1
|
Okello E, ElAshmawy WR, Williams DR, Lehenbauer TW, Aly SS. Effect of dry cow therapy on antimicrobial resistance of mastitis pathogens post-calving. Front Vet Sci 2023; 10:1132810. [PMID: 37546337 PMCID: PMC10399697 DOI: 10.3389/fvets.2023.1132810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
The aim of this study was to evaluate the effect of dry cow therapy (DCT) on the antimicrobial resistance (AMR) profile of mastitis pathogens post-calving. A repository of isolates based on a DCT trial was utilized for the current study. A stratified random survey sample of cows from the trial were identified within the strata of season, herd, and trial treatment resulting in 382 cows. All isolates from the 382 cows were selected for the current study, which identified 566 isolates from milk samples collected at dry off (S1), post-calving (S2), and at the first clinical mastitis event up to 150 days in milk (S3). The AMR profiles were determined using broth microdilution method. Less than 10% of the coagulase-negative Staphylococcus species (CNS) isolates (n = 421) were resistant to tetracycline, ceftiofur, penicillin/novobiocin or erythromycin, while higher proportions of resistance to sulfadimethoxine (72%) and penicillin (28%) were observed. All Staphylococcus aureus (S. aureus) isolates (n = 4) were susceptible to all tested AMD except sulfadimethoxine, to which all isolates were resistant. Similarly, all Streptococcus spp. (n = 37) were susceptible to penicillin, penicillin/novobiocin, and ampicillin while resistant to tetracycline (17%). All coliforms (n = 21) were susceptible to ceftiofur, but resistance was recorded for sulfadimethoxine (70%), cephalothin (56%), and tetracycline (43%). The increased resistance percent from S1 to S2 was observed in CNS isolates from AMD-treated cows, with the highest increase recorded for penicillin (12.2%). Parametric survival interval regression models were used to explore the association between antimicrobial drug (AMD) therapy at dry off and the AMR phenotype post-calving. The accelerated failure-time metric was adopted to minimum inhibitory concentration measurements to permit interpretation of model exponentiated coefficients. Models for cows with CNS isolated at both S1 and S2 showed increased resistance against cephalothin, oxacillin, and ceftiofur in cows that received DCT from the same drug class, or a class with a shared resistance mechanism. In contrast, resistance of CNS isolates to tetracycline were associated with any AMD therapy at dry off. Resistance of CNS isolates to Penicillin decreased in CNS isolates in cows that received any AMD therapy at dry off compared to those that didn't. The study provided evidence that dry-cow IMM AMD was associated with AMR post-calving.
Collapse
Affiliation(s)
- Emmanuel Okello
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Wagdy R. ElAshmawy
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Deniece R. Williams
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
| | - Terry W. Lehenbauer
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sharif S. Aly
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
2
|
Sun Y, Heidary DK, Zhang Z, Richards CI, Glazer EC. Bacterial Cytological Profiling Reveals the Mechanism of Action of Anticancer Metal Complexes. Mol Pharm 2018; 15:3404-3416. [PMID: 29865789 PMCID: PMC6083414 DOI: 10.1021/acs.molpharmaceut.8b00407] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Target
identification and mechanistic studies of cytotoxic agents
are challenging processes that are both time-consuming and costly.
Here we describe an approach to mechanism of action studies for potential
anticancer compounds by utilizing the simple prokaryotic system, E. coli, and we demonstrate its utility with the characterization
of a ruthenium polypyridyl complex [Ru(bpy)2dmbpy2+]. Expression of the photoconvertible fluorescent protein Dendra2
facilitated both high throughput studies and single-cell imaging.
This allowed for simultaneous ratiometric analysis of inhibition of
protein production and phenotypic investigations. The profile of protein
production, filament size and population, and nucleoid morphology
revealed important differences between inorganic agents that damage
DNA vs more selective inhibitors of transcription and translation.
Trace metal analysis demonstrated that DNA is the preferred nucleic
acid target of the ruthenium complex, but further studies in human
cancer cells revealed altered cell signaling pathways compared to
the commonly administrated anticancer agent cisplatin. This study
demonstrates E. coli can be used to rapidly distinguish
between compounds with disparate mechanisms of action and also for
more subtle distinctions within in studies in mammalian cells.
Collapse
Affiliation(s)
- Yang Sun
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - David K Heidary
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Zhihui Zhang
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Christopher I Richards
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Edith C Glazer
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| |
Collapse
|
3
|
Ranjan J, Prakash JAJ. Scrub typhus re-emergence in India: Contributing factors and way forward. Med Hypotheses 2018; 115:61-64. [DOI: 10.1016/j.mehy.2018.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/30/2018] [Indexed: 11/29/2022]
|
4
|
Hitch G, Fleming N. Antibiotic resistance in travellers' diarrhoeal disease, an external perspective. J Travel Med 2018; 25:S27-S37. [PMID: 29718437 DOI: 10.1093/jtm/tay014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/08/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND There are many recommendations on the use of antibiotics for prophylaxis and treatment of travellers' diarrhoea (TD). As pharmacists with a special interest in antimicrobial stewardship, we examine and offer our perspective on advice that is recommended to travellers in terms of prevention, treatment and management of TD with a focus on antibiotic use and resistance. METHODS Publications on TD were identified through PubMed, Google Scholar and Cochrane Library databases searches using search terms 'travellers diarrhoea', 'travellers diarrhoea', 'travellers' diarrhoea' 'guidelines', 'expert opinion', 'expert reviews', 'South Asia' and 'South East Asia' (S and SE Asia), 'antibiotics', 'resistance genes', 'travel advice', 'pharmacists', 'guidelines', 'prevention' and 'treatment'. References of articles were also screened for additional relevant studies. RESULTS Whilst most guidelines and expert reviews were in agreement with the restricted use of antibiotics unless there was a clinical need, the literature review identified gaps in research into behaviours of travellers regarding non-compliance with the pre-travel advice provided and the need for in depth training and education for all healthcare professionals in providing 'tailored' advice for travellers going to high-risk destinations. CONCLUSIONS Travellers should be made aware of the problems of antimicrobial resistance in their destination and home countries and offered alternative forms of prophylaxis for TD. Strategies for prevention of TD, other than the use of antibiotics, also need to be emphasized. All healthcare professionals involved in giving advice about TD should be familiar with the epidemiology of the condition as this will inform responsible behaviours, risk assessment and management strategies in different geographical areas.
Collapse
Affiliation(s)
- Geeta Hitch
- Department of Life Sciences/Pharmacy, JMS Building, University of Sussex, Falmer, Brighton BN1 9RH, UK
| | - Naomi Fleming
- Department of Pharmacy, Kettering General Hospital, Rothwell Road, Kettering, Northamptonshire NN16 8UZ, UK
| |
Collapse
|
5
|
Li W, Ali F, Cai Q, Yao Z, Sun L, Lin W, Lin X. Reprint of: Quantitative proteomic analysis reveals that chemotaxis is involved in chlortetracycline resistance of Aeromonas hydrophila. J Proteomics 2018; 180:138-146. [PMID: 29604439 DOI: 10.1016/j.jprot.2018.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/13/2017] [Accepted: 09/24/2017] [Indexed: 02/05/2023]
Abstract
In recent years, Aeromonas hydrophila, which has been classified as a food borne pathogen, has presented with increased levels of antibiotic resistance, with the mechanisms of this resistance being poorly understood. In this study, iTRAQ coupled mass spectrometry was employed to compare differentially expressed proteins in chlortetracycline (CTC) resistant A. hydrophila relative to a control strain. Result showed that a total of 234 differential proteins including 151 down-regulated and 83 up-regulated were identified in chlortetracycline resistance strain. Bioinformatics analysis showed that chemotaxis related proteins, such as CheA-2, CheR-3, CheW-2, EnvZ, PolA, FliS and FliG were down-regulated in addition to previously reported tricarboxylic acid cycle (TCA) related proteins also being down-regulated. A subset of identified differentially expressed proteins was then further validated via Western blotting. Exogenous metabolite combined with CTC further enhanced the bacterial susceptibilities to CTC in A. hydrophila. Furthermore, a bacterial survival capability assay showed that several chemotaxis related mutants, such as ΔcheR-3 and ΔAHA_0305, may affect the antimicrobial susceptibility of A. hydrophila. Overall, these findings contribute to a further understanding of the mechanism of CTC resistance in A. hydrophila and may contribute to the development of more effective future treatments. BIOLOGICAL SIGNIFICANCE A. hydrophila is a well-known fish pathogenic bacterium and has presented with increasing levels of antibiotic resistance, with the mechanisms of this resistance being poorly understood. Our current study compared the differentially expression proteins between chlortetracycline (CTC) resistant and control stains via an iTARQ-based quantitative proteomics method. Chemotaxis related proteins were down-regulated in CTC resistant strain but exogenous metabolite addition increased bacterial susceptibility in A.hydrophila. Significantly, chemotaxis related genes depletion affected antimicrobial susceptibilities of A.hydrophila indicating the role of chemotaxis process in antibiotics resistance.
Collapse
Affiliation(s)
- Wanxin Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Farman Ali
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Qilan Cai
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Zujie Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Lina Sun
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China.
| |
Collapse
|
6
|
Quantitative proteomic analysis reveals that chemotaxis is involved in chlortetracycline resistance of Aeromonas hydrophila. J Proteomics 2018; 172:143-151. [DOI: 10.1016/j.jprot.2017.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/13/2017] [Accepted: 09/24/2017] [Indexed: 12/25/2022]
|
7
|
Gupta S, Laskar N, Kadouri DE. Evaluating the Effect of Oxygen Concentrations on Antibiotic Sensitivity, Growth, and Biofilm Formation of Human Pathogens. Microbiol Insights 2016; 9:37-46. [PMID: 27891050 PMCID: PMC5113855 DOI: 10.4137/mbi.s40767] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/02/2016] [Accepted: 10/06/2016] [Indexed: 01/20/2023] Open
Abstract
Standard antimicrobial susceptibility tests are performed in vitro under normal room oxygen conditions to predict the in vivo effectiveness of antimicrobial therapy. The aim of this study was to conduct a comprehensive analysis of the effect of different oxygen levels on the antibiotic susceptibility of two strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. It was found that anoxic conditions caused reduced sensitivity of bacteria to aminoglycoside antibiotics in four of six bacteria used in the study. In addition, oxygen limitation decreased the susceptibility of P. aeruginosa strains and K. pneumoniae strains to piperacillin/tazobactam and azithromycin, respectively. In contrast, five of six bacteria became more susceptible to tetracycline antibiotics under oxygen-limiting conditions. Our data highlight the importance of considering the potential in vivo oxygen levels within the infection site when setting susceptibility breakpoints for evaluating the therapeutic potential of a drug and its effect on antibiotic sensitivity of the pathogen.
Collapse
Affiliation(s)
- Shilpi Gupta
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Nozrin Laskar
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| |
Collapse
|
8
|
Guerra W, Silva-Caldeira PP, Terenzi H, Pereira-Maia EC. Impact of metal coordination on the antibiotic and non-antibiotic activities of tetracycline-based drugs. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Miranda CD, Tello A, Keen PL. Mechanisms of antimicrobial resistance in finfish aquaculture environments. Front Microbiol 2013; 4:233. [PMID: 23986749 PMCID: PMC3749489 DOI: 10.3389/fmicb.2013.00233] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/29/2013] [Indexed: 11/13/2022] Open
Abstract
Consumer demand for affordable fish drives the ever-growing global aquaculture industry. The intensification and expansion of culture conditions in the production of several finfish species has been coupled with an increase in bacterial fish disease and the need for treatment with antimicrobials. Understanding the molecular mechanisms of antimicrobial resistance prevalent in aquaculture environments is important to design effective disease treatment strategies, to prioritize the use and registration of antimicrobials for aquaculture use, and to assess and minimize potential risks to public health. In this brief article we provide an overview of the molecular mechanisms of antimicrobial resistance in genes found in finfish aquaculture environments and highlight specific research that should provide the basis of sound, science-based policies for the use of antimicrobials in aquaculture.
Collapse
Affiliation(s)
- Claudio D Miranda
- Department of Aquaculture, Universidad Católica del Norte Coquimbo, Chile
| | | | | |
Collapse
|
10
|
Abstract
Campylobacter jejuni is a major cause of food-borne gastroenteritis worldwide. While mortality is low, morbidity imparted by post-infectious sequelae such as Guillain-Barré syndrome, Reiter syndrome/reactive arthritis and irritable bowel syndrome is significant. In addition, the economic cost is high due to lost productivity. Food animals, particularly poultry, are the main reservoirs of C. jejuni. The over-use of antibiotics in the human population and in animal husbandry has led to an increase in antibiotic-resistant infections, particularly with fluoroquinolones. This is problematic because C. jejuni gastroenteritis is clinically indistinguishable from that caused by other bacterial pathogens, and such illnesses are usually treated empirically with fluoroquinolones. Since C. jejuni is naturally transformable, acquisition of additional genes imparting antibiotic resistance is likely. Therefore, an understanding of the antibiotic resistance mechanisms in C. jejuni is needed to provide proper therapy both to the veterinary and human populations.
Collapse
Affiliation(s)
- Nicole M Iovine
- University of Florida and the Malcom Randall VA Medical Center, Gainesville, FL, USA.
| |
Collapse
|
11
|
Soares GMS, Figueiredo LC, Faveri M, Cortelli SC, Duarte PM, Feres M. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs. J Appl Oral Sci 2013; 20:295-309. [PMID: 22858695 PMCID: PMC3881775 DOI: 10.1590/s1678-77572012000300002] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/20/2011] [Indexed: 11/22/2022] Open
Abstract
Antibiotics are important adjuncts in the treatment of infectious diseases, including periodontitis. The most severe criticisms to the indiscriminate use of these drugs are their side effects and, especially, the development of bacterial resistance. The knowledge of the biological mechanisms involved with the antibiotic usage would help the medical and dental communities to overcome these two problems. Therefore, the aim of this manuscript was to review the mechanisms of action of the antibiotics most commonly used in the periodontal treatment (i.e. penicillin, tetracycline, macrolide and metronidazole) and the main mechanisms of bacterial resistance to these drugs. Antimicrobial resistance can be classified into three groups: intrinsic, mutational and acquired. Penicillin, tetracycline and erythromycin are broad-spectrum drugs, effective against gram-positive and gram-negative microorganisms. Bacterial resistance to penicillin may occur due to diminished permeability of the bacterial cell to the antibiotic; alteration of the penicillin-binding proteins, or production of β-lactamases. However, a very small proportion of the subgingival microbiota is resistant to penicillins. Bacteria become resistant to tetracyclines or macrolides by limiting their access to the cell, by altering the ribosome in order to prevent effective binding of the drug, or by producing tetracycline/macrolide-inactivating enzymes. Periodontal pathogens may become resistant to these drugs. Finally, metronidazole can be considered a prodrug in the sense that it requires metabolic activation by strict anaerobe microorganisms. Acquired resistance to this drug has rarely been reported. Due to these low rates of resistance and to its high activity against the gram-negative anaerobic bacterial species, metronidazole is a promising drug for treating periodontal infections.
Collapse
Affiliation(s)
- Geisla Mary Silva Soares
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Licht TR, Struve C, Christensen BB, Poulsen RL, Molin S, Krogfelt KA. Evidence of increased spread and establishment of plasmid RP4 in the intestine under sub-inhibitory tetracycline concentrations. FEMS Microbiol Ecol 2009; 44:217-23. [PMID: 19719638 DOI: 10.1016/s0168-6496(03)00016-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The consequences of using anti-microbial agents in a complex ecosystem like the animal intestine can be difficult to predict. We have looked at effects of modulations in growth of competing intestinal bacteria on transfer and establishment of new genetic elements in the intestinal microflora. For this purpose, we used tetracycline, which gradually reduces the growth rate of tetracycline-sensitive bacteria, as the concentration of this drug is increased. The effect of tetracycline on transfer and establishment of the plasmid RP4, which encodes resistance to this drug, in populations of Escherichia coli BJ4 colonizing the intestine was investigated. A tetracycline-sensitive E. coli BJ4 strain was allowed to establish in the gastrointestinal tract of mice, where after an isogenic E. coli BJ4 carrying RP4 was given to the mice per os. Tetracycline in the drinking water given to the animals was kept in concentrations that allowed the sensitive recipient strain to colonize the gut. A given 'window' between the highest and the lowest antibiotic doses tested was shown to be optimal for the establishment of transconjugants in the intestine. These observations are important for the evaluation of the effect of a given drug on the intestinal ecosystem. A reduced potential for growth of a given bacterial species, caused by the presence of sub-inhibitory concentrations of a bacteriostatic antibiotic, will facilitate establishment of competing (i.e. closely related) organisms, which have acquired resistance genes and therefore grow well in the presence of the drug.
Collapse
Affiliation(s)
- Tine Rask Licht
- Department of Gastrointestinal Infections, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
SUMMARY Bacteroides species are significant clinical pathogens and are found in most anaerobic infections, with an associated mortality of more than 19%. The bacteria maintain a complex and generally beneficial relationship with the host when retained in the gut, but when they escape this environment they can cause significant pathology, including bacteremia and abscess formation in multiple body sites. Genomic and proteomic analyses have vastly added to our understanding of the manner in which Bacteroides species adapt to, and thrive in, the human gut. A few examples are (i) complex systems to sense and adapt to nutrient availability, (ii) multiple pump systems to expel toxic substances, and (iii) the ability to influence the host immune system so that it controls other (competing) pathogens. B. fragilis, which accounts for only 0.5% of the human colonic flora, is the most commonly isolated anaerobic pathogen due, in part, to its potent virulence factors. Species of the genus Bacteroides have the most antibiotic resistance mechanisms and the highest resistance rates of all anaerobic pathogens. Clinically, Bacteroides species have exhibited increasing resistance to many antibiotics, including cefoxitin, clindamycin, metronidazole, carbapenems, and fluoroquinolones (e.g., gatifloxacin, levofloxacin, and moxifloxacin).
Collapse
|
14
|
Sum PE. Case studies in current drug development: 'glycylcyclines'. Curr Opin Chem Biol 2006; 10:374-9. [PMID: 16807065 DOI: 10.1016/j.cbpa.2006.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
Glycylcyclines represent a new class of tetracycline antibiotics with potent antibacterial activities against resistant pathogens. One of the glycylcyclines, Tygacil, was selected for further development and has been approved by the FDA. It has an expanded broad-spectrum of antibacterial activity both in vitro and in vivo. It is active against a wide range of clinically relevant pathogens including Gram-positive, Gram-negative, atypical, and anaerobic bacteria and bacterial strains carrying either or both of the two major forms of tetracycline resistance (efflux and ribosomal protection). Most importantly, it is active against the multiply antibiotic resistant Gram-positive pathogenic bacteria, including methicillin-resistant Staphylococcus aureus (MRSA).
Collapse
Affiliation(s)
- Phaik-Eng Sum
- Chemical and Screening Sciences Department, Wyeth Research, 401 North Middletown Road, Pearl River, NY 10965, USA.
| |
Collapse
|
15
|
Guerra W, de Andrade Azevedo E, de Souza Monteiro AR, Bucciarelli-Rodriguez M, Chartone-Souza E, Nascimento AMA, Fontes APS, Le Moyec L, Pereira-Maia EC. Synthesis, characterization, and antibacterial activity of three palladium(II) complexes of tetracyclines. J Inorg Biochem 2005; 99:2348-54. [PMID: 16226807 DOI: 10.1016/j.jinorgbio.2005.09.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 09/01/2005] [Accepted: 09/02/2005] [Indexed: 11/25/2022]
Abstract
Pd(II) complexes with three antibiotics of the tetracycline family (tetracycline, doxycycline and chlortetracycline) were synthesized and characterized by elemental, thermogravimetric, and conductivity analyses, and infrared spectroscopy. The interactions between Pd(II) ions and tetracycline were investigated in aqueous solution by (1)H NMR. All the tetracyclines studied form 1:1 complexes with Pd(II) via the oxygen of the hydroxyl group at ring A and that of the amide group. The effect of the three complexes on the growth of bacterial strains sensitive and resistant to tetracycline was studied. The Pd(II) complex of tetracycline is practically as efficient as tetracycline in inhibiting the growth of two Escherichia coli (E. coli) sensitive bacterial strains and 16 times more potent against E. coli HB101/pBR322, a bacterial strain resistant to tetracycline. Pd(II) coordination to doxycycline also increased its activity in the resistant strain by a factor of 2.
Collapse
Affiliation(s)
- Wendell Guerra
- Departamento de Química - ICEx, Universidade Federal de Minas Gerais, Avenida Antonio Carlos, 6627, 31.270-901 Belo Horizonte MG, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chartone-Souza E, Loyola TL, Bucciarelli-Rodriguez M, Menezes MADBC, Rey NA, Pereira-Maia EC. Synthesis and characterization of a tetracycline-platinum (II) complex active against resistant bacteria. J Inorg Biochem 2005; 99:1001-8. [PMID: 15833322 DOI: 10.1016/j.jinorgbio.2005.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 01/13/2005] [Accepted: 01/14/2005] [Indexed: 10/25/2022]
Abstract
A tetracycline-platinum(II) complex, [PtCl2(C22H24N2O8)], was synthesized and characterized by elemental analysis, conductivity and thermogravimetric analyses, and infrared spectroscopy. The interaction of tetracycline (Tc) with platinum(II) ions was also studied in aqueous solution by 1H NMR and circular dichroism spectroscopies. Tetracycline forms a 1:1 complex with platinum via the oxygen of the hydroxyl group at the A ring and that of the amide group. The complex is as efficient as tetracycline in inhibiting the growth of two Escherichia coli sensitive bacterial strains and six times more potent against E. coli HB101/pBR322, a bacterial strain resistant to tetracycline. This finding is very important because the use of tetracycline to treat bacterial infections has declined due to the emergence of resistant organisms.
Collapse
Affiliation(s)
- Edmar Chartone-Souza
- Departamento de Biologia Geral-ICB, Universidade Federal de Minas Gerais 31.270-901, Belo Horizonte MG, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Mirand CD, Zemelman R. Antimicrobial multiresistance in bacteria isolated from freshwater Chilean salmon farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2002; 293:207-18. [PMID: 12109474 DOI: 10.1016/s0048-9697(02)00022-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The intensive use of antimicrobial agents, mainly oxytetracycline, to prevent and control bacterial pathologies in Chilean salmon culture is a frequent practice. A total of 103 gram-negative oxytetracycline-resistant bacteria recovered from various sources of 4 Chilean freshwater salmon farms were identified and investigated for their susceptibility patterns to various antibacterial agents, by using an agar disk diffusion method. Antibacterial resistance patterns of isolates were not correlated with bacterial species or strain source. A high number of bacteria resistant to amoxicillin, ampicillin. erythromycin, and furazolidone, as well as an important frequency of bacterial resistance to florfenicol, chloramphenicol, cefotaxime and trimethoprim-sulfamethoxazole was found. On the contrary, the proportion of bacteria resistant to gentamicin, kanamycin, flumequine and enrofloxacin was rather low. Resistant microflora showed a high taxonomic variability and mainly consisted of non-fermenting bacteria (77.7%). These strains mainly belonged to the species Pseudomonas fluorescens (29), Aeromonas hydrophila (10), Stenotrophomonas maltophilia (6), isolated from salmon fingerlings, and Acinetobacter lwoffii (5) isolated from pelletized feed. The occurrence of simultaneous resistance to various antibacterials was frequent. We observe a high frequency of bacteria resistant to 6-10 antibacterials (74 strains), and antibiotic resistance index (ARI) values ranging from 0.38 to 0.48 for the four salmon farms studied. These results suggest that Chilean salmon farms might play a role as reservoirs of antibacterial multiresistant bacteria, thus prompting the necessity for a more restrictive attitude towards the intensive use of antibacterials in salmon farming.
Collapse
Affiliation(s)
- Claudio D Mirand
- Departamento de Acuícultura, Universidad Católica del Norte, Coquimbo, Chile.
| | | |
Collapse
|
18
|
Brodersen DE, Clemons WM, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 2000; 103:1143-54. [PMID: 11163189 DOI: 10.1016/s0092-8674(00)00216-6] [Citation(s) in RCA: 627] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have used the recently determined atomic structure of the 30S ribosomal subunit to determine the structures of its complexes with the antibiotics tetracycline, pactamycin, and hygromycin B. The antibiotics bind to discrete sites on the 30S subunit in a manner consistent with much but not all biochemical data. For each of these antibiotics, interactions with the 30S subunit suggest a mechanism for its effects on ribosome function.
Collapse
Affiliation(s)
- D E Brodersen
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | | | |
Collapse
|
19
|
Russell AD. Mechanisms of bacterial resistance to antibiotics and biocides. PROGRESS IN MEDICINAL CHEMISTRY 2000; 35:133-97. [PMID: 10795401 DOI: 10.1016/s0079-6468(08)70036-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- A D Russell
- Welsh School of Pharmacy, University of Wales, Cardiff, UK
| |
Collapse
|
20
|
Petersen PJ, Jacobus NV, Weiss WJ, Sum PE, Testa RT. In vitro and in vivo antibacterial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936). Antimicrob Agents Chemother 1999; 43:738-44. [PMID: 10103174 PMCID: PMC89200 DOI: 10.1128/aac.43.4.738] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 9-t-butylglycylamido derivative of minocycline (TBG-MINO) is a recently synthesized member of a novel group of antibiotics, the glycylcyclines. This new derivative, like the first glycylcyclines, the N,N-dimethylglycylamido derivative of minocycline and 6-demethyl-6-deoxytetracycline, possesses activity against bacterial isolates containing the two major determinants responsible for tetracycline resistance: ribosomal protection and active efflux. The in vitro activities of TBG-MINO and the comparative agents were evaluated against strains with characterized tetracycline resistance as well as a spectrum of recent clinical aerobic and anaerobic gram-positive and gram-negative bacteria. TBG-MINO, with an MIC range of 0.25 to 0.5 microgram/ml, showed good activity against strains expressing tet(M) (ribosomal protection), tet(A), tet(B), tet(C), tet(D), and tet(K) (efflux resistance determinants). TBG-MINO exhibited similar activity against methicillin-resistant Staphylococcus aureus (MRSA), penicillin-resistant streptococci, and vancomycin-resistant enterococci (MICs at which 90% of strains are inhibited, < or = 0.5 microgram/ml). TBG-MINO exhibited activity against a wide diversity of gram-negative aerobic and anaerobic bacteria, most of which were less susceptible to tetracycline and minocycline. The in vivo protective effects of TBG-MINO were examined against acute lethal infections in mice caused by Escherichia coli, S. aureus, and Streptococcus pneumoniae isolates. TBG-MINO, administered intravenously, demonstrated efficacy against infections caused by S. aureus including MRSA strains and strains containing tet(K) or tet(M) resistance determinants (median effective doses [ED50s], 0.79 to 2.3 mg/kg of body weight). TBG-MINO demonstrated efficacy against infections caused by tetracycline-sensitive E. coli strains as well as E. coli strains containing either tet(M) or the efflux determinant tet(A), tet(B), or tet(C) (ED50s, 1.5 to 3.5 mg/kg). Overall, TBG-MINO shows antibacterial activity against a wide spectrum of gram-positive and gram-negative aerobic and anaerobic bacteria including strains resistant to other chemotherapeutic agents. The in vivo protective effects, especially against infections caused by resistant bacteria, corresponded with the in vitro activity of TBG-MINO.
Collapse
Affiliation(s)
- P J Petersen
- Infectious Disease Research Section, Wyeth-Ayerst Research, Pearl River, New York 10965, USA.
| | | | | | | | | |
Collapse
|
21
|
Luo ZQ, Farrand SK. Cloning and characterization of a tetracycline resistance determinant present in Agrobacterium tumefaciens C58. J Bacteriol 1999; 181:618-26. [PMID: 9882678 PMCID: PMC93418 DOI: 10.1128/jb.181.2.618-626.1999] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/1998] [Accepted: 11/07/1998] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens C58 and its derivatives give rise to spontaneous mutants resistant to tetracycline at a high frequency. We observed that a mutation affecting a tRNA processing function significantly affected the emergence of such mutants, suggesting that C58 contained a positively acting gene conferring resistance to tetracycline. A cosmid clone conferring resistance to tetracycline in Escherichia coli and Agrobacterium was isolated from a genomic bank of one such mutant. Subcloning, transposon mutagenesis, and DNA sequence analysis revealed that this DNA fragment contained two divergently transcribed genes, tetA and tetR, encoding products that were very similar to proteins of the Tet(A) class of tetracycline resistance systems. In the clone from this mutant, tetR was disrupted by an IS426. The homologous region from wild-type NT1 contained an intact tetR gene and did not confer resistance to tetracycline. Hybridization analysis showed that of 22 members of the genus Agrobacterium surveyed, only strains C58 and T37 contained the tet determinant. Moreover, only these two strains mutated to resistance to this antibiotic. Unlike other Tet(A) systems, neither tetracycline nor a series of its derivatives induced the expression of this tet gene unit. Other polycyclic compounds, including many of plant origin, also did not induce this tet gene system. The divergent promoter region of this tet system contained a single inverted repeat element identical to one such operator repeat in the promoter region of the tet determinant from the IncP1alpha R plasmid RP4. TetR repressor proteins from the Agrobacterium tet system and from RP4 interacted with the heterologous operators. While the repressive effect of the TetR protein from strain C58 (TetRC58) on the tetA gene from strain RP4 (tetARP4) was not relieved by tetracycline, repression of tetAC58 by TetRRP4 was lifted by this antibiotic.
Collapse
Affiliation(s)
- Z Q Luo
- Departments of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
22
|
Weinberg MA, Bral M. Tetracycline and its analogues: a therapeutic paradigm in periodontal diseases. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1998; 9:322-32. [PMID: 9715369 DOI: 10.1177/10454411980090030501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article discusses the use of tetracyclines in the clinical management of periodontal infections. A review of the drugs pharmacology, pharmacokinetics, and potential adverse effects shows that they are relatively safe if used in appropriate dosages and under controlled conditions. Current data suggest that the routine use of tetracyclines in conjunction with the treatment of periodontitis is unnecessary. However, their distinctive characteristics can be utilized in different delivery systems as an adjunctive aid to conventional treatment of juvenile and refractory forms of periodontitis.
Collapse
Affiliation(s)
- M A Weinberg
- Department of Periodontics, New York University College of Dentistry, New York, 10010, USA
| | | |
Collapse
|
23
|
Reece M, Prawitt D, Landers J, Kast C, Gros P, Housman D, Zabel BU, Pelletier J. Functional characterization of ORCTL2--an organic cation transporter expressed in the renal proximal tubules. FEBS Lett 1998; 433:245-50. [PMID: 9744804 DOI: 10.1016/s0014-5793(98)00907-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromosome 11p15.5 harbors a gene or genes involved in Beckwith-Wiedemann syndrome that confer(s) susceptibility to Wilms' tumor, rhabdomyosarcoma, and hepatoblastoma. We have previously identified a transcript at 11p15.5 which encodes a putative membrane transport protein, designated organic cation transporter-like 2 (ORCTL2), that shares homology with tetracycline resistance proteins and bacterial multidrug resistance proteins. In this report, we have investigated the transport properties of ORCTL2 and show that this protein can confer resistance to chloroquine and quinidine when overexpressed in bacteria. Immunohistochemistry analyses performed with anti-ORCTL2 polyclonal antibodies on human renal sections indicate that ORCTL2 is localized on the apical membrane surface of the proximal tubules. These results suggest that ORCTL2 may play a role in the transport of chloroquine and quinidine related compounds in the kidney.
Collapse
Affiliation(s)
- M Reece
- Department of Biochemistry, McGill University, Montreal, Que., Canada
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Francois B, Charles M, Courvalin P. Conjugative transfer of tet(S) between strains of Enterococcus faecalis is associated with the exchange of large fragments of chromosomal DNA. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 7):2145-2154. [PMID: 9245804 DOI: 10.1099/00221287-143-7-2145] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The tetracycline resistance determinant tet(S) was first detected in antibiotic multiresistant Listeria monocytogenes BM4210 and subsequently in strains of Enterococcus faecalis. Transfer of tet(S) from clinical isolate E. faecalis BM4242 to E. faecalis strains JH2-2 and OG1RF was found to require the presence in the donor strain of the 55 kb conjugative plasmid pIP825. Comparison of restriction endonuclease generated maps of the donor, the two recipients, and of four transconjugants indicated that transfer of tet(S) (i) was from chromosome to chromosome, (ii) resulted in the acquisition of an approximately 40 kb element in the same chromosomal region and (iii) was associated with the exchange of large chromosomal fragments. Similar observations were made following conjugal transfer of tet(S) from four other E. faecalis clinical isolates.
Collapse
Affiliation(s)
| | - Murielle Charles
- Unité des Agents Antibactériens, CNRS EP 10058, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Patrice Courvalin
- Unité des Agents Antibactériens, CNRS EP 10058, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
25
|
Lacroix JM, Walker CB. Detection and prevalence of the tetracycline resistance determinant Tet Q in the microbiota associated with adult periodontitis. ORAL MICROBIOLOGY AND IMMUNOLOGY 1996; 11:282-8. [PMID: 9002882 DOI: 10.1111/j.1399-302x.1996.tb00182.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Subgingival plaque samples were collected from 68 patients with a history of moderate to severe adult periodontitis and enumerated on Trypticase-soy blood agar plates, with and without tetracycline at 4 micrograms/ml. Each different colony morphotype was enumerated, and a representative colony was subcultured for identification and examined for the tetracycline resistance gene tet(Q) by polymerase chain reaction (PCR) amplification and DNA hybridization, using a fragment of tetA(Q)2 from Bacteroides fragilis 1126. PCR primers (5'-GGCTTCTACGACATCTATTA-3' and 5'-CATCAACATTTATCTCTCTG-3') were chosen to amplify a 755 bp region of tet(Q). The subgingival plaque samples were also tested by PCR. Approximately 12% of the total cultivable flora was resistant to tetracycline, and the percentage of the tetracycline-resistant cultivable flora with the tet(Q) gene varied greatly from one patient to another with a range from 0.0 to 67%. Half of the 68 subgingival plaque samples were positive or weakly positive for tet(Q) by PCR. Approximately 15% of the 210 isolates subcultured with resistance to tetracycline, (> or = 4 micrograms/ml) contained tet(Q), and 60% contained tet(M). All of the tet(Q)-resistant isolates were gram-negative anaerobic bacilli and included all of the Prevotella and Bacteroides isolates.
Collapse
Affiliation(s)
- J M Lacroix
- Periodontal Disease Research Center, College of Dentistry, University of Florida, Gainesville, USA
| | | |
Collapse
|
26
|
Cheng J, Baldwin K, Guffanti AA, Krulwich TA. Na+/H+ antiport activity conferred by Bacillus subtilis tetA(L), a 5' truncation product of tetA(L), and related plasmid genes upon Escherichia coli. Antimicrob Agents Chemother 1996; 40:852-7. [PMID: 8849239 PMCID: PMC163218 DOI: 10.1128/aac.40.4.852] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
An Escherichia coli transformant expressing the Bacillus subtilis tetA(L) gene from a weak promoter was challenged by growth on medium with low, increasing tetracycline concentrations. Changes in the substrate preference ratios of the TetA(L)-mediated resistances and antiports were examined in view of recent findings suggesting that TetA(L) catalyzes efflux of Na+ in exchange for protons in addition to having the ability to catalyze metal-tetracycline/H+ antiport. After growth of the transformant on 1 microgram or more of tetracycline per ml for 12 to 15 h, the tetA(L) gene in the plasmid was found to be disrupted by an IS10 element 50 bp from the 5' end of the coding sequence. This disrupted recombinant plasmid, pKB1, conferred greater tetracycline resistance and higher levels of membrane metal-tetracycline/proton antiport than the original plasmid, pJTA1, but conferred lower NA+ resistance and Na+/H+ antiport levels than the original plasmid. The results indicate that the 5' end of the gene is necessary for optimal Na+/H+ antiport but that some such activity as well as robust tetracycline/H+ antiport persists in its absence. Two plasmid genes, tet(K) and qacA, were compared with tetA(L) vis-à-vis their abilities to enhance the Na+/H+ antiporter activity of everted vesicles from E. coli transformants. tet(K), which is more closely related to tetA(L), catalyzed 22Na+ uptake by energized vesicles, whereas the less closely related qacA gene did not.
Collapse
Affiliation(s)
- J Cheng
- Department of Biochemistry, Mount Sinai School of Medicine, City University of New York, New York 10029, USA
| | | | | | | |
Collapse
|
27
|
Chapter 22 Bacterial Na+/H+ antiporters — Molecular biology, biochemistry and physiology. HANDBOOK OF BIOLOGICAL PHYSICS 1996. [DOI: 10.1016/s1383-8121(96)80063-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Greenstein G. Clinical significance of bacterial resistance to tetracyclines in the treatment of periodontal diseases. J Periodontol 1995; 66:925-32. [PMID: 8558393 DOI: 10.1902/jop.1995.66.11.925] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tetracyclines are frequently employed during the treatment of clinical infections in medicine and dentistry, however, emergence of resistant bacterial strains has decreased the utility of these drugs. Accordingly, there is concern that indiscriminant administration of tetracyclines during periodontal therapy will further contribute to the development of additional resistant microorganisms which can complicate infectious disease therapy. This review paper briefly discusses the utility of tetracyclines as an antimicrobial agent in the treatment of periodontal diseases. It then focuses on the clinical significance of bacterial resistance to tetracyclines. Patterns of resistance that may be associated with the following scenarios are addressed: short- and long-term antibiotic therapy, individuals with a history of prior tetracycline therapy, patients with refractory periodontitis, and following controlled local drug delivery. It appears that selection and development of bacterial resistant strains is an inevitable consequence of antibiotic therapy. Nevertheless, prudent administration of tetracyclines may help delay or prevent the emergence of resistant microorganisms.
Collapse
Affiliation(s)
- G Greenstein
- Department of Periodontology, University of Medicine and Dentistry of New Jersey, Newark, USA
| |
Collapse
|
29
|
Udo EE, Grubb WB. Detection of an integrated tetracycline-resistance plasmid in Staphylococcus aureus from a Nigerian hospital. Int J Antimicrob Agents 1995; 6:51-6. [PMID: 18611686 DOI: 10.1016/0924-8579(95)00025-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/1995] [Indexed: 11/26/2022]
Abstract
The genetics of tetracycline-resistance determinants was studied in eight methicillin-resistant and two methicillin-sensitive Staphylococcus aureus isolated from a Nigerian hospital. Curing and transfer experiments demonstrated that one methicillin-sensitive S. aureus isolate WBG4762, had a 4.4 kb extrachromosomal plasmid- as well as a chromosomally-mediated tetracycline resistance. All others had chromosomal tetracycline resistance and were resistant to either tetracycline and minocycline or tetracycline only. The two methicillin-susceptible isolates were resistant to both tetracycline and minocycline. Chromosomal DNA from all the resistant isolates hybridized with a digoxigenin-11-dUTP labeled 4.4 kb tetracycline-resistance plasmid probe indicating that they contained tetracycline-resistance plasmids similar to the probe integrated into their chromosomes. The results demonstrated the presence of integrated tetracycline-resistance plasmid in both methicillin-resistant and methicillin-susceptible S. aureus resistant to tetracycline and minocycline as well as those resistant only to tetracycline. This is the first demonstration of an integrated tetracycline-resistance plasmid in methicillin-sensitive S. aureus and suggests that the integrated tetracycline-resistance plasmid may be widespread in S. aureus.
Collapse
Affiliation(s)
- E E Udo
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | | |
Collapse
|
30
|
Guffanti AA, Krulwich TA. Tetracycline/H+ antiport and Na+/H+ antiport catalyzed by the Bacillus subtilis TetA(L) transporter expressed in Escherichia coli. J Bacteriol 1995; 177:4557-61. [PMID: 7635843 PMCID: PMC177215 DOI: 10.1128/jb.177.15.4557-4561.1995] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The properties of TetA(L)-dependent tetracycline/proton and Na+/proton antiport were studied in energized everted vesicles of Escherichia coli transformed with a cloned tetA(L) gene (pJTA1) from Bacillus subtilis. Inhibition patterns by valinomycin and nigericin indicated that both antiports were electrogenic, in contrast to the tetracycline/proton antiport encoded by gram-negative plasmid tet genes. Tetracycline uptake in the everted system was dependent upon a divalent cation, with cobalt being the preferred one. The apparent Km for tetracycline was markedly increased at pH 8.5 versus pH 7.5, whereas the Vmax was unchanged. The much higher apparent Km for Na+ decreased at pH 8.5 relative to that at pH 7.5, as did the Vmax. Na+ did not affect tetracycline uptake, nor did Co2+ and/or tetracycline affect Na+ uptake; complex patterns of inhibition by amiloride and analogs thereof were observed.
Collapse
Affiliation(s)
- A A Guffanti
- Department of Biochemistry, Mount Sinai School of Medicine of CUNY, New York 10029, USA
| | | |
Collapse
|
31
|
Affiliation(s)
- V Bĕhal
- Institute of Microbiology, Czech Academy of Science, Prague, Czech Republic
| | | |
Collapse
|
32
|
Allen NE. Biochemical mechanisms of resistance to non-cell wall antibacterial agents. PROGRESS IN MEDICINAL CHEMISTRY 1995; 32:157-238. [PMID: 8577918 DOI: 10.1016/s0079-6468(08)70454-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- N E Allen
- Infectious Disease Research, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
33
|
Cheng J, Guffanti AA, Krulwich TA. The chromosomal tetracycline resistance locus of Bacillus subtilis encodes a Na+/H+ antiporter that is physiologically important at elevated pH. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46994-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Goldstein FW, Kitzis MD, Acar JF. N,N-dimethylglycyl-amido derivative of minocycline and 6-demethyl-6-desoxytetracycline, two new glycylcyclines highly effective against tetracycline-resistant gram-positive cocci. Antimicrob Agents Chemother 1994; 38:2218-20. [PMID: 7811053 PMCID: PMC284718 DOI: 10.1128/aac.38.9.2218] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The in vitro activities of the N,N-dimethylglycyl-amino derivative of minocycline (DMG-MINO) and 6-dimethyl-6-dexoxytetracycline (DMG-DMDOT), members of a new generation of tetracyclines, were evaluated by an agar dilution method and were compared with those of tetracycline and minocycline against 224 tetracycline-resistant and 73 tetracycline-susceptible recent clinical isolates of gram-positive cocci, including multiple-antibiotic-resistant methicillin-resistant Staphylococcus aureus and penicillin-resistant Streptococcus pneumoniae. The MICs of DMG-MINO and DMG-DMDOT were up to 500- to 2,000-fold lower than those of tetracycline against methicillin-resistant S. aureus and Streptococcus pneumoniae (MIC for 50% of strains tested [MIC50], < 0.06 microgram/ml). Against Streptococcus groups A, B, C, and G and Enterococcus faecalis, the MIC50 was 0.5 microgram/ml. MIC50s were greater only for coagulase-negative staphylococci (2 micrograms/ml). These data indicate that DMG-MINO and DMG-DMDOT are very potent drugs, and further in vitro and in vivo studies are warranted.
Collapse
Affiliation(s)
- F W Goldstein
- Laboratoire de Microbiologie Médicale, Hôpital Saint-Joseph, Paris, France
| | | | | |
Collapse
|
35
|
Cao J, Kapke PA, Minion FC. Transformation of Mycoplasma gallisepticum with Tn916, Tn4001, and integrative plasmid vectors. J Bacteriol 1994; 176:4459-62. [PMID: 8021232 PMCID: PMC205662 DOI: 10.1128/jb.176.14.4459-4462.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mycoplasma gallisepticum causes respiratory disease in avian species, but little is known about its mechanism(s) of pathogenesis. These studies were undertaken in order to develop genetic systems for analysis of potential virulence factors. M. gallisepticum was transformed with plasmids containing one of the gram-positive transposons Tn916 or Tn4001, which inserted randomly into the mycoplasmal chromosome. Plasmids containing cloned chromosomal DNA were also constructed and tested for integration into regions of DNA homology derived either from chromosomal fragments or from the gentamicin resistance marker from Tn4001. These studies demonstrate that M. gallisepticum is amenable to transformation with both transposons and integrative vectors.
Collapse
Affiliation(s)
- J Cao
- Department of Micrlbiology, Immunology and Preventive Medicine, Iowa State University, Ames 50011
| | | | | |
Collapse
|
36
|
Grentzmann G, Brechemier-Baey D, Heurgue V, Mora L, Buckingham RH. Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Proc Natl Acad Sci U S A 1994; 91:5848-52. [PMID: 8016077 PMCID: PMC44094 DOI: 10.1073/pnas.91.13.5848] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Two protein release factors (RFs) showing codon specificity, RF1 and RF2, are known to be required for polypeptide chain termination in Escherichia coli. A third protein component has also been described that stimulates termination in vitro, but it has remained uncertain whether this protein, RF3, participates in termination in vivo or is essential to cell growth. We report (i) the purification and N-terminal sequencing of RF3; (ii) the isolation of transposon insertion mutants similar to miaD, a suppressor of a leaky UAA mutation affecting the gene miaA, leading to enhanced nonsense suppression; (iii) the localization of the affected gene on the physical map of the chromosome; and (iv) the cloning and sequencing of the wild-type gene, providing proof that it encodes the factor RF3. We designate the gene prfC. Two transposon insertions were shown to interrupt the coding sequence of prfC, at codons 287 and 426. The enhanced nonsense suppression in the insertion mutants shows that the product participates in termination in vivo. The isolation of such mutants strongly suggests that the gene product is not essential to cell viability, though cell growth is affected. RF3 is a protein with a molecular weight of 59,460 containing 528 amino acids and displays much similarity to elongation factor EF-G, a GTP binding protein necessary for ribosomal translocation, and other GTP binding proteins known or thought to interact with the ribosome.
Collapse
Affiliation(s)
- G Grentzmann
- Unité de Recherche Associée 1139 du Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | |
Collapse
|
37
|
Abstract
The in vitro activities of two glycylcyclines, CL 329,998 and CL 331,002 (two new semisynthetic tetracyclines), were evaluated in comparison with those of tetracycline and other available oral antimicrobial agents. A total of 523 recent clinical isolates were studied, including strains resistant to tetracycline. Members of the family Enterobacteriaceae were generally > or = 16-fold more susceptible to the glycylcyclines than to tetracycline (although less difference was seen with Proteus spp.). Pseudomonas aeruginosa was modestly susceptible to both new compounds (MIC for 90% of strains tested [MIC90], 16 micrograms/ml). Tetracycline- and methicillin-susceptible and -resistant strains of Staphylococcus aureus were all susceptible to the glycylcyclines (MIC90 < or = 1 microgram/ml). Streptococci (including Streptococcus pneumoniae) and Enterococcus faecalis and Enterococcus faecium displayed a bimodal distribution of susceptibility to tetracycline yet were uniformly susceptible to the glycylcyclines (MIC90 < or = 0.25 microgram/ml). The glycylcyclines were highly potent against Neisseria, Moraxella, Haemophilus, and Bacteroides spp. (MIC90 < or = 0.5 microgram/ml). Strains of Chlamydia spp. (three C. trachomatis strains and one C. pneumoniae strain) were inhibited by < or = 0.25 microgram of CL 329,998 or CL 331,002 per ml. Two strains of Mycoplasma pneumoniae were inhibited by < or = 0.12 microgram of CL 331,002 per ml and by 1 microgram of CL 329,998 per ml. Mycobacterium tuberculosis and Mycobacterium avium were resistant to the two glycylcyclines (MIC > or = 8 micrograms/ml). These results indicate that the two glycylcyclines have potent in vitro activities against a wide range of clinically important pathogenic bacteria.
Collapse
Affiliation(s)
- R Wise
- Department of Microbiology, Dudley Road Hospital, Birmingham, United Kingdom
| | | |
Collapse
|
38
|
Grewal J, Manavathu EK, Taylor DE. Effect of mutational alteration of Asn-128 in the putative GTP-binding domain of tetracycline resistance determinant Tet(O) from Campylobacter jejuni. Antimicrob Agents Chemother 1993; 37:2645-9. [PMID: 8109930 PMCID: PMC192766 DOI: 10.1128/aac.37.12.2645] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The deduced amino acid sequence of Campylobacter jejuni Tet(O), cloned in Escherichia coli, has shown that it contains the five highly conserved sequences of the GTP-binding domain found in other GTPases. Asn-128 belongs to the G4 motif of such a domain and is involved in hydrogen bonding with the guanine ring of the nucleotide. Substitution of Asn-128 by 11 other amino acids resulted in a decrease in tetracycline resistance, indicating that tetracycline resistance conferred by Tet(O) is related to GTP binding. The effect of the mutations on the GTP-binding domain is discussed with the EF-Tu-GDP complex as a model.
Collapse
Affiliation(s)
- J Grewal
- Department of Medical Microbiology and Infectious Diseases, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
39
|
Hadorn K, Hächler H, Schaffner A, Kayser FH. Genetic characterization of plasmid-encoded multiple antibiotic resistance in a strain of Listeria monocytogenes causing endocarditis. Eur J Clin Microbiol Infect Dis 1993; 12:928-37. [PMID: 8187788 DOI: 10.1007/bf01992167] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
One susceptible and two multiply resistant isolates of Listeria monocytogenes from a patient suffering from prosthetic valve endocarditis are described. They could not be distinguished by several typing methods. Two isolates were resistant to chloramphenicol, macrolide/lincosamide/streptogramin antibiotics and tetracycline. The resistance determinants were located on a 39 kb plasmid pWDB100 that was transferable by filter mating to several gram-positive bacteria. Evidence was obtained to support the hypothesis that the resistant variant had primarily infected the patient's blood and prosthetic valve, and later lost the resistance plasmid. The three resistance determinants showed homology to other known markers, cat221/cat223, ermB and tetM, which are frequently found in different gram-positive genera. Plasmid pWDB100 showed extensive homology to the Streptococcus agalactiae broad-host-range plasmid pIP501. It was also very similar to two listerial plasmids found in France. Thus, plasmid pWDB100 and the homologous plasmids from France, although isolated in geographically distant regions, may illustrate spread of a plasmid and its relatives.
Collapse
Affiliation(s)
- K Hadorn
- Institute of Medical Microbiology, University of Zurich, Switzerland
| | | | | | | |
Collapse
|
40
|
Abstract
Tet(M) protein interacts with the protein biosynthetic machinery to render this process resistant to the tetracycline in vivo and in vitro (V. Burdett, J. Biol. Chem. 266:2872-2877, 1991). To understand this process more completely, a mutant of Escherichia coli which is altered in the ability of Tet(M) to confer resistance has been identified. This mutation maps to miaA and displays phenotypes characteristic of previously isolated miaA mutations. The miaA gene product modifies A37 adjacent to the anticodon of several tRNA species. Both the mutant isolated in this work and previously isolated miaA mutants confer tetracycline sensitivity in the presence of functional Tet(M), both share a slow growth phenotype, and in neither case is a wild-type phenotype restored in trans by F'112 carrying the 89- to 98-min region of the chromosome. These similar phenotypes further substantiate the assignment of the mutation described here to the miaA locus.
Collapse
Affiliation(s)
- V Burdett
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
41
|
Testa RT, Petersen PJ, Jacobus NV, Sum PE, Lee VJ, Tally FP. In vitro and in vivo antibacterial activities of the glycylcyclines, a new class of semisynthetic tetracyclines. Antimicrob Agents Chemother 1993; 37:2270-7. [PMID: 8285606 PMCID: PMC192378 DOI: 10.1128/aac.37.11.2270] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
N,N-Dimethylglycylamido (DMG) derivatives of minocycline and 6-demethyl-6-deoxytetracycline are new semisynthetic tetracyclines referred to as the glycylcyclines. The in vitro activities of the glycylcyclines were evaluated in comparison with those of minocycline and tetracycline against strains carrying characterized tetracycline resistance determinants and against 995 recent clinical isolates obtained from geographically distinct medical centers in North America. The glycylcyclines were active against tetracycline-resistant strains carrying efflux [tet(A), tet(B), tet(C), and tet(D) in Escherichia coli and tet(K) in Staphylococcus aureus] and ribosomal protection [tet(M) in S. aureus, Enterococcus faecalis, and E. coli)] resistance determinants. Potent activity (MIC for 90% of strains, < or = 0.5 microgram/ml) was obtained with the glycylcyclines against methicillin-susceptible and methicillin-resistant S. aureus, E. faecalis, Enterococcus faecium, and various streptococcal species. The glycylcyclines exhibited good activity against a wide diversity of gram-negative aerobic and anaerobic bacteria, most of which were less susceptible to minocycline and tetracycline. The activities of the glycylcyclines against most organisms tested were comparable to each other. The in vivo efficacies of the glycylcyclines against acute lethal infections in mice when dosed intravenously were reflective of their in vitro activities. The glycylcyclines had efficacies comparable to that of minocycline against infections with methicillin-susceptible and methicillin-resistant S. aureus strains, a strain carrying tet(K), and a tetracycline-susceptible E. coli strain but exceeded the effectiveness of minocycline against infections with resistant isolates, including strains harboring tet(M) or tet(B). Levels of DMG-6-deoxytetracycline in serum were higher and more sustained than those of DMG-minocycline or minocycline. Our results show that the glycylcyclines have potent in vitro activities against a wide spectrum of gram-positive and gram-negative, aerobic and anaerobic bacteria, including many resistant strains. On the basis of their in vitro and in vivo activities, the glycylcyclines represent a significant advance to the tetracycline class of antibiotics and have good potential value for clinical efficacy.
Collapse
Affiliation(s)
- R T Testa
- Infectious Disease Research Section, American Cyanamid Company, Pearl River, New York 10965
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Lépine G, Lacroix JM, Walker CB, Progulske-Fox A. Sequencing of a tet(Q) gene isolated from Bacteroides fragilis 1126. Antimicrob Agents Chemother 1993; 37:2037-41. [PMID: 7916585 PMCID: PMC188119 DOI: 10.1128/aac.37.9.2037] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recently, Tet Q, a tetracycline resistance determinant that confers resistance by a ribosome protection mechanism, was described and added to the two previously described classes, Tet M and Tet O. The first representative of this class, tetA(Q)1, was isolated from Bacteroides thetaiotaomicron DOT. We report the sequencing of a gene isolated from B. fragilis 1126 which also confers tetracycline resistance. Because of its high degree of identity (97%) with the tetA(Q)1 gene, we defined it as tetA(Q)2. MIC studies revealed that tetA(Q)2 provides a low level of resistance to tetracycline when cloned into Escherichia coli. The extensive homology between tetA(Q)1 and tetA(Q)2 supports the idea of a recent horizontal transfer of tet(Q) genes among Bacteroides spp.
Collapse
Affiliation(s)
- G Lépine
- Periodontal Disease Research Center, College of Dentistry, University of Florida, Gainesville 32610
| | | | | | | |
Collapse
|
44
|
Rothstein DM, McGlynn M, Bernan V, McGahren J, Zaccardi J, Cekleniak N, Bertrand KP. Detection of tetracyclines and efflux pump inhibitors. Antimicrob Agents Chemother 1993; 37:1624-9. [PMID: 8215274 PMCID: PMC188031 DOI: 10.1128/aac.37.8.1624] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Screening assays for the detection of tetracyclines and inhibitors of tetracycline efflux pumps are described. The tetracycline assay is based on the observation that the tetA(B) gene encoding the efflux pump of transposon Tn10 is induced by tetracycline. The Escherichia coli strain designed to detect tetracyclines contains a single copy of a tetA(B)-lacZ transcriptional fusion integrated into the chromosome and the tetR gene encoding the tetracycline repressor on a plasmid. The assay specifically detects tetracyclines of distinct structures, but not other classes of drugs. A strain capable of detecting inhibitors of the TetA(B) efflux pump contained the tetA(B)-lacZ fusion and, in addition, a tetA(B) structural gene lacking its transcriptional regulatory signals which mediated resistance to only 5 micrograms of tetracycline per ml. This strain was more refractory to induction by tetracycline because of the action of the pump. Inhibitors were detected in two ways: (i) beta-galactosidase induction in the presence of 5 ng of tetracycline per ml, a subinducing concentration, and (ii) growth inhibition in the presence of 5 micrograms of tetracycline per ml. A strain designed to detect inhibitors of the Tet(K) efflux pump from Staphylococcus aureus was constructed by substituting the tet(K) structural gene for the tetA(B) gene. Nocardamine and other siderophores were found to interfere with the action of tetracycline efflux pumps.
Collapse
Affiliation(s)
- D M Rothstein
- Medical Research Division, Lederle Laboratories, Pearl River, New York 10965
| | | | | | | | | | | | | |
Collapse
|
45
|
Plunkett G, Burland V, Daniels DL, Blattner FR. Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes. Nucleic Acids Res 1993; 21:3391-8. [PMID: 8346018 PMCID: PMC331436 DOI: 10.1093/nar/21.15.3391] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The DNA sequence of 96.5 kilobases of the Escherichia coli K-12 genome has been determined, spanning the region between rrnA at 87.2 minutes and katG at 89.2 minutes on the genetic map. The sequence includes 84 open reading frames, of which 46 code for unidentified proteins. Six previously mapped but unsequenced genes have been identified in this span: mob, fdhD, rhaD, rhaA, rhaB, and kdgT. In addition, five new genes have been assigned: the heat shock genes hsIU and hsIV, and the genes fdoG, fdoH, and fdoI, which encode the three subunits of formate dehydrogenase-O. The arrangement of the genes relative to possible promoters and terminators suggests 57 potential transcription units. Other features include the precise location of the bacteriophage P2 attachment site attP2II, and eleven REP elements, including one containing 9 REP sequences--one of the largest such elements known. This segment brings the total length of contiguous finished sequence to 325 kilobases.
Collapse
Affiliation(s)
- G Plunkett
- Laboratory of Genetics, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
46
|
Allard JD, Bertrand KP. Sequence of a class E tetracycline resistance gene from Escherichia coli and comparison of related tetracycline efflux proteins. J Bacteriol 1993; 175:4554-60. [PMID: 8331085 PMCID: PMC204899 DOI: 10.1128/jb.175.14.4554-4560.1993] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We determined the nucleotide sequence of the class E tetA gene on plasmid pSL1456 from Escherichia coli SLH1456A. The deduced amino acid sequence of the class E TetA protein shows 50 to 56% identity with the sequences of five related TetA proteins (classes A through D and G). Hydrophobicity profiles identify 12 putative transmembrane segments with similar boundaries in all six TetA sequences. The N-terminal alpha domain of the six sequences is more highly conserved than the C-terminal beta domain; the central hydrophilic loop connecting the alpha and beta domains is the least conserved region. Amino acid residues that have been shown to be important for class B (Tn10) TetA function are conserved in all six TetA sequences. Unlike the class B tetA gene, the class D and E tetA genes do not exhibit a negative gene dosage effect when present on multicopy plasmids derived from pACYC177.
Collapse
Affiliation(s)
- J D Allard
- Department of Microbiology, Washington State University, Pullman 99164
| | | |
Collapse
|
47
|
Lee C, Langlois BE, Dawson KA. Detection of tetracycline resistance determinants in pig isolates from three herds with different histories of antimicrobial agent exposure. Appl Environ Microbiol 1993; 59:1467-72. [PMID: 8517740 PMCID: PMC182105 DOI: 10.1128/aem.59.5.1467-1472.1993] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A total of 114 gram-negative fecal isolates from domestic pigs in herds with different histories of antimicrobial agent exposure were screened for the presence of plasmid DNA and specific tetracycline resistance determinants. More than 84% of the isolates harbored plasmid DNA, which ranged in size from 2.1 to 186 kb. A total of 78 isolates (68.4%) were resistant to tetracycline at concentrations greater than 4 micrograms/ml. Plasmid DNAs from about 56% of the tetracycline-resistant isolates hybridized with DNA probes for class A, B, C, and D tetracycline resistance determinants. The class B determinant was the most common determinant (35% of the isolates), followed by the class C determinant (12%) and the class A determinant (1%). About 9% of the isolates contained two determinants on plasmids. None of the plasmids from isolates hybridized with the class D determinant probe. The class C determinant was the most prevalent determinant on plasmids in isolates from pigs not exposed to antimicrobial agents for more than 146 months, while the class B determinant was more prevalent on plasmids in isolates from pigs exposed to either subtherapeutic or therapeutic levels of antimicrobial agents. Most tetracycline resistance determinants were localized on plasmids which were more than 30 kb long. A great number of wild-type tetracycline-resistant Escherichia coli strains were found with the class E determinant on their chromosomes. This study revealed a high prevalence of tetracycline resistance determinants in the fecal flora of pig herds whether or not they were fed with antibiotics.
Collapse
Affiliation(s)
- C Lee
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Republic of China
| | | | | |
Collapse
|
48
|
Eady EA, Jones CE, Gardner KJ, Taylor JP, Cove JH, Cunliffe WJ. Tetracycline-resistant propionibacteria from acne patients are cross-resistant to doxycycline, but sensitive to minocycline. Br J Dermatol 1993; 128:556-60. [PMID: 8504049 DOI: 10.1111/j.1365-2133.1993.tb00235.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Antibiotic-resistant propionibacteria are being isolated with increasing frequency from antibiotic-treated acne patients. Minimum inhibitory concentrations (MICs) of three tetracyclines, extensively used in acne therapy, were determined for 46 resistant and 19 sensitive propionibacteria isolates. Sensitive strains were inhibited by < or = 1 microgram/ml of all three tetracyclines. For every resistant strain tested, the MIC of tetracycline exceeded that of doxycycline which, in turn, exceeded that of minocycline. The mean MIC for resistant strains was 20.61 +/- 4.56 micrograms/ml of tetracycline, 9.70 +/- 2.03 micrograms/ml of doxycycline and 1.95 +/- 0.35 micrograms/ml of minocycline. In order to determine whether these strains could be inhibited by concentrations of minocycline achievable in vivo, serum levels of minocycline were determined in acne patients receiving either the recommended dose of 50 mg b.d. (20 males, 14 females), or twice this dose (21 males, 12 females). Serum levels were significantly higher (P < 0.001, Student's t-test) in patients receiving 100 mg b.d. Males on 50 mg b.d. had significantly lower serum levels than females on the same dose (P < 0.05. Student's t-test). For all patients, the mean serum level on high-dose minocycline was 2.46 +/- 0.45 micrograms/ml, compared with 1.38 +/- 0.30 micrograms/ml on the smaller dose. These results indicate that tetracycline-resistant propionibacteria should be considered clinically minocycline sensitive, if patients who harbour such strains are prescribed 100 mg b.d. The recommended dose of minocycline for treating acne, especially in male patients, should be re-assessed.
Collapse
Affiliation(s)
- E A Eady
- Department of Microbiology, University of Leeds, U.K
| | | | | | | | | | | |
Collapse
|
49
|
Rasmussen BA, Kovacs E. Cloning and identification of a two-component signal-transducing regulatory system from Bacteroides fragilis. Mol Microbiol 1993; 7:765-76. [PMID: 8469117 DOI: 10.1111/j.1365-2958.1993.tb01167.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A DNA fragment was cloned from Bacteroides fragilis that bestowed low-level tetracycline resistance to Escherichia coli strains harbouring the cloned fragment on a multicopy plasmid. The tetracycline resistance determinant was localized to a 4.3kb Bg/II-PstI subfragment of the original clone. DNA sequence analysis of this fragment revealed that it contained an operon encoding two proteins: one of 519 amino acids, RprX, and a second of 236 amino acids, RprY. Protein sequence analysis revealed that the two proteins shared sequence identity with a family of multicomponent signal-transducing regulatory proteins identified from many diverse bacterial genera. RprX shared identity with the first component of the regulatory system, the histidine protein kinase receptor (for example EnvZ, PhoR, CheA, and VirA). RprY shared identity with the second member of the regulatory protein pair, the regulatory response protein (for example OmpR, PhoB, CheY, and VirG). Expression of these proteins from a multicopy plasmid vector in E. coli resulted in a decrease in the level of the outer membrane porin protein OmpF and an increase in the level of the outer membrane porin protein OmpC. The decrease in OmpF levels correlates with, and may be the cause of, the increased tetracycline resistance. Regulation of the levels of OmpF and OmpC is normally controlled by a multicomponent signal-transducing regulatory pair of proteins, EnvZ and OmpR. The effect RprX and RprY have on OmpF expression is mediated at the level of transcription. Thus, RprX and RprY may be interfering with the normal regulation of OmpF by OmpR and EnvZ.
Collapse
Affiliation(s)
- B A Rasmussen
- Molecular Biology Section, American Cyanamid Company, Pearl River, New York, NY 10965
| | | |
Collapse
|
50
|
Allard JD, Gibson ML, Vu LH, Nguyen TT, Bertrand KP. Nucleotide sequence of class D tetracycline resistance genes from Salmonella ordonez. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:301-5. [PMID: 8384294 DOI: 10.1007/bf00282811] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Plasmid pIP173, isolated from Salmonella ordonez strain BM2000, confers resistance to tetracycline and a number of other antibiotics. We determined the nucleotide sequence of the pIP173 tetR repressor and tetA resistance genes. The pIP173 tetR gene is essentially identical to the class D tetR gene from plasmid RA1. The pIP173 tet genes are flanked by directly repeated copies of the insertion sequence IS26. Interestingly, the 3' end of the tetR gene, encoding the C-terminal 16 amino acids of the TetR protein, extends into the flanking IS26 sequence. The relationships between the class A, B, C, and D TetA sequences parallel the relationships between the corresponding TetR sequences; class D is more closely related to class B than to either class A or C. Overall, the four TetA sequences show 38% identity and 57% similarity.
Collapse
Affiliation(s)
- J D Allard
- Department of Microbiology, Washington State University, Pullman 99164
| | | | | | | | | |
Collapse
|