1
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
2
|
Canestrari JG, Lasek-Nesselquist E, Upadhyay A, Rofaeil M, Champion MM, Wade JT, Derbyshire KM, Gray TA. Polycysteine-encoding leaderless short ORFs function as cysteine-responsive attenuators of operonic gene expression in mycobacteria. Mol Microbiol 2020; 114:93-108. [PMID: 32181921 PMCID: PMC8764745 DOI: 10.1111/mmi.14498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Genome-wide transcriptomic analyses have revealed abundant expressed short open reading frames (ORFs) in bacteria. Whether these short ORFs, or the small proteins they encode, are functional remains an open question. One quarter of mycobacterial mRNAs are leaderless, beginning with a 5'-AUG or GUG initiation codon. Leaderless mRNAs often encode unannotated short ORFs as the first gene of a polycistronic transcript. Here, we show that polycysteine-encoding leaderless short ORFs function as cysteine-responsive attenuators of operonic gene expression. Detailed mutational analysis shows that one polycysteine short ORF controls expression of the downstream genes. Our data indicate that ribosomes stalled in the polycysteine tract block mRNA structures that otherwise sequester the ribosome-binding site of the 3'gene. We assessed endogenous proteomic responses to cysteine limitation in Mycobacterium smegmatis using mass spectrometry. Six cysteine metabolic loci having unannotated polycysteine-encoding leaderless short ORF architectures responded to cysteine limitation, revealing widespread cysteine-responsive attenuation in mycobacteria. Individual leaderless short ORFs confer independent operon-level control, while their shared dependence on cysteine ensures a collective response mediated by ribosome pausing. We propose the term ribulon to classify ribosome-directed regulons. Regulon-level coordination by ribosomes on sensory short ORFs illustrates one utility of the many unannotated short ORFs expressed in bacterial genomes.
Collapse
Affiliation(s)
- Jill G Canestrari
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Erica Lasek-Nesselquist
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ashutosh Upadhyay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Martina Rofaeil
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Joseph T Wade
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Keith M Derbyshire
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Todd A Gray
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
3
|
Marbaniang CN, Vogel J. Emerging roles of RNA modifications in bacteria. Curr Opin Microbiol 2016; 30:50-57. [PMID: 26803287 DOI: 10.1016/j.mib.2016.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/24/2015] [Accepted: 01/06/2016] [Indexed: 01/28/2023]
Abstract
RNA modifications are known to abound in stable tRNA and rRNA, where they cluster around functionally important regions. However, RNA-seq based techniques profiling entire transcriptomes are now uncovering an abundance of modified ribonucleotides in mRNAs and noncoding RNAs, too. While most of the recent progress in understanding the regulatory influence of these new RNA modifications stems from eukaryotes, there is growing evidence in bacteria for modified nucleotides beyond the stable RNA species, including modifications of small regulatory RNAs. Given their small genome size, good genetic tractability, and ample knowledge of modification enzymes, bacteria offer excellent model systems to decipher cellular functions of RNA modifications in many diverse physiological contexts. This review highlights how new global approaches combining classic analysis with new sequencing techniques may usher in an era of bacterial epitranscriptomics.
Collapse
Affiliation(s)
- Carmelita Nora Marbaniang
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany.
| |
Collapse
|
4
|
Screening for inhibitors of the SOD1 gene promoter: pyrimethamine does not reduce SOD1 levels in cell and animal models. Neurosci Lett 2010; 482:188-92. [PMID: 20638444 DOI: 10.1016/j.neulet.2010.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/04/2010] [Accepted: 07/12/2010] [Indexed: 12/12/2022]
Abstract
Mutations in the Cu/Zn superoxide dismutase (SOD1) gene are detected in 20% of familial and 3% of sporadic amyotrophic lateral sclerosis (ALS) cases. Although mutant SOD1 is known to induce motor neuron death via multiple adverse acquired functions, its exact pathogenic mechanism is not well defined. SOD1 toxicity is dose dependent; levels of mutant SOD1 protein in transgenic mice determine disease susceptibility, onset and rate of progression. We therefore sought to identify small molecules that reduce SOD1 levels by inhibiting the SOD1 promoter. We tested pyrimethamine (previously reported to suppress SOD1 expression), several compounds currently in trials in human and murine ALS, and a set of 1040 FDA-approved compounds. In a PC12 cell-based assay, no compounds reduced SOD1 promoter activity without concomitant cytotoxicity. Additionally, pyrimethamine failed to repress levels of SOD1 protein in HeLa cells or homogenates of liver, spinal cord and brain of wild-type mice. Thirty-four compounds (including riluzole, ceftriaxone, minocyclin, PBA, lithium, acetylcysteine) in human and mouse ALS trials and an additional set of 1040 FDA-approved compounds also showed no effect on SOD1 promoter activity. This present study thus failed to identify small molecule inhibitors of SOD1 gene expression.
Collapse
|
5
|
Abstract
Studies in pro- and eukaryotes have revealed that translation can determine the stability of a given messenger RNA. In bacteria, intrinsic mRNA signals can confer efficient ribosome binding, whereas translational feedback inhibition or environmental cues can interfere with this process. Such regulatory mechanisms are often controlled by RNA-binding proteins, small noncoding RNAs and structural rearrangements within the 5' untranslated region. Here, we review molecular events occurring in the 5' untranslated region of primarily Escherichia coli mRNAs with regard to their effects on mRNA stability.
Collapse
Affiliation(s)
- Vladimir R Kaberdin
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University Departments at Vienna Biocenter, Vienna, Austria.
| | | |
Collapse
|
6
|
Fernandez J, Yaman I, Huang C, Liu H, Lopez AB, Komar AA, Caprara MG, Merrick WC, Snider MD, Kaufman RJ, Lamers WH, Hatzoglou M. Ribosome stalling regulates IRES-mediated translation in eukaryotes, a parallel to prokaryotic attenuation. Mol Cell 2005; 17:405-16. [PMID: 15694341 DOI: 10.1016/j.molcel.2004.12.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 09/22/2004] [Accepted: 12/10/2004] [Indexed: 11/18/2022]
Abstract
It was previously shown that the mRNA for the cat-1 Arg/Lys transporter is translated from an internal ribosome entry site (IRES) that is regulated by cellular stress. Amino acid starvation stimulated cat-1 translation via a mechanism that requires translation of an ORF in the mRNA leader and remodeling of the leader to form an active IRES (the "zipper model" of translational control). It is shown here that slowing of the leader peptide elongation rate, either by cycloheximide or the introduction of rare codons, stimulated translation of the downstream ORF. These results suggest that ribosome stalling in the upstream ORF causes mRNA remodeling and formation of an active IRES. This control is reminiscent of translation attenuation in prokaryotic operons, where inhibition of translation elongation can regulate both mRNA translation and gene transcription by altering mRNA structure.
Collapse
Affiliation(s)
- James Fernandez
- Departments of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
This review focuses on the enzymes and pathways of RNA processing and degradation in Bacillus subtilis, and compares them to those of its gram-negative counterpart, Escherichia coli. A comparison of the genomes from the two organisms reveals that B. subtilis has a very different selection of RNases available for RNA maturation. Of 17 characterized ribonuclease activities thus far identified in E. coli and B. subtilis, only 6 are shared, 3 exoribonucleases and 3 endoribonucleases. Some enzymes essential for cell viability in E. coli, such as RNase E and oligoribonuclease, do not have homologs in B. subtilis, and of those enzymes in common, some combinations are essential in one organism but not in the other. The degradation pathways and transcript half-lives have been examined to various degrees for a dozen or so B. subtilis mRNAs. The determinants of mRNA stability have been characterized for a number of these and point to a fundamentally different process in the initiation of mRNA decay. While RNase E binds to the 5' end and catalyzes the rate-limiting cleavage of the majority of E. coli RNAs by looping to internal sites, the equivalent nuclease in B. subtilis, although not yet identified, is predicted to scan or track from the 5' end. RNase E can also access cleavage sites directly, albeit less efficiently, while the enzyme responsible for initiating the decay of B. subtilis mRNAs appears incapable of direct entry. Thus, unlike E. coli, RNAs possessing stable secondary structures or sites for protein or ribosome binding near the 5' end can have very long half-lives even if the RNA is not protected by translation.
Collapse
Affiliation(s)
- Ciarán Condon
- UPR 9073, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
8
|
Heinzerling HF, Olivares M, Burne RA. Genetic and transcriptional analysis of flgB flagellar operon constituents in the oral spirochete Treponema denticola and their heterologous expression in enteric bacteria. Infect Immun 1997; 65:2041-51. [PMID: 9169730 PMCID: PMC175282 DOI: 10.1128/iai.65.6.2041-2051.1997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Oral spirochetes possess many potential virulence factors, including the capacity for tissue invasion and persistence despite a vigorous host immune response. In an attempt to identify treponemal immunoreactive components, sera derived from individuals with advanced periodontal disease were used as a reagent to isolate recombinant bacteriophage lambda clones expressing antigens of the oral spirochete Treponema denticola ATCC 35405. Nucleotide sequence analysis of a clone expressing three immunoreactive products has revealed seven T. denticola genes which appear to encode homologs of flagellar basal body constituents, FlgB, FlgC, FliE, and FliF, a flagellar switch component, FliG, and the putative flagellar export proteins, FliH and FliI, initially characterized in Salmonella typhimurium. Also identified was a gene resembling fliJ. Primer extension analysis identified a transcriptional start site 5' to the treponemal flgB gene. Appropriately spaced with respect to this start site was a sigma28 binding motif. The absence of additional identifiable sigma factor binding motifs within the treponemal sequence and the proximity of adjacent genes suggested operonic arrangement, and reverse transcriptase PCR provided evidence of cotranscription. Supporting the identification of these genes as flagellar components, heterologous expression in enteric bacteria of the putative switch basal body genes from T. denticola interfered with motility. Specifically, the presence of a plasmid expressing treponemal fliG reduced swarming motility in S. typhimurium, while in Escherichia coli, this plasmid conferred a nonmotile phenotype and a reduction in flagellar number. Thus, while spirochetal flagella are subject to unique synthetic and functional constraints, the organization of flagellar genes and the presence of sigma28-like elements are reminiscent of the flagellar systems of other bacteria, and there appears to be sufficient conservation of constituent proteins to allow interaction between T. denticola switch-basal body proteins and the flagellar machinery of gram-negative bacteria.
Collapse
Affiliation(s)
- H F Heinzerling
- Department of Dental Research, University of Rochester, New York 14642, USA
| | | | | |
Collapse
|
9
|
Decatur A, McMurry MT, Kunkel BN, Losick R. Translation of the mRNA for the sporulation gene spoIIID of Bacillus subtilis is dependent upon translation of a small upstream open reading frame. J Bacteriol 1997; 179:1324-8. [PMID: 9023218 PMCID: PMC178832 DOI: 10.1128/jb.179.4.1324-1328.1997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report the existence of a small open reading frame (usd) that is located between the promoter and coding sequence for the sporulation gene spoIIID in Bacillus subtilis. The mRNA from the usd-spoIIID operon contains an inverted repeat sequence that is predicted to form a stem-loop structure that would sequester the ribosome binding site for spoIIID. A mutation eliminating the ribosome binding site for the upstream open reading frame caused an oligosporogenous phenotype and interfered with the translation, but not the transcription, of the downstream gene spoIIID. We propose that efficient synthesis of SpoIIID requires that the putative stem-loop structure be disrupted by translation through the upstream open reading frame.
Collapse
Affiliation(s)
- A Decatur
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
10
|
Sutcliffe J, Tait-Kamradt A, Wondrack L. Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother 1996; 40:1817-24. [PMID: 8843287 PMCID: PMC163423 DOI: 10.1128/aac.40.8.1817] [Citation(s) in RCA: 475] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Macrolide-resistant Streptococcus pyogenes isolates from Finland, Australia, and the United Kingdom and, more recently, Streptococcus pneumoniae and S. pyogenes strains from the United States were shown to have an unusual resistance pattern to macrolides, lincosamides, and streptogramin B antibiotics. This pattern, referred to as M resistance, consists of susceptibility to clindamycin and streptogramin B antibiotics but resistance to 14- and 15-membered macrolides. An evaluation of the macrolide-lincosamide-streptogramin B resistance phenotypes among our streptococcal strains collected from 1993 to 1995 suggested that this unusual resistance pattern is not rare. Eighty-five percent (n = 66) of the S. pneumoniae and 75% (n = 28) of the S. pyogenes strains in our collection had an M phenotype. The mechanism of M resistance was not mediated by target modification, as isolated ribosomes from a pneumococcal strain bearing the M phenotype were fully sensitive to erythromycin. Further, the presence of an erm methylase was excluded with primers specific for an erm consensus sequence. However, results of studies that determined the uptake and incorporation of radiolabeled erythromycin into cells were consistent with the presence of a macrolide efflux determinant. The putative efflux determinant in streptococci seems to be distinct from the multicomponent macrolide efflux system in coagulase-negative staphylococci. The recognition of the prevalence of the M phenotype in streptococci has implications for sensitivity testing and may have an impact on the choice of antibiotic therapy in clinical practice.
Collapse
Affiliation(s)
- J Sutcliffe
- Department of Infectious Diseases, Pfizer, Inc., Groton, Connecticut 06340, USA
| | | | | |
Collapse
|
11
|
Bensing BA, Meyer BJ, Dunny GM. Sensitive detection of bacterial transcription initiation sites and differentiation from RNA processing sites in the pheromone-induced plasmid transfer system of Enterococcus faecalis. Proc Natl Acad Sci U S A 1996; 93:7794-9. [PMID: 8755555 PMCID: PMC38827 DOI: 10.1073/pnas.93.15.7794] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A method was developed to detect 5' ends of bacterial RNAs expressed at low levels and to differentiate newly initiated transcripts from processed transcripts produced in vivo. The procedure involves use of RNA ligase to link a specific oligoribonucleotide to the 5' ends of cellular RNAs, followed by production of cDNA and amplification of the gene of interest by PCR. The method was used to identify the precise sites of transcription initiation within a 10-kb region of the pheromone-inducible conjugative plasmid pCF10 of Enterococcus faecalis. Results confirmed the 5' end of a very abundant, constitutively produced transcript (from prgQ) that had been mapped previously by primer extension and defined the initiation point of a less abundant, divergently transcribed message (from prgX). The method also showed that the 5' end of a pheromone-inducible transcript (prgB) that had been mapped by primer extension was generated by processing rather than new initiation. In addition, the results provided evidence for two promoters, 3 and 5 kb upstream of prgB, and indicated that only the transcripts originating 5 kb upstream may be capable of extending to prgB.
Collapse
Affiliation(s)
- B A Bensing
- Department of Microbiology, University of Minnesota, Minneapolis 55455,USA
| | | | | |
Collapse
|
12
|
Affiliation(s)
- B Weisblum
- Department of Pharmacology, University of Wisconsin Medical School, Madison 53706, USA
| |
Collapse
|
13
|
Leclercq R, Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 1991; 35:1267-72. [PMID: 1929280 PMCID: PMC245156 DOI: 10.1128/aac.35.7.1267] [Citation(s) in RCA: 425] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- R Leclercq
- Service de Bactériologie-Virologie-Hygiène, Hôpital Henri Mondor, Université Paris XII, Créteil, France
| | | |
Collapse
|