1
|
Gawrońska B, Marszałek M, Kosiński P, Podsiedlik M, Bednorz L, Zeyland J. No wonder, it is a hybrid. Natural hybridization between Jacobaea vulgaris and J. erucifolia revealed by molecular marker systems and its potential ecological impact. Ecol Evol 2023; 13:e10467. [PMID: 37664498 PMCID: PMC10468328 DOI: 10.1002/ece3.10467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Progressive changes in the environment are related to modifications of the habitat. Introducing exotic species, and interbreeding between species can lead to processes that in the case of rare species or small populations threatens their integrity. Given the declining trends of many populations due to increased hybridization, early recognition of hybrids becomes important in conservation management. Natural hybridization is prevalent in Jacobaea. There are many naturally occurring interspecific hybrids in this genus, including those between Jacobaea vulgaris and its relatives. Although Jacobaea erucifolia and J. vulgaris often co-occur and are considered closely related, apart from the few reports of German botanists on the existence of such hybrids, there is no information on research confirming hybridization between them. Morphologically intermediate individuals, found in the sympatric distributions of J. vulgaris and J. erucifolia, were hypothesized to be their hybrids. Two molecular marker systems (nuclear and chloroplast DNA markers) were employed to test this hypothesis and characterize putative hybrids. Nuclear and chloroplast DNA sequencing results and taxon-specific amplified fragment length polymorphism (AFLP) fragment distribution analysis confirmed the hybrid nature of all 25 putative hybrids. The AFLP patterns of most hybrids demonstrated a closer relationship to J. erucifolia, suggesting frequent backcrossing. Moreover, they showed that several individuals previously described as pure were probably also of hybrid origin, backcrosses to J. erucifolia and J. vulgaris. This study provides the first molecular confirmation that natural hybrids between J. vulgaris and J. erucifolia occur in Poland. Hybridization appeared to be bidirectional but asymmetrical with J. vulgaris as the usual maternal parent.
Collapse
Affiliation(s)
- Barbara Gawrońska
- Department of Biochemistry and Biotechnology, Faculty of Agronomy, Horticulture and BioengineeringPoznań University of Life SciencesPoznańPoland
| | - Małgorzata Marszałek
- Department of Biochemistry and Biotechnology, Faculty of Agronomy, Horticulture and BioengineeringPoznań University of Life SciencesPoznańPoland
| | - Piotr Kosiński
- Department of Botany, Faculty of Agronomy, Horticulture and BioengineeringPoznań University of Life SciencesPoznańPoland
- Institute of DendrologyPolish Academy of SciencesKórnikPoland
| | - Marek Podsiedlik
- Natural History Collections, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Leszek Bednorz
- Department of Botany, Faculty of Agronomy, Horticulture and BioengineeringPoznań University of Life SciencesPoznańPoland
| | - Joanna Zeyland
- Department of Biochemistry and Biotechnology, Faculty of Agronomy, Horticulture and BioengineeringPoznań University of Life SciencesPoznańPoland
| |
Collapse
|
2
|
Andersen JC, Havill NP, Boettner GH, Chandler JL, Caccone A, Elkinton JS. Real-time geographic settling of a hybrid zone between the invasive winter moth (Operophtera brumata L.) and the native Bruce spanworm (O. bruceata Hulst). Mol Ecol 2022; 31:6617-6633. [PMID: 35034394 DOI: 10.1111/mec.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/04/2022] [Indexed: 01/13/2023]
Abstract
Hybridization plays an important and underappreciated role in shaping the evolutionary trajectories of species. Following the introduction of a non-native organism to a novel habitat, hybridization with a native congener may affect the probability of establishment of the introduced species. In most documented cases of hybridization between a native and a non-native species, a mosaic hybrid zone is formed, with hybridization occurring heterogeneously across the landscape. In contrast, most naturally occurring hybrid zones are clinal in structure. Here, we report on a long-term microsatellite data set that monitored hybridization between the invasive winter moth, Operophtera brumata (Lepidoptera: Geometridae), and the native Bruce spanworm, O. bruceata, over a 12-year period. Our results document one of the first examples of the real-time formation and geographic settling of a clinal hybrid zone. In addition, by comparing one transect in Massachusetts where extreme winter cold temperatures have been hypothesized to restrict the distribution of winter moth, and one in coastal Connecticut, where winter temperatures are moderated by Long Island Sound, we found that the location of the hybrid zone appeared to be independent of environmental variables and maintained under a tension model wherein the stability of the hybrid zone was constrained by population density, reduced hybrid fitness, and low dispersal rates. Documenting the formation of a contemporary clinal hybrid zone may provide important insights into the factors that shaped other well-established hybrid zones.
Collapse
Affiliation(s)
- Jeremy C Andersen
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nathan P Havill
- Northern Research Station, USDA Forest Service, Hamden, Connecticut, USA
| | - George H Boettner
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jennifer L Chandler
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Adalgisa Caccone
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Joseph S Elkinton
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
3
|
Myers BM, Rankin DT, Burns KJ, Brelsford A, Clark CJ. k-mer analysis shows hybrid hummingbirds perform variable, transgressive courtship sequences. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
North HL, McGaughran A, Jiggins CD. Insights into invasive species from whole-genome resequencing. Mol Ecol 2021; 30:6289-6308. [PMID: 34041794 DOI: 10.1111/mec.15999] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Studies of invasive species can simultaneously inform management strategies and quantify rapid evolution in the wild. The role of genomics in invasion science is increasingly recognised, and the growing availability of reference genomes for invasive species is paving the way for whole-genome resequencing studies in a wide range of systems. Here, we survey the literature to assess the application of whole-genome resequencing data in invasion biology. For some applications, such as the reconstruction of invasion routes in time and space, sequencing the whole genome of many individuals can increase the accuracy of existing methods. In other cases, population genomic approaches such as haplotype analysis can permit entirely new questions to be addressed and new technologies applied. To date whole-genome resequencing has only been used in a handful of invasive systems, but these studies have confirmed the importance of processes such as balancing selection and hybridization in allowing invasive species to reuse existing adaptations and rapidly overcome the challenges of a foreign ecosystem. The use of genomic data does not constitute a paradigm shift per se, but by leveraging new theory, tools, and technologies, population genomics can provide unprecedented insight into basic and applied aspects of invasion science.
Collapse
Affiliation(s)
- Henry L North
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Hudson J, McQuaid CD, Rius M. Contemporary climate change hinders hybrid performance of ecologically dominant marine invertebrates. J Evol Biol 2020; 34:60-72. [PMID: 32096898 DOI: 10.1111/jeb.13609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 12/28/2022]
Abstract
Human activities alter patterns of biodiversity, particularly through species extinctions and range shifts. Two of these activities are human mediated transfer of species and contemporary climate change, and both allow previously isolated genotypes to come into contact and hybridize, potentially altering speciation rates. Hybrids have been shown to survive environmental conditions not tolerated by either parent, suggesting that, under some circumstances, hybrids may be able to expand their ranges and perform well under rapidly changing conditions. However, studies assessing how hybridization influences contemporary range shifts are scarce. We performed crosses on Pyura herdmani and Pyura stolonifera (Chordata, Tunicata), two closely related marine invertebrate species that are ecologically dominant and can hybridize. These sister species live in sympatry along the coasts of southern Africa, but one has a disjunct distribution that includes northern hemisphere sites. We experimentally assessed the performance of hybrid and parental crosses using different temperature regimes, including temperatures predicted under future climate change scenarios. We found that hybrids showed lower performance than parental crosses at the experimental temperatures, suggesting that hybrids are unlikely to expand their ranges to new environments. In turn, we found that the more widespread species performed better at a wide array of temperatures, indicating that this parental species may cope better with future conditions. This study illustrates how offspring fitness may provide key insights to predict range expansions and how contemporary climate change may mediate both the ability of hybrids to expand their ranges and the occurrence of speciation as a result of hybridization.
Collapse
Affiliation(s)
- Jamie Hudson
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | | | - Marc Rius
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK.,Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
6
|
Bourne SD, Hudson J, Holman LE, Rius M. Marine Invasion Genomics: Revealing Ecological and Evolutionary Consequences of Biological Invasions. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/13836_2018_21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Ben-Shlomo R. Invasiveness, chimerism and genetic diversity. Mol Ecol 2017; 26:6502-6509. [PMID: 28950415 DOI: 10.1111/mec.14364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/11/2017] [Accepted: 09/13/2017] [Indexed: 01/09/2023]
Abstract
Adaptation for invasiveness should comprise the capability to exploit and prosper in a wide range of ecological conditions and is therefore expected to be associated with a certain level of genetic diversity. Paradoxically, however, invasive populations are established by only a few founders, resulting in low genetic diversity. As a conceivable way of attaining high genetic diversity and high variance of gene expression even when a small number of founders is involved in invasiveness, I suggest here chimerism, a fusion between different individuals-a common phenomenon found in numerous phyla. The composite entity offers the chimeric organism genetic flexibility and higher inclusive fitness that depends on the joint genomic fitness of the original partners. The ability to form a chimeric entity is also applied to subsequent generations, and consequently, the level of genetic diversity does not decline over generations of population establishment following invasion.
Collapse
Affiliation(s)
- Rachel Ben-Shlomo
- Department of Biology and the Environment, University of Haifa - Oranim, Tivon, Israel
| |
Collapse
|
8
|
Guo Q. Plant hybridization: the role of human disturbance and biological invasion. DIVERS DISTRIB 2014. [DOI: 10.1111/ddi.12245] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Qinfeng Guo
- USDA FS; Eastern Forest Environmental Threat Assessment Center; 200 WT Weaver Blvd. Asheville NC 28804 USA
| |
Collapse
|
9
|
Roe AD, MacQuarrie CJK, Gros-Louis MC, Simpson JD, Lamarche J, Beardmore T, Thompson SL, Tanguay P, Isabel N. Fitness dynamics within a poplar hybrid zone: II. Impact of exotic sex on native poplars in an urban jungle. Ecol Evol 2014; 4:1876-89. [PMID: 24963382 PMCID: PMC4063481 DOI: 10.1002/ece3.1028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/20/2013] [Accepted: 12/31/2013] [Indexed: 01/11/2023] Open
Abstract
Trees bearing novel or exotic gene components are poised to contribute to the bioeconomy for a variety of purposes such as bioenergy production, phytoremediation, and carbon sequestration within the forestry sector, but sustainable release of trees with novel traits in large-scale plantations requires the quantification of risks posed to native tree populations. Over the last century, exotic hybrid poplars produced through artificial crosses were planted throughout eastern Canada as ornamentals or windbreaks and these exotics provide a proxy by which to examine the fitness of exotic poplar traits within the natural environment to assess risk of exotic gene escape, establishment, and spread into native gene pools. We assessed postzygotic fitness traits of native and exotic poplars within a naturally regenerated stand in eastern Canada (Quebec City, QC). Pure natives (P. balsamifera and P. deltoides spp. deltoides), native hybrids (P. deltoides × P. balsamifera), and exotic hybrids (trees bearing Populus nigra and P. maximowiczii genetic components) were screened for reproductive biomass, yield, seed germination, and fungal disease susceptibility. Exotic hybrids expressed fitness traits intermediate to pure species and were not significantly different from native hybrids. They formed fully viable seed and backcrossed predominantly with P. balsamifera. These data show that exotic hybrids were not unfit and were capable of establishing and competing within the native stand. Future research will seek to examine the impact of exotic gene regions on associated biotic communities to fully quantify the risk exotic poplars pose to native poplar forests.
Collapse
Affiliation(s)
- Amanda D Roe
- Natural Resources Canada, Canadian Forest ServiceQuébec, Québec, Canada
- Natural Resources Canada, Canadian Forest ServiceSault Ste. Marie, Ontario, Canada
| | - Chris JK MacQuarrie
- Natural Resources Canada, Canadian Forest ServiceSault Ste. Marie, Ontario, Canada
| | | | - J Dale Simpson
- Natural Resources Canada, Canadian Forest ServiceFredericton, New-Brunswick, Canada
| | - Josyanne Lamarche
- Natural Resources Canada, Canadian Forest ServiceSault Ste. Marie, Ontario, Canada
| | - Tannis Beardmore
- Natural Resources Canada, Canadian Forest ServiceFredericton, New-Brunswick, Canada
| | - Stacey L Thompson
- Natural Resources Canada, Canadian Forest ServiceQuébec, Québec, Canada
- Umeå University, Department of Ecology and Environmental Science, Umeå Plant Science CentreUmeå, Sweden
| | - Philippe Tanguay
- Natural Resources Canada, Canadian Forest ServiceQuébec, Québec, Canada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest ServiceQuébec, Québec, Canada
| |
Collapse
|