1
|
Armendariz I, López de Heredia U, Soler M, Puigdemont A, Ruiz MM, Jové P, Soto Á, Serra O, Figueras M. Rhytidome- and cork-type barks of holm oak, cork oak and their hybrids highlight processes leading to cork formation. BMC PLANT BIOLOGY 2024; 24:488. [PMID: 38825683 PMCID: PMC11145776 DOI: 10.1186/s12870-024-05192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The periderm is basic for land plants due to its protective role during radial growth, which is achieved by the polymers deposited in the cell walls. In most trees, like holm oak, the first periderm is frequently replaced by subsequent internal periderms yielding a heterogeneous outer bark made of a mixture of periderms and phloem tissues, known as rhytidome. Exceptionally, cork oak forms a persistent or long-lived periderm which results in a homogeneous outer bark of thick phellem cell layers known as cork. Cork oak and holm oak distribution ranges overlap to a great extent, and they often share stands, where they can hybridize and produce offspring showing a rhytidome-type bark. RESULTS Here we use the outer bark of cork oak, holm oak, and their natural hybrids to analyse the chemical composition, the anatomy and the transcriptome, and further understand the mechanisms underlying periderm development. We also include a unique natural hybrid individual corresponding to a backcross with cork oak that, interestingly, shows a cork-type bark. The inclusion of hybrid samples showing rhytidome-type and cork-type barks is valuable to approach cork and rhytidome development, allowing an accurate identification of candidate genes and processes. The present study underscores that abiotic stress and cell death are enhanced in rhytidome-type barks whereas lipid metabolism and cell cycle are enriched in cork-type barks. Development-related DEGs showing the highest expression, highlight cell division, cell expansion, and cell differentiation as key processes leading to cork or rhytidome-type barks. CONCLUSION Transcriptome results, in agreement with anatomical and chemical analyses, show that rhytidome and cork-type barks are active in periderm development, and suberin and lignin deposition. Development and cell wall-related DEGs suggest that cell division and expansion are upregulated in cork-type barks whereas cell differentiation is enhanced in rhytidome-type barks.
Collapse
Affiliation(s)
- Iker Armendariz
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Unai López de Heredia
- Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, Madrid, 28040, Spain
| | - Marçal Soler
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Adrià Puigdemont
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Maria Mercè Ruiz
- Institut Català del Suro. Carrer Miquel Vincke i Meyer 13, Palafrugell, 17200, Spain
| | - Patricia Jové
- Institut Català del Suro. Carrer Miquel Vincke i Meyer 13, Palafrugell, 17200, Spain
| | - Álvaro Soto
- Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, Madrid, 28040, Spain
| | - Olga Serra
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Mercè Figueras
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain.
| |
Collapse
|
2
|
Runemark A, Moore EC, Larson EL. Hybridization and gene expression: Beyond differentially expressed genes. Mol Ecol 2024:e17303. [PMID: 38411307 DOI: 10.1111/mec.17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Gene expression has a key role in reproductive isolation, and studies of hybrid gene expression have identified mechanisms causing hybrid sterility. Here, we review the evidence for altered gene expression following hybridization and outline the mechanisms shown to contribute to altered gene expression in hybrids. Transgressive gene expression, transcending that of both parental species, is pervasive in early generation sterile hybrids, but also frequently observed in viable, fertile hybrids. We highlight studies showing that hybridization can result in transgressive gene expression, also in established hybrid lineages or species. Such extreme patterns of gene expression in stabilized hybrid taxa suggest that altered hybrid gene expression may result in hybridization-derived evolutionary novelty. We also conclude that while patterns of misexpression in hybrids are well documented, the understanding of the mechanisms causing misexpression is lagging. We argue that jointly assessing differences in cell composition and cell-specific changes in gene expression in hybrids, in addition to assessing changes in chromatin and methylation, will significantly advance our understanding of the basis of altered gene expression. Moreover, uncovering to what extent evolution of gene expression results in altered expression for individual genes, or entire networks of genes, will advance our understanding of how selection moulds gene expression. Finally, we argue that jointly studying the dual roles of altered hybrid gene expression, serving both as a mechanism for reproductive isolation and as a substrate for hybrid ecological adaptation, will lead to significant advances in our understanding of the evolution of gene expression.
Collapse
Affiliation(s)
- Anna Runemark
- Department of Biology, Lund University, Lund, Sweden
| | - Emily C Moore
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| |
Collapse
|
3
|
|
4
|
Selz OM, Seehausen O. Interspecific hybridization can generate functional novelty in cichlid fish. Proc Biol Sci 2019; 286:20191621. [PMID: 31640510 DOI: 10.1098/rspb.2019.1621] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The role of interspecific hybridization in evolution is still being debated. Interspecific hybridization has been suggested to facilitate the evolution of ecological novelty, and hence the invasion of new niches and adaptive radiation when ecological opportunity is present beyond the parental species niches. On the other hand, hybrids between two ecologically divergent species may perform less well than parental species in their respective niches because hybrids would be intermediate in performance in both niches. The evolutionary consequences of hybridization may hence be context-dependent, depending on whether ecological opportunities, beyond those of the parental species, do or do not exist. Surprisingly, these complementary predictions may never have been tested in the same experiment in animals. To do so, we investigate if hybrids between ecologically distinct cichlid species perform less well than the parental species when feeding on food either parent is adapted to, and if the same hybrids perform better than their parents when feeding on food none of the species are adapted to. We generated two first-generation hybrid crosses between species of African cichlids. In feeding efficiency experiments we measured the performance of hybrids and parental species on food types representing both parental species niches and additional 'novel' niches, not used by either of the parental species but by other species in the African cichlid radiations. We found that hybrids can have higher feeding efficiencies on the 'novel' food types but typically have lower efficiencies on parental food types when compared to parental species. This suggests that hybridization can generate functional variation that can be of ecological relevance allowing the access to resources outside of either parental species niche. Hence, we provide support for the hypothesis of ecological context-dependency of the evolutionary impact of interspecific hybridization.
Collapse
Affiliation(s)
- O M Selz
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland.,Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - O Seehausen
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland.,Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Ben-Shlomo R. Invasiveness, chimerism and genetic diversity. Mol Ecol 2017; 26:6502-6509. [PMID: 28950415 DOI: 10.1111/mec.14364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/11/2017] [Accepted: 09/13/2017] [Indexed: 01/09/2023]
Abstract
Adaptation for invasiveness should comprise the capability to exploit and prosper in a wide range of ecological conditions and is therefore expected to be associated with a certain level of genetic diversity. Paradoxically, however, invasive populations are established by only a few founders, resulting in low genetic diversity. As a conceivable way of attaining high genetic diversity and high variance of gene expression even when a small number of founders is involved in invasiveness, I suggest here chimerism, a fusion between different individuals-a common phenomenon found in numerous phyla. The composite entity offers the chimeric organism genetic flexibility and higher inclusive fitness that depends on the joint genomic fitness of the original partners. The ability to form a chimeric entity is also applied to subsequent generations, and consequently, the level of genetic diversity does not decline over generations of population establishment following invasion.
Collapse
Affiliation(s)
- Rachel Ben-Shlomo
- Department of Biology and the Environment, University of Haifa - Oranim, Tivon, Israel
| |
Collapse
|
6
|
Parallel habitat acclimatization is realized by the expression of different genes in two closely related salamander species (genus Salamandra). Heredity (Edinb) 2017; 119:429-437. [PMID: 28953268 DOI: 10.1038/hdy.2017.55] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
The utilization of similar habitats by different species provides an ideal opportunity to identify genes underlying adaptation and acclimatization. Here, we analysed the gene expression of two closely related salamander species: Salamandra salamandra in Central Europe and Salamandra infraimmaculata in the Near East. These species inhabit similar habitat types: 'temporary ponds' and 'permanent streams' during larval development. We developed two species-specific gene expression microarrays, each targeting over 12 000 transcripts, including an overlapping subset of 8331 orthologues. Gene expression was examined for systematic differences between temporary ponds and permanent streams in larvae from both salamander species to establish gene sets and functions associated with these two habitat types. Only 20 orthologues were associated with a habitat in both species, but these orthologues did not show parallel expression patterns across species more than expected by chance. Functional annotation of a set of 106 genes with the highest effect size for a habitat suggested four putative gene function categories associated with a habitat in both species: cell proliferation, neural development, oxygen responses and muscle capacity. Among these high effect size genes was a single orthologue (14-3-3 protein zeta/YWHAZ) that was downregulated in temporary ponds in both species. The emergence of four gene function categories combined with a lack of parallel expression of orthologues (except 14-3-3 protein zeta) suggests that parallel habitat adaptation or acclimatization by larvae from S. salamandra and S. infraimmaculata to temporary ponds and permanent streams is mainly realized by different genes with a converging functionality.
Collapse
|
7
|
Dennenmoser S, Sedlazeck FJ, Iwaszkiewicz E, Li X, Altmüller J, Nolte AW. Copy number increases of transposable elements and protein-coding genes in an invasive fish of hybrid origin. Mol Ecol 2017; 26:4712-4724. [PMID: 28390096 PMCID: PMC5638112 DOI: 10.1111/mec.14134] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022]
Abstract
Evolutionary dynamics of structural genetic variation in lineages of hybrid origin is not well explored, although structural mutations may increase in controlled hybrid crosses. We therefore tested whether structural variants accumulate in a fish of recent hybrid origin, invasive Cottus, relative to both parental species Cottus rhenanus and Cottus perifretum. Copy-number variation in exons of 10,979 genes was assessed using comparative genome hybridization arrays. Twelve genes showed significantly higher copy numbers in invasive Cottus compared to both parents. This coincided with increased expression for three genes related to vision, detoxification and muscle development, suggesting possible gene dosage effects. Copy number increases of putative transposons were assessed by comparative mapping of genomic DNA reads against a de novo assembly of 1,005 repetitive elements. In contrast to exons, copy number increases of repetitive elements were common (20.7%) in invasive Cottus, whereas decrease was very rare (0.01%). Among the increased repetitive elements, 53.8% occurred at higher numbers in C. perifretum compared to C. rhenanus, while only 1.4% were more abundant in C. rhenanus. This implies a biased mutational process that amplifies genetic material from one ancestor. To assess the frequency of de novo mutations through hybridization, we screened 64 laboratory-bred F2 offspring between the parental species for copy-number changes at five candidate loci. We found no evidence for new structural variants, indicating that they are too rare to be detected given our sampling scheme. Instead, they must have accumulated over more generations than we observed in a controlled cross.
Collapse
Affiliation(s)
- Stefan Dennenmoser
- Department for Evolutionary GeneticsMax‐Planck Institute for Evolutionary BiologyPlönGermany
- Institute for BiologyCarl von Ossietzky University OldenburgOldenburgGermany
| | | | - Elzbieta Iwaszkiewicz
- Department for Evolutionary GeneticsMax‐Planck Institute for Evolutionary BiologyPlönGermany
| | - Xiang‐Yi Li
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Janine Altmüller
- Cologne Center for Genomics, and Institute of Human GeneticsUniversity of CologneCologneGermany
| | - Arne W. Nolte
- Department for Evolutionary GeneticsMax‐Planck Institute for Evolutionary BiologyPlönGermany
- Institute for BiologyCarl von Ossietzky University OldenburgOldenburgGermany
| |
Collapse
|
8
|
Czypionka T, Krugman T, Altmüller J, Blaustein L, Steinfartz S, Templeton AR, Nolte AW. Ecological transcriptomics – a non‐lethal sampling approach for endangered fire salamanders. Methods Ecol Evol 2015. [DOI: 10.1111/2041-210x.12431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Till Czypionka
- Department of Evolutionary Genetics Max Planck Institute for Evolutionary Biology 24306 Plön Germany
| | - Tamar Krugman
- Institute of Evolution and Department of Evolutionary and Environmental Biology University of Haifa Haifa 3498838 Israel
| | - Janine Altmüller
- Cologne Centre for Genomics University of Cologne Weyertal 115b 50931 Köln Germany
| | - Leon Blaustein
- Institute of Evolution and Department of Evolutionary and Environmental Biology University of Haifa Haifa 3498838 Israel
| | - Sebastian Steinfartz
- Department of Evolutionary Biology Unit Molecular Ecology Technische Universität Braunschweig 38106 Braunschweig Germany
| | - Alan R. Templeton
- Institute of Evolution and Department of Evolutionary and Environmental Biology University of Haifa Haifa 3498838 Israel
| | - Arne W. Nolte
- Department of Evolutionary Genetics Max Planck Institute for Evolutionary Biology 24306 Plön Germany
| |
Collapse
|
9
|
Sánchez AP, Pardo-Diaz C, Enciso-Romero J, Muñoz A, Jiggins CD, Salazar C, Linares M. An introgressed wing pattern acts as a mating cue. Evolution 2015; 69:1619-1629. [PMID: 25930106 DOI: 10.1111/evo.12679] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/24/2015] [Indexed: 02/03/2023]
Abstract
Heliconius butterflies provide good examples of both homoploid hybrid speciation and ecological speciation. In particular, examples of adaptive introgression have been detected among the subspecies of Heliconius timareta, which acquired red color pattern elements from H. melpomene. We tested whether the introgression of red wing pattern elements into H. timareta florencia might also be associated with incipient reproductive isolation (RI) from its close relative, H. timareta subsp. nov., found in the eastern Andes. No choice experiments show a 50% reduction in mating between females of H. t. subsp. nov. and males of H .t. florencia, but not in the reciprocal direction. In choice experiments using wing models, males of H. timareta subsp. nov. approach and court red phenotypes less than their own, whereas males of H. t. florencia prefer models with a red phenotype. Intrinsic postzygotic isolation was not detected in crosses between these H. timareta races. These results suggest that a color pattern trait gained by introgression is triggering RI between H. timareta subsp. nov. and H. t. florencia.
Collapse
Affiliation(s)
- Angela P Sánchez
- Departamento de Ciencias Naturales, Universidad Central, Carrera 5 No. 21 - 38, Bogotá D.C., Colombia
| | - Carolina Pardo-Diaz
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Carrera. 24 No. 63C-69, Bogotá D.C., 111221, Colombia
| | - Juan Enciso-Romero
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Carrera. 24 No. 63C-69, Bogotá D.C., 111221, Colombia
| | - Astrid Muñoz
- Departamento de Ciencias Básicas, Universidad de la Salle, Carrera 2 No. 10 - 70, Bogotá D.C., Colombia
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Carrera. 24 No. 63C-69, Bogotá D.C., 111221, Colombia
| | - Mauricio Linares
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Carrera. 24 No. 63C-69, Bogotá D.C., 111221, Colombia
| |
Collapse
|
10
|
Stelkens RB, Brockhurst MA, Hurst GDD, Miller EL, Greig D. The effect of hybrid transgression on environmental tolerance in experimental yeast crosses. J Evol Biol 2014; 27:2507-19. [PMID: 25262771 DOI: 10.1111/jeb.12494] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/22/2014] [Accepted: 09/01/2014] [Indexed: 01/29/2023]
Abstract
Evidence is rapidly accumulating that hybridization generates adaptive variation. Transgressive segregation in hybrids could promote the colonization of new environments. Here, we use an assay to select hybrid genotypes that can proliferate in environmental conditions beyond the conditions tolerated by their parents, and we directly compete them against parental genotypes in habitats across environmental clines. We made 45 different hybrid swarms by crossing yeast strains (both Saccharomyces cerevisiae and S. paradoxus) with different genetic and phenotypic divergence. We compared the ability of hybrids and parents to colonize seven types of increasingly extreme environmental clines, representing both natural and novel challenges (mimicking pollution events). We found that a significant majority of hybrids had greater environmental ranges compared to the average of both their parents' ranges (mid-parent transgression), but only a minority of hybrids had ranges exceeding their best parent (best-parent transgression). Transgression was affected by the specific strains involved in the cross and by the test environment. Genetic and phenotypic crossing distance predicted the extent of transgression in only two of the seven environments. We isolated a set of potentially transgressive hybrids selected at the extreme ends of the clines and found that many could directly outcompete their parents across whole clines and were between 1.5- and 3-fold fitter on average. Saccharomyces yeast is a good model for quantitative and replicable experimental speciation studies, which may be useful in a world where hybridization is becoming increasingly common due to the relocation of plants and animals by humans.
Collapse
Affiliation(s)
- R B Stelkens
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | | | | | |
Collapse
|
11
|
Morphological Variation in Wild Marmosets (Callithrix penicillata and C. geoffroyi) and Their Hybrids. Evol Biol 2014. [DOI: 10.1007/s11692-014-9284-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Lunt DH, Kumar S, Koutsovoulos G, Blaxter ML. The complex hybrid origins of the root knot nematodes revealed through comparative genomics. PeerJ 2014; 2:e356. [PMID: 24860695 PMCID: PMC4017819 DOI: 10.7717/peerj.356] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/31/2014] [Indexed: 11/20/2022] Open
Abstract
Root knot nematodes (RKN) can infect most of the world's agricultural crop species and are among the most important of all plant pathogens. As yet however we have little understanding of their origins or the genomic basis of their extreme polyphagy. The most damaging pathogens reproduce by obligatory mitotic parthenogenesis and it has been suggested that these species originated from interspecific hybridizations between unknown parental taxa. We have sequenced the genome of the diploid meiotic parthenogen Meloidogyne floridensis, and use a comparative genomic approach to test the hypothesis that this species was involved in the hybrid origin of the tropical mitotic parthenogen Meloidogyne incognita. Phylogenomic analysis of gene families from M. floridensis, M. incognita and an outgroup species Meloidogyne hapla was carried out to trace the evolutionary history of these species' genomes, and we demonstrate that M. floridensis was one of the parental species in the hybrid origins of M. incognita. Analysis of the M. floridensis genome itself revealed many gene loci present in divergent copies, as they are in M. incognita, indicating that it too had a hybrid origin. The triploid M. incognita is shown to be a complex double-hybrid between M. floridensis and a third, unidentified, parent. The agriculturally important RKN have very complex origins involving the mixing of several parental genomes by hybridization and their extreme polyphagy and success in agricultural environments may be related to this hybridization, producing transgressive variation on which natural selection can act. It is now clear that studying RKN variation via individual marker loci may fail due to the species' convoluted origins, and multi-species population genomics is essential to understand the hybrid diversity and adaptive variation of this important species complex. This comparative genomic analysis provides a compelling example of the importance and complexity of hybridization in generating animal species diversity more generally.
Collapse
Affiliation(s)
- David H Lunt
- School of Biological, Biomedical and Environmental Sciences, University of Hull , Hull , UK
| | - Sujai Kumar
- Institute of Evolutionary Biology, University of Edinburgh , Edinburgh , UK
| | | | - Mark L Blaxter
- Institute of Evolutionary Biology, University of Edinburgh , Edinburgh , UK ; The GenePool Genomics Facility, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
13
|
Pozhitkov AE, Noble PA, Bryk J, Tautz D. A revised design for microarray experiments to account for experimental noise and uncertainty of probe response. PLoS One 2014; 9:e91295. [PMID: 24618910 PMCID: PMC3949741 DOI: 10.1371/journal.pone.0091295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/11/2014] [Indexed: 11/18/2022] Open
Abstract
Background Although microarrays are analysis tools in biomedical research, they are known to yield noisy output that usually requires experimental confirmation. To tackle this problem, many studies have developed rules for optimizing probe design and devised complex statistical tools to analyze the output. However, less emphasis has been placed on systematically identifying the noise component as part of the experimental procedure. One source of noise is the variance in probe binding, which can be assessed by replicating array probes. The second source is poor probe performance, which can be assessed by calibrating the array based on a dilution series of target molecules. Using model experiments for copy number variation and gene expression measurements, we investigate here a revised design for microarray experiments that addresses both of these sources of variance. Results Two custom arrays were used to evaluate the revised design: one based on 25 mer probes from an Affymetrix design and the other based on 60 mer probes from an Agilent design. To assess experimental variance in probe binding, all probes were replicated ten times. To assess probe performance, the probes were calibrated using a dilution series of target molecules and the signal response was fitted to an adsorption model. We found that significant variance of the signal could be controlled by averaging across probes and removing probes that are nonresponsive or poorly responsive in the calibration experiment. Taking this into account, one can obtain a more reliable signal with the added option of obtaining absolute rather than relative measurements. Conclusion The assessment of technical variance within the experiments, combined with the calibration of probes allows to remove poorly responding probes and yields more reliable signals for the remaining ones. Once an array is properly calibrated, absolute quantification of signals becomes straight forward, alleviating the need for normalization and reference hybridizations.
Collapse
Affiliation(s)
- Alex E. Pozhitkov
- Max-Planck-Institut für Evolutionsbiologie, Plön, Germany
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, United States of America
| | - Peter A. Noble
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, United States of America
- Ph.D Microbiology Program, Department of Biological Sciences, Alabama State University, Montgomery, Alabama, United States of America
| | - Jarosław Bryk
- Max-Planck-Institut für Evolutionsbiologie, Plön, Germany
- National Centre for Biotechnology Education, University of Reading, Reading, United Kingdom
| | - Diethard Tautz
- Max-Planck-Institut für Evolutionsbiologie, Plön, Germany
- * E-mail:
| |
Collapse
|
14
|
Cheng J, Czypionka T, Nolte AW. The genomics of incompatibility factors and sex determination in hybridizing species of Cottus (Pisces). Heredity (Edinb) 2013; 111:520-9. [PMID: 23981957 DOI: 10.1038/hdy.2013.76] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 11/09/2022] Open
Abstract
Cottus rhenanus and Cottus perifretum have formed hybrid lineages and narrow hybrid zones that can be best explained through the action of natural selection. However, the underlying selective forces as well as their genomic targets are not well understood. This study identifies genomic regions in the parental species that cause hybrid incompatibilities and tests whether these manifest in a sex-specific manner to learn about processes that affect natural hybridization in Cottus. Interspecific F2 crosses were analyzed for 255 markers for genetic mapping and to detect transmission distortion as a sign for genetic incompatibilities. The Cottus map consists of 24 linkage groups with a total length of 1575.4 cM. A male heterogametic (XY) sex determination region was found on different linkage groups in the two parental species. Genetic incompatibilities were incomplete, varied among individuals and populations and were not associated with the heterogametic sex. The variance between populations and individuals makes it unlikely that there are species-specific incompatibility loci that could affect the gene pool of natural hybrids in a simple and predictable way. Conserved synteny with sequenced fish genomes permits to genetically study the Cottus genome through the transfer of genomic information from the model fish species. Homology relationships of candidate genomic regions in Cottus indicate that sex determination is not based on the same genomic regions found in other fish species. This suggests a fast evolutionary turnover of the genetic basis of sex determination that, together with the small size of the heterogametic regions, may contribute to the absence of fitness effects related to the Haldane's rule.
Collapse
Affiliation(s)
- J Cheng
- Evolutionary Genetics of Fishes, Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | |
Collapse
|
15
|
Sinama M, Gilles A, Costedoat C, Corse E, Olivier JM, Chappaz R, Pech N. Non-homogeneous combination of two porous genomes induces complex body shape trajectories in cyprinid hybrids. Front Zool 2013; 10:22. [PMID: 23634901 PMCID: PMC3664599 DOI: 10.1186/1742-9994-10-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/12/2013] [Indexed: 02/01/2023] Open
Abstract
Introduction Hybridization is a common phenomenon in fish and is considered to be a major source of diversification. Deciphering the remoulding of genomic regions and phenotypes in zones where hybrid specimens occur is of particular interest to elucidate the emergence of evolutionary novelties. This approach is particularly challenging because the first step of hybridization seems to be the most important stage in the emergence of hybrid lineages. However, the signal can be significantly altered after only a few generations. Results We studied 41 microsatellites and partial cytochrome b gene sequences in 970 specimens belonging to two fish species (Chondrostoma nasus and Parachondrostoma toxostoma) in allopatric/parapatric zones, hybrids between them in a natural sympatric zone: the Ardèche basin. We showed that the genomic architecture in hybrids presented pattern heterogeneity of selection for the different loci. Indeed, the upstream part of the river (Rosières and Labeaume) presented an overdominant fitness of heterozygotes (12.20%) corresponding to a genomic compatibility, and underselection was observed for 4.88%-7.32% of the loci tested indicating a genomic incompatibility. Moreover the upstream station (Rosières) presented a positive selection of invasive C. nasus homozygotes (17.07% to 21.95%) indicating that hybridization may increase the fitness of admixed individuals. We showed that hybrid morphology (body shape based on 21 landmarks) correlated with genomic dilution indicating a species fingerprint. However, we demonstrated that the hybrid morphology was not a linear modification between the two parental species but a trade-off between several correlated traits. Conclusions Hybrid specimens present a mosaic of genomic combination, showing regions with genomic compatibility and others with genomic incompatibility between the two species. Positive selection (invasive advantage ranging from 9.76% to 21.95% of the loci) was evidenced in the upstream part of the Ardèche indicating that environmental selection makes a substantial contribution. Although the presence of a dam is known to impose heterogeneous hybrid zones between these two species, we demonstrated in this study that a natural environment can also generate a hybrid zone with a large number (and diversity) of hybrids. The combination of the two genomes in the hybrids results in complex ontogenetic trajectories (with different morphological traits evolving at different rates) that correspond to novel developmental pathways.
Collapse
Affiliation(s)
- Melthide Sinama
- Aix-Marseille Université, CNRS, IRD, IMBE - UMR 7263, Equipe Evolution Génome Environnement, Centre Saint-Charles, Case 36, 3 place Victor Hugo, Marseille Cedex 3 13331, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Human activity and climate change are increasingly driving species, which were once separate together, leading to the potential for gene flow. Hybridization between diverged species brings together two genomes which have evolved to meet different adaptive requirements. The unique combination of these traits in a hybrid may be beneficial or maladaptive, but either way it results in increased phenotypic variation. A percentage of hybrid individuals may, therefore, find themselves able to exploit environmental niches which their progenitors cannot, leading to invasive hybrid swarms becoming established in new habitats. Previous research into hybrids, most famously that of Loren Rieseberg and co-workers (Rieseberg et al. 1999, 2003) in sunflowers, demonstrated that hybridization can give rise to transgressive segregation of adaptive traits, wherein the combination of favourable alleles from both parents in hybrids can enable them to outperform either. However, the question still remains as to how much of the competitive ability of hybrids is a direct result of admixture and how much is the result of selection after the fact. In this issue of Molecular Ecology, (Czypionka et al. 2012) describe their study of transcriptional changes resulting from hybridization in a fish hybrid termed invasive sculpins (Cottus). Using gene expression microarray assays, they compare gene expression in both wild and lab-reared invasive hybrids to the progenitor species and experimentally produced F(2) hybrids. They demonstrate that whilst hybridization alone does result in higher variance in gene expression (some of which is transgressive), many of the transgressive changes distinguishing the invasives appear to have come about subsequent to the initial natural hybridization event. They speculate that initial success of the hybrids in their new habitat is facilitated by hybridization, but that optimization of the invasive phenotype and removal of maladaptive traits rapidly reduces the variation in gene expression seen in early hybrids.
Collapse
Affiliation(s)
- M J Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK.
| |
Collapse
|
17
|
Harrison A, Binder H, Buhot A, Burden CJ, Carlon E, Gibas C, Gamble LJ, Halperin A, Hooyberghs J, Kreil DP, Levicky R, Noble PA, Ott A, Pettitt BM, Tautz D, Pozhitkov AE. Physico-chemical foundations underpinning microarray and next-generation sequencing experiments. Nucleic Acids Res 2013; 41:2779-96. [PMID: 23307556 PMCID: PMC3597649 DOI: 10.1093/nar/gks1358] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hybridization of nucleic acids on solid surfaces is a key process involved in high-throughput technologies such as microarrays and, in some cases, next-generation sequencing (NGS). A physical understanding of the hybridization process helps to determine the accuracy of these technologies. The goal of a widespread research program is to develop reliable transformations between the raw signals reported by the technologies and individual molecular concentrations from an ensemble of nucleic acids. This research has inputs from many areas, from bioinformatics and biostatistics, to theoretical and experimental biochemistry and biophysics, to computer simulations. A group of leading researchers met in Ploen Germany in 2011 to discuss present knowledge and limitations of our physico-chemical understanding of high-throughput nucleic acid technologies. This meeting inspired us to write this summary, which provides an overview of the state-of-the-art approaches based on physico-chemical foundation to modeling of the nucleic acids hybridization process on solid surfaces. In addition, practical application of current knowledge is emphasized.
Collapse
Affiliation(s)
- Andrew Harrison
- University of Essex-Mathematical Sciences, Colchester CO4 3SQ, Essex, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|