institute, University of Arizona, Tucson, AZ, USA
| | - Aaron Duffy
- Department of Biology, Duke University, Durham, NC, USA
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kelsey R Carter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Lori-Beth Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Teresa Jones
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Alex Harkess
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Keykhosrow Keymanesh
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Diane Bauer
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Lee Gunter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | | |
Collapse
|
2
|
Meleshko O, Martin MD, Korneliussen TS, Schröck C, Lamkowski P, Schmutz J, Healey A, Piatkowski BT, Shaw AJ, Weston DJ, Flatberg KI, Szövényi P, Hassel K, Stenøien HK. Extensive Genome-Wide Phylogenetic Discordance Is Due to Incomplete Lineage Sorting and Not Ongoing Introgression in a Rapidly Radiated Bryophyte Genus. Mol Biol Evol 2021; 38:2750-2766. [PMID: 33681996 PMCID: PMC8233498 DOI: 10.1093/molbev/msab063] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The relative importance of introgression for diversification has long been a highly disputed topic in speciation research and remains an open question despite the great attention it has received over the past decade. Gene flow leaves traces in the genome similar to those created by incomplete lineage sorting (ILS), and identification and quantification of gene flow in the presence of ILS is challenging and requires knowledge about the true phylogenetic relationship among the species. We use whole nuclear, plastid, and organellar genomes from 12 species in the rapidly radiated, ecologically diverse, actively hybridizing genus of peatmoss (Sphagnum) to reconstruct the species phylogeny and quantify introgression using a suite of phylogenomic methods. We found extensive phylogenetic discordance among nuclear and organellar phylogenies, as well as across the nuclear genome and the nodes in the species tree, best explained by extensive ILS following the rapid radiation of the genus rather than by postspeciation introgression. Our analyses support the idea of ancient introgression among the ancestral lineages followed by ILS, whereas recent gene flow among the species is highly restricted despite widespread interspecific hybridization known in the group. Our results contribute to phylogenomic understanding of how speciation proceeds in rapidly radiated, actively hybridizing species groups, and demonstrate that employing a combination of diverse phylogenomic methods can facilitate untangling complex phylogenetic patterns created by ILS and introgression.
Collapse
Affiliation(s)
- Olena Meleshko
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | - Paul Lamkowski
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Jeremy Schmutz
- United States Department of Energy, Joint Genome Institute, Berkeley, CA, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Adam Healey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kjell Ivar Flatberg
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Kristian Hassel
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hans K Stenøien
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
Cara N, Ferrer MS, Masuelli RW, Camadro EL, Marfil CF. Epigenetic consequences of interploidal hybridisation in synthetic and natural interspecific potato hybrids. THE NEW PHYTOLOGIST 2019; 222:1981-1993. [PMID: 30681145 DOI: 10.1111/nph.15706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Interploidal hybridisation can generate changes in plant chromosome numbers, which might exert effects additional to the expected due to genome merger per se (that is genetic, epigenetic and phenotypic novelties). Wild potatoes are suitable to address this question in an evolutionary context. To this end, we performed genetic (AFLP and single sequence repeart (SSR)), epigenetic (MSAP), and cytological comparisons in: (1) natural populations of the diploid cytotype of the hybrid taxonomic species Solanum × rechei (2n = 2×, 3×) and its parental species, the triploid cytotype of Solanum microdontum (2n = 2×, 3×) and Solanum kurtzianum (2n = 2×); and (2) newly synthesised intraploidal (2× × 2×) and interploidal (3× × 2×) S. microdontum × S. kurtzianum hybrids. Aneuploidy was detected in S. × rechei and the synthetic interploidal progeny; this phenomenon might have originated the significantly higher number of methylation changes observed in the interploidal vs the intraploidal hybrids. The wide epigenetic variability induced by interploidal hybridisation is consistent with the novel epigenetic pattern established in S. × rechei compared to its parental species in nature. These results suggest that aneuploid potato lineages can persist throughout the short term, and possibly medium term, and that differences in parental ploidy resulting in aneuploidy are an additional source of epigenetic variation.
Collapse
Affiliation(s)
- Nicolás Cara
- Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, U.N.Cuyo, CONICET, Mendoza, Argentina
| | - María Soledad Ferrer
- Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, U.N.Cuyo, CONICET, Mendoza, Argentina
| | - Ricardo Williams Masuelli
- Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, U.N.Cuyo, CONICET, Mendoza, Argentina
| | - Elsa Lucila Camadro
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Carlos Federico Marfil
- Instituto de Biología Agrícola de Mendoza (IBAM), Facultad de Ciencias Agrarias, U.N.Cuyo, CONICET, Mendoza, Argentina
| |
Collapse
|
4
|
Bell NE, Ignatov MS. Placing the regionally threatened moss Orthodontium gracile in the big picture - Phylogeny, genome incongruence and anthropogenic dispersal in the order Orthodontiales. Mol Phylogenet Evol 2018; 134:186-199. [PMID: 30580043 DOI: 10.1016/j.ympev.2018.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 11/28/2022]
Abstract
The Orthodontiaceae is a small family of predominantly Southern Hemisphere temperate and South East Asian mosses that has a key phylogenetic position for research into the evolution of pleurocarpy. In the United Kingdom it is represented by the rare conservation priority species Orthodontium gracile and the abundant exotic O. lineare, introduced from the Southern Hemisphere around a century ago. Although the two species are superficially very similar and difficult to tell apart in the field, very little is known about how closely they are related or about the phylogeny, biogeography and evolutionary history of the genus Orthodontium as a whole. Phylogenetic inference and divergence time estimation were used to explore relationships within the genus globally, date major lineage splits, detect reticulate evolutionary processes and test monophyly of taxa. It was shown that Orthodontium gracile belongs to a Holarctic and Asian clade that diverged from the exclusively southern temperate lineage of O. lineare approximately 53 Ma and that it is sister to the Himalayan and South Siberian bispecific genus Orthodontopsis, which we now recognise as a single species within Orthodontium, O. lignicola. Orthodontium lignicola is quite distinct from O. gracile morphologically but may have a closely overlapping centre of extant diversity in the Himalaya, in contrast to O. lineare which is morphologically similar but biogeographically dissimilar. The introduced European populations of Orthodontium lineare were shown to share plastid and nuclear haplotypes with four collections from Tasmania and Southern Chile, but to be distinct from other Chilean and South African haplotypes. Finally, well-supported incongruence between nuclear and plastid sequences in some Western North American populations of Orthodontium gracile strongly implies one or more chloroplast capture or horizontal genome transfer events involving this species and the regionally sympatric O. pellucens. An appeal is made for targeting phylogenetic research at the intersection points of practical conservation, taxonomic uncertainty and wider biological questions and for the factoring of historical evolutionary and phylogenetic diversity into conservation assessments.
Collapse
Affiliation(s)
- Neil E Bell
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK.
| | - Michael S Ignatov
- Botanicheskaya 4, Main Botanical Garden, Russian Academy of Sciences, 127276 Moscow, Russia; Faculty of Biology, Moscow State University 119991 Moscow, Russia.
| |
Collapse
|
5
|
Winnicka K, Melosik I, Wojciechowicz MK. Ultrastructure variations in Sphagnum denticulatum ecotypes in response to desiccation stress matter to conservation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:363-374. [PMID: 30268028 DOI: 10.1016/j.plaphy.2018.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Global warming and peat bogs drying are having a strong negative effect on the survival of endangered peat mosses. Here, we aimed to identify ultrastructural and physiological trait variation during dehydration and rehydration in the (sub-)meristematic cells of buds among clonally propagated individuals of Sphagnum denticulatum in relation to their ecological origin. We cultivated five clones in common garden conditions (CGCs) to exclude a carryover effect and we subsequently water-stressed (-40 MPa) and rehydrated (7 days) them. For the ultrastructure analysis, over 1280 measurements were recorded for 34 traits. Compared with the control, the treatment led to alterations in organelles that appeared to be ecotype- and genotype-dependent and characteristic for desiccation-sensitive mosses. Also, the recovery of chloroplasts, as measured by the initial and maximal fluorescence yield, were incomplete for all studied plants indicating desiccation sensitivity. Terrestrial genotypes possessed better recovery capability than did aquatic genotypes, suggesting an adaptation of the former to tolerate unpredictable terrestrial conditions in time and space. Genotype-specific requirements of water availability in the original environments should be considered before transplanting gametophytes for peatland restoration programs.
Collapse
Affiliation(s)
- Katarzyna Winnicka
- Department of Genetics, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznań, Poland
| | - Iwona Melosik
- Department of Genetics, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznań, Poland.
| | | |
Collapse
|
6
|
Meleshko O, Stenøien HK, Speed JDM, Flatberg KI, Kyrkjeeide MO, Hassel K. Is interspecific gene flow and speciation in peatmosses ( Sphagnum) constrained by phylogenetic relationship and life-history traits? LINDBERGIA 2018. [DOI: 10.25227/linbg.01107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Olena Meleshko
- O. Meleshko , H. K. Stenøien, J. D. M. Speed, K, I. Flatberg and K. Hassel, NTNU University Museum, Norwegian Univ. of Science and Technology, NO-7491 Trondheim, Norway
| | - Hans K. Stenøien
- O. Meleshko , H. K. Stenøien, J. D. M. Speed, K, I. Flatberg and K. Hassel, NTNU University Museum, Norwegian Univ. of Science and Technology, NO-7491 Trondheim, Norway
| | - James D. M. Speed
- O. Meleshko , H. K. Stenøien, J. D. M. Speed, K, I. Flatberg and K. Hassel, NTNU University Museum, Norwegian Univ. of Science and Technology, NO-7491 Trondheim, Norway
| | - Kjell I. Flatberg
- O. Meleshko , H. K. Stenøien, J. D. M. Speed, K, I. Flatberg and K. Hassel, NTNU University Museum, Norwegian Univ. of Science and Technology, NO-7491 Trondheim, Norway
| | | | - Kristian Hassel
- O. Meleshko , H. K. Stenøien, J. D. M. Speed, K, I. Flatberg and K. Hassel, NTNU University Museum, Norwegian Univ. of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
7
|
Haig D. Living together and living apart: the sexual lives of bryophytes. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0535. [PMID: 27619699 DOI: 10.1098/rstb.2015.0535] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2016] [Indexed: 01/08/2023] Open
Abstract
Haploid gametophytes of bryophytes spread by clonal growth but mate locally, within an area defined by the range of sperm movement. Rarity of establishment from spores or vegetative competition can result in unisexual populations unable to reproduce sexually. Females typically outcompete males, probably because females expend fewer resources than males on the production of gametes. Extreme sexual dimorphism-tiny males growing as epiphytes on much larger females-has evolved many times. Haploid selfing is common in bryophytes with bisexual gametophytes, and results in completely homozygous sporophytes. Spores from these sporophytes recapitulate the genotype of their single haploid parent. This process can be considered analogous to 'asexual' reproduction with 'sexual' reproduction occurring after rare outcrossing between haploid parents. Ferns also produce bisexual haploid gametophytes but, unlike bryophytes, haploid outcrossing predominates over haploid selfing. This difference is probably related to clonal growth and vegetative competition occurring in the haploid but not the diploid phase in bryophytes, but the reverse in ferns. Ferns are thereby subject to stronger inbreeding depression than bryophytes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Jonathan Shaw A, Devos N, Liu Y, Cox CJ, Goffinet B, Flatberg KI, Shaw B. Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss). ANNALS OF BOTANY 2016; 118:185-96. [PMID: 27268484 PMCID: PMC4970357 DOI: 10.1093/aob/mcw086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/11/2016] [Accepted: 03/28/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. METHODS We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium KEY RESULTS Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium CONCLUSIONS Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification.
Collapse
Affiliation(s)
- A Jonathan Shaw
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Nicolas Devos
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Yang Liu
- Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, Storrs, CT 06269, USA
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Edif. 7, 8005-139 Faro, Portugal
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, Storrs, CT 06269, USA
| | - Kjell Ivar Flatberg
- NTNU University Museum, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Blanka Shaw
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
9
|
Shaw AJ, Shaw B, Johnson MG, Devos N, Stenøien HK, Flatberg KI, Carter BE. Phylogenetic structure and biogeography of the Pacific Rim clade ofSphagnumsubgen.Subsecunda: haploid and allodiploid taxa. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12586] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Blanka Shaw
- Department of Biology; Duke University; Durham NC 27708 USA
| | | | - Nicolas Devos
- Department of Biology; Duke University; Durham NC 27708 USA
| | - Hans K. Stenøien
- NTNU University Museum; Norwegian University of Science and Technology; N-7491 Trondheim Norway
| | - Kjell I. Flatberg
- NTNU University Museum; Norwegian University of Science and Technology; N-7491 Trondheim Norway
| | | |
Collapse
|
10
|
Perley DS, Jesson LK. Hybridization is associated with changes in sexual system in the bryophyte genus Atrichum. AMERICAN JOURNAL OF BOTANY 2015; 102:555-565. [PMID: 25878089 DOI: 10.3732/ajb.1400494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
PREMISE OF THE STUDY Over 50% of bryophytes have separate sexes, and numerous transitions have occurred between combined and separate sexes. Polyploidy and hybridization is one proximate mechanism hypothesized to cause evolutionary transitions to hermaphroditism in bryophytes because sex is expressed at the haploid stage and in nonpolyploid dioecious species males have a single V chromosome and females a U. Hermaphroditism can arise if gametophytes of allopolyploids have both U and V chromosomes. We examined the association between polyploidy and hermaphroditism in the bryophyte genus Atrichum, which has species where gametophytes can be haploid, diploid, or triploid, and some species have hermaphroditic individuals. METHODS We generated phylogenies of Atrichum from sequences of three plastid regions (rbcL, rps4, and trnL-trnF) and the second intron for the nuclear gene Leafy/Floricaula to further understand the relationships among haploid, diploid, and triploid species, and those with combined or separate sexes. KEY RESULTS The existence of multiple sequences of Leafy/Floricaula in diploid and triploid, but not haploid, individuals is consistent with independent allopolyploid origins of the diploid and triploid species. Allopolyploidy was associated with a likely gain in hermaphroditism in triploid Atrichum undulatum and possibly diploid A. altecristatum, but not in the allopolyploid A. crispulum (diploid at the gametophyte level). CONCLUSIONS These results highlight a role for hybridization and polyploidy in sexual system evolution, but the presence of diploid (allopolyploid) dioecious species suggest that other factors may influence the maintenance of sexual systems after an evolutionary transition.
Collapse
Affiliation(s)
- Danielle S Perley
- Department of Biology, University of New Brunswick, 10 Bailey Dr, Fredericton, Canada E3B5A3
| | - Linley K Jesson
- Department of Biology, University of New Brunswick, 10 Bailey Dr, Fredericton, Canada E3B5A3 Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany
| |
Collapse
|
11
|
Johnson MG, Shaw AJ. Genetic diversity, sexual condition, and microhabitat preference determine mating patterns inSphagnum(Sphagnaceae) peat-mosses. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12497] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Matthew G. Johnson
- Biology Department; Duke University; 130 Science Drive Box 90338 Durham NC 27708 USA
| | - A. Jonathan Shaw
- Biology Department; Duke University; 130 Science Drive Box 90338 Durham NC 27708 USA
| |
Collapse
|
12
|
Mikulášková E, Hájek M, Veleba A, Johnson MG, Hájek T, Shaw JA. Local adaptations in bryophytes revisited: the genetic structure of the calcium-tolerant peatmoss Sphagnum warnstorfii along geographic and pH gradients. Ecol Evol 2014; 5:229-42. [PMID: 25628880 PMCID: PMC4298450 DOI: 10.1002/ece3.1351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/11/2022] Open
Abstract
Bryophytes dominate some ecosystems despite their extraordinary sensitivity to habitat quality. Nevertheless, some species behave differently across various regions. The existence of local adaptations is questioned by a high dispersal ability, which is thought to redistribute genetic variability among populations. Although Sphagnum warnstorfii is an important ecosystem engineer in fen peatlands, the causes of its rather wide niche along the pH/calcium gradient are poorly understood. Here, we studied the genetic variability of its global populations, with a detailed focus on the wide pH/calcium gradient in Central Europe. Principal coordinates analysis of 12 polymorphic microsatellite loci revealed a significant gradient coinciding with water pH, but independent of geography; even samples from the same fens were clearly separated along this gradient. However, most of the genetic variations remained unexplained, possibly because of the introgression from phylogenetically allied species. This explanation is supported by the small heterogeneous cluster of samples that appeared when populations morphologically transitional to S. subnites, S. rubellum, or S. russowii were included into the analysis. Alternatively, this unexplained variation might be attributed to a legacy of glacial refugia with recently dissolved ecological and biogeographic consequences. Isolation by distance appeared at the smallest scale only (up to 43 km). Negative spatial correlations occurred more frequently, mainly at long distances (up to 950 km), implying a genetic similarity among samples which are very distant geographically. Our results confirm the high dispersal ability of peatmosses, but simultaneously suggested that their ability to cope with a high pH/calcium level is at least partially determined genetically, perhaps via specific physiological mechanisms or a hummock-forming ability.
Collapse
Affiliation(s)
- Eva Mikulášková
- Department of Botany and Zoology, Faculty of Science, Masaryk University Kotlářská 2, Brno, CZ 61137, Czech Republic
| | - Michal Hájek
- Department of Botany and Zoology, Faculty of Science, Masaryk University Kotlářská 2, Brno, CZ 61137, Czech Republic ; Department of Vegetation Ecology, Institute of Botany, Academy of Sciences of the Czech Republic Lidická 25/27, Brno, CZ 65720, Czech Republic
| | - Adam Veleba
- Department of Botany and Zoology, Faculty of Science, Masaryk University Kotlářská 2, Brno, CZ 61137, Czech Republic
| | - Matthew G Johnson
- Plant Science and Conservation, Chicago Botanic Gardens 1000 Lake Cook Road, Glencoe, IL, 60022, USA
| | - Tomáš Hájek
- Department of Functional Ecology, Institute of Botany, Academy of Sciences of the Czech Republic Dukelská 135, Třeboň, CZ 37982, Czech Republic
| | - Jonathan A Shaw
- Department of Biology, Duke University Durham, NC, 27708, USA
| |
Collapse
|
13
|
Vega-Frutis R, Macías-Ordóñez R, Guevara R, Fromhage L. Sex change in plants and animals: a unified perspective. J Evol Biol 2014; 27:667-75. [DOI: 10.1111/jeb.12333] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. Vega-Frutis
- Red de Biología Evolutiva; Instituto de Ecología, A.C.; Xalapa Veracruz México
- Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
| | - R. Macías-Ordóñez
- Red de Biología Evolutiva; Instituto de Ecología, A.C.; Xalapa Veracruz México
| | - R. Guevara
- Red de Biología Evolutiva; Instituto de Ecología, A.C.; Xalapa Veracruz México
| | - L. Fromhage
- Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
| |
Collapse
|
14
|
Moraes AP, Chinaglia M, Palma-Silva C, Pinheiro F. Interploidy hybridization in sympatric zones: the formation of Epidendrum fulgens × E. puniceoluteum hybrids (Epidendroideae, Orchidaceae). Ecol Evol 2013; 3:3824-37. [PMID: 24198942 PMCID: PMC3810877 DOI: 10.1002/ece3.752] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/25/2013] [Accepted: 08/12/2013] [Indexed: 11/11/2022] Open
Abstract
Interspecific hybridization is a primary cause of extensive morphological and chromosomal variation and plays an important role in plant species diversification. However, the role of interploidal hybridization in the formation of hybrid swarms is less clear. Epidendrum encompasses wide variation in chromosome number and lacks strong premating barriers, making the genus a good model for clarifying the role of chromosomes in postzygotic barriers in interploidal hybrids. In this sense, hybrids from the interploidal sympatric zone between E. fulgens (2n = 2x = 24) and E. puniceoluteum (2n = 4x = 56) were analyzed using cytogenetic techniques to elucidate the formation and establishment of interploidal hybrids. Hybrids were not a uniform group: two chromosome numbers were observed, with the variation being a consequence of severe hybrid meiotic abnormalities and backcrossing with E. puniceoluteum. The hybrids were triploids (2n = 3x = 38 and 40) and despite the occurrence of enormous meiotic problems associated with triploidy, the hybrids were able to backcross, producing successful hybrid individuals with broad ecological distributions. In spite of the nonpolyploidization of the hybrid, its formation is a long-term evolutionary process rather than a product of a recent disturbance, and considering other sympatric zones in Epidendrum, these events could be recurrent.
Collapse
Affiliation(s)
- Ana P Moraes
- Laboratório de Biossistemática e Evolução de Plantas, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas/UNICAMP Campinas, São Paulo, Brasil ; Programa de Pós Graduação em Evolução e Diversidade, Universidade Federal do ABC/UFABC Santo André, São Paulo, Brasil
| | | | | | | |
Collapse
|
15
|
Shaw AJ, Shaw B, Johnson MG, Higuchi M, Arikawa T, Ueno T, Devos N. Origins, genetic structure, and systematics of the narrow endemic peatmosses (Sphagnum): S. guwassanense and S. triseriporum (Sphagnaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:1202-1220. [PMID: 23720430 DOI: 10.3732/ajb.1200630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY Sphagnum dominates vast expanses of wetland habitats throughout the northern hemisphere and species delimitation within the genus is important because floristic changes associated with a warming global climate may have measureable impacts on large-scale ecological processes. Most northern hemisphere peatmoss species (Sphagnum) have circumboreal ranges, but the Japanese species generally known as S. calymmatophyllum is endemic to Honshu Island. This prompted a population genetic and phylogenetic analysis to resolve the origin(s), population structure, and phylogenetic relationships of this morphologically variable species. • METHODS Sixty plants collected from Mt. Gassan and Mt. Hakkoda were genotyped for 12 microsatellite loci. Two plastid loci and three anonymous nuclear loci were sequenced in a subset of the plants, plus representatives from 10 closely related species. • KEY RESULTS Gametophytes exhibited fixed or nearly fixed heterozygosity at 9-10 of the 12 microsatellite loci. Two genetic groups were resolved by the microsatellite data, individuals showed no evidence of admixture, and the two groups of plants differ in morphology. They are heterozygous for different sets of alleles. The two taxa share plastid DNA sequences with two species that are common in Alaska. • CONCLUSIONS Two taxa were distinguished: S. guwassanense and S. triseriporum. Both are allopolyploids; they originated independently from different but closely related progenitors. The maternal progenitor was likely either S. orientale or S. inexspectatum. The two allopolyploid taxa are heterozygous for (different) private microsatellite alleles, and one progenitor could be extinct.
Collapse
Affiliation(s)
- A Jonathan Shaw
- Department of Biology, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
|