Bast J, Jaron KS, Schuseil D, Roze D, Schwander T. Asexual reproduction reduces transposable element load in experimental yeast populations.
eLife 2019;
8:48548. [PMID:
31486772 PMCID:
PMC6783261 DOI:
10.7554/elife.48548]
[Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/04/2019] [Indexed: 01/04/2023] Open
Abstract
Theory predicts that sexual reproduction can either facilitate or restrain transposable element (TE) accumulation by providing TEs with a means of spreading to all individuals in a population, versus facilitating TE load reduction via purifying selection. By quantifying genomic TE loads over time in experimental sexual and asexual Saccharomyces cerevisiae populations, we provide direct evidence that TE loads decrease rapidly under asexual reproduction. We show, using simulations, that this reduction may occur via evolution of TE activity, most likely via increased excision rates. Thus, sex is a major driver of genomic TE loads and at the root of the success of TEs.
The genetic information of most living organisms contains parasitic invaders known as transposable elements. These genetic sequences multiply by copying and pasting themselves through the genome, but this process can disrupt the activity of important genes and put the organism at risk.
How transposable elements proliferate in a population depends on the way organisms reproduce. If they simply clone themselves asexually, the selfish elements cannot spread between the different clones. If the organisms mate together their respective transposable elements get mixed, which helps the sequences to spread more easily and to potentially become more virulent. However, sexual reproduction also comes with mechanisms that keep transposable elements in check.
Bast, Jaron et al. took advantage of the fact that yeasts can reproduce with or without mating to explore whether sexual or asexual organisms are better at controlling the spread of transposable elements. The number of copies of transposable elements in the genomes of yeast grown sexually or asexually was assessed. The results showed that sexual populations kept constant numbers of selfish elements, while asexual organisms lost these genomic parasites over time. Simulations then revealed that this difference emerged because a defense gene that helps to delete transposable elements was spreading more quickly in the asexual group.
The work by Bast, Jaron et al. therefore suggests that sex is responsible for the evolutionary success of transposable elements, while asexual populations can discard these sequences over time. Sex therefore helps genetic parasites, somewhat similar to sexually transmitted diseases, to spread between individuals and remain virulent.
Collapse