1
|
Abstract
Escherichia colicauses three types of illnesses in humans: diarrhea, urinary tract infections, and meningitis in newborns. The acquisition of virulence-associated genes and the ability to properly regulate these, often horizontally transferred, loci distinguishes pathogens from the normally harmless commensal E. coli found within the human intestine. This review addresses our current understanding of virulence gene regulation in several important diarrhea-causing pathotypes, including enteropathogenic, enterohemorrhagic,enterotoxigenic, and enteroaggregativeE. coli-EPEC, EHEC, ETEC and EAEC, respectively. The intensely studied regulatory circuitry controlling virulence of uropathogenicE. coli, or UPEC, is also reviewed, as is that of MNEC, a common cause of meningitis in neonates. Specific topics covered include the regulation of initial attachment events necessary for infection, environmental cues affecting virulence gene expression, control of attaching and effacing lesionformation, and control of effector molecule expression and secretion via the type III secretion systems by EPEC and EHEC. How phage control virulence and the expression of the Stx toxins of EHEC, phase variation, quorum sensing, and posttranscriptional regulation of virulence determinants are also addressed. A number of important virulence regulators are described, including the AraC-like molecules PerA of EPEC, CfaR and Rns of ETEC, and AggR of EAEC;the Ler protein of EPEC and EHEC;RfaH of UPEC;and the H-NS molecule that acts to silence gene expression. The regulatory circuitry controlling virulence of these greatly varied E. colipathotypes is complex, but common themes offerinsight into the signals and regulators necessary forE. coli disease progression.
Collapse
|
2
|
Bao R, Fordyce A, Chen YX, McVeigh A, Savarino SJ, Xia D. Structure of CfaA suggests a new family of chaperones essential for assembly of class 5 fimbriae. PLoS Pathog 2014; 10:e1004316. [PMID: 25122114 PMCID: PMC4133393 DOI: 10.1371/journal.ppat.1004316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/27/2014] [Indexed: 01/22/2023] Open
Abstract
Adhesive pili on the surface of pathogenic bacteria comprise polymerized pilin subunits and are essential for initiation of infections. Pili assembled by the chaperone-usher pathway (CUP) require periplasmic chaperones that assist subunit folding, maintain their stability, and escort them to the site of bioassembly. Until now, CUP chaperones have been classified into two families, FGS and FGL, based on the short and long length of the subunit-interacting loops between its F1 and G1 β-strands, respectively. CfaA is the chaperone for assembly of colonization factor antigen I (CFA/I) pili of enterotoxigenic E. coli (ETEC), a cause of diarrhea in travelers and young children. Here, the crystal structure of CfaA along with sequence analyses reveals some unique structural and functional features, leading us to propose a separate family for CfaA and closely related chaperones. Phenotypic changes resulting from mutations in regions unique to this chaperone family provide insight into their function, consistent with involvement of these regions in interactions with cognate subunits and usher proteins during pilus assembly.
Collapse
Affiliation(s)
- Rui Bao
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - April Fordyce
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Yu-Xing Chen
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Annette McVeigh
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Stephen J Savarino
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America; Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Generation and characterization of a live attenuated enterotoxigenic Escherichia coli combination vaccine expressing six colonization factors and heat-labile toxin subunit B. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:2128-35. [PMID: 21994355 DOI: 10.1128/cvi.05345-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Live attenuated oral enterotoxigenic Escherichia coli (ETEC) vaccines have been demonstrated to be safe and immunogenic in human volunteers and to provide a viable approach to provide protection against this important pathogen. This report describes the construction of new ETEC vaccine candidate strains from recent clinical isolates and their characterization. All known genes for ETEC toxins were removed, and attenuating deletion mutations were made in the aroC, ompC, and ompF chromosomal genes. An isolate expressing coli surface antigen 2 (CS2), CS3, heat-labile toxin (LT), heat-stable toxin (ST), and enteroaggregative Escherichia coli heat-stable toxin 1 (EAST1) was attenuated to generate ACAM2007. The subsequent insertion of the operon encoding CS1 created ACAM2017, and this was further modified by the addition of an expression cassette containing the eltB gene, encoding a pentamer of B subunits of LT (LTB), to generate ACAM2027. Another isolate expressing CS5, CS6, LT, ST, and EAST1 was attenuated to generate ACAM2006, from which a lysogenic prophage was deleted to create ACAM2012 and an LTB gene was introduced to form ACAM2022. Finally, a previously described vaccine strain, ACAM2010, had the eltB gene incorporated to generate ACAM2025. All recombinant genes were incorporated into the chromosomal sites of the attenuating mutations to ensure maximal genetic stability. The expression of the recombinant antigens and the changes in plasmids accompanying the deletion of toxin genes are described. Strains ACAM2025, ACAM2022, and ACAM2027 have been combined to create the ETEC vaccine formulation ACE527, which has recently successfully completed a randomized, double-blind, placebo-controlled phase I trial and is currently undergoing a randomized, double-blind placebo-controlled phase II challenge trial, both in healthy adult volunteers.
Collapse
|
4
|
Starks AM, Froehlich BJ, Jones TN, Scott JR. Assembly of CS1 pili: the role of specific residues of the major pilin, CooA. J Bacteriol 2006; 188:231-9. [PMID: 16352839 PMCID: PMC1317577 DOI: 10.1128/jb.188.1.231-239.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CS1 pili are important virulence factors of enterotoxigenic Escherichia coli strains associated with human diarrheal disease. They are the prototype for a family of pili that share extensive sequence similarity among their structural and assembly proteins. Only four linked genes, cooB, cooA, cooC, and cooD, are required to produce CS1 pili in E. coli K-12. To identify amino acids important for the function of the major pilin CooA, we used alanine substitution mutagenesis targeting conserved residues in the N and C termini of the protein. To test function, we examined cooA mutants for the ability to agglutinate bovine erythrocytes. Each hemagglutination-negative (HA(-)) cooA mutant was examined to identify its assembly pathway defect. CooA has been shown to be degraded in the absence of CooB (K. Voegele, H. Sakellaris, and J. R. Scott, Proc. Natl. Acad. Sci. USA 94:13257-13261, 1997). We found several HA(-) cooA mutants that produced no detectable CooA, suggesting that recognition by CooB is mediated by residues in both the N and C termini of CooA. In addition, we found that alanine substitution for some of the conserved residues in the C-terminal motif "AGxYxG(x(6))T," which is found in all subunits of this pilus family, had no effect on pilus formation. However, alanine substitution for some of the alternating hydrophobic residues within this motif prevented CooA from interacting with CooD, which serves as both the tip adhesin and nucleation protein for pilus formation. Thus, it appears that some, but not all, of the residues in both the N and C termini of CooA play a critical role in the intermolecular interactions of the major pilin with the other structural and assembly proteins. We anticipate that the results obtained here for CS1 pili in enterotoxigenic E. coli will help develop an understanding of the pilus assembly pathway used by CS1 family members in several important human pathogens.
Collapse
Affiliation(s)
- Angela M Starks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
5
|
Froehlich B, Parkhill J, Sanders M, Quail MA, Scott JR. The pCoo plasmid of enterotoxigenic Escherichia coli is a mosaic cointegrate. J Bacteriol 2005; 187:6509-16. [PMID: 16159784 PMCID: PMC1236633 DOI: 10.1128/jb.187.18.6509-6516.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CS1 is the prototype of a class of pili of enterotoxigenic Escherichia coli (ETEC) associated with diarrheal disease in humans. The genes encoding this pilus are carried on a large plasmid, pCoo. We report the sequence of the complete 98,396-bp plasmid. Like many other virulence plasmids, pCoo is a mosaic consisting of regions derived from multiple sources. Complete and fragmented insertion sequences (IS) make up 24% of the total DNA and are scattered throughout the plasmid. The pCoo DNA between these IS elements has a wide range of G+C content (35 to 57%), suggesting that these regions have different ancestries. We find that the pCoo plasmid is a cointegrate of two functional replicons, related to R64 and R100, which are joined at a 1,953-bp direct repeat of IS100. Recombination between these repeats in the cointegrate generates the two smaller replicons which coexist with the cointegrate in the culture. Both of the smaller replicons have plasmid stability genes as well as genes that may be important in pathogenesis. Examination by PCR of 17 other unrelated CS1 ETEC strains with a variety of serotypes demonstrated that all contained at least parts of both replicons of pCoo and that strains of the O6 genotype appear to contain a cointegrate very similar to pCoo. The results suggest that this family of CS1-encoding plasmids is evolving rapidly.
Collapse
Affiliation(s)
- Barbara Froehlich
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
6
|
Urban TA, Goldberg JB, Forstner JF, Sajjan US. Cable pili and the 22-kilodalton adhesin are required for Burkholderia cenocepacia binding to and transmigration across the squamous epithelium. Infect Immun 2005; 73:5426-37. [PMID: 16113259 PMCID: PMC1231069 DOI: 10.1128/iai.73.9.5426-5437.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia strains expressing both cable (Cbl) pili and the 22-kDa adhesin bind to cytokeratin 13 (CK13) strongly and invade squamous epithelium efficiently. It has not been established, however, whether the gene encoding the adhesin is located in the cbl operon or what specific contribution the adhesin and Cbl pili lend to binding and transmigration or invasion capacity of B. cenocepacia. By immunoscreening an expression library of B. cenocepacia isolate BC7, we identified a large gene (adhA) that encodes the 22-kDa adhesin. Isogenic mutants lacking expression of either Cbl pili (cblA or cblS mutants) or the adhesin (adhA mutant) were constructed to assess the individual role of Cbl pili and the adhesin in mediating B. cenocepacia binding to and transmigration across squamous epithelium. Relative to the parent strain, mutants of Cbl pili showed reduced binding (50%) to isolated CK13, while the adhesin mutant showed almost no binding (0 to 8%). Mutants lacking either cable pili or the adhesin were compromised in their ability to bind to and transmigrate across the squamous epithelium compared to the wild-type strain, although this deficiency was most pronounced in the adhA mutant. These results indicate that both Cbl pili and the 22-kDa adhesin are necessary for the optimal binding to CK13 and transmigration properties of B. cenocepacia.
Collapse
Affiliation(s)
- Teresa A Urban
- Department of Microbiology, University of Virginia Health Sciences, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
7
|
Anantha RP, McVeigh AL, Lee LH, Agnew MK, Cassels FJ, Scott DA, Whittam TS, Savarino SJ. Evolutionary and functional relationships of colonization factor antigen i and other class 5 adhesive fimbriae of enterotoxigenic Escherichia coli. Infect Immun 2004; 72:7190-201. [PMID: 15557644 PMCID: PMC529125 DOI: 10.1128/iai.72.12.7190-7201.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Colonization factor antigen I (CFA/I) is the archetype of eight genetically related fimbriae of enterotoxigenic Escherichia coli (ETEC) designated class 5 fimbriae. Assembled by the alternate chaperone pathway, these organelles comprise a rigid stalk of polymerized major subunits and an apparently tip-localized minor adhesive subunit. We examined the evolutionary relationships of class 5-specific structural proteins and correlated these with functional properties. We sequenced the gene clusters encoding coli surface antigen 4 (CS4), CS14, CS17, CS19, and putative colonization factor antigen O71 (PCFO71) and analyzed the deduced proteins and the published homologs of CFA/I, CS1, and CS2. Multiple alignment and phylogenetic analysis of the proteins encoded by each operon define three subclasses, 5a (CFA/I, CS4, and CS14), 5b (CS1, CS17, CS19, and PCFO71), and 5c (CS2). These share distant evolutionary relatedness to fimbrial systems of three other genera. Subclass divisions generally correlate with distinguishing in vitro adherence phenotypes of strains bearing the ETEC fimbriae. Phylogenetic comparisons of the individual structural proteins demonstrated greater intrasubclass conservation among the minor subunits than the major subunits. To correlate this with functional attributes, we made antibodies against CFA/I and CS17 whole fimbriae and maltose-binding protein fusions with the amino-terminal half of the corresponding minor subunits. Anti-minor subunit Fab preparations showed hemagglutination inhibition (HAI) of ETEC expressing homologous and intrasubclass heterologous colonization factors while anti-fimbrial Fab fractions showed HAI activity limited to colonization factor-homologous ETEC. These results were corroborated with similar results from the Caco-2 cell adherence assay. Our findings suggest that the minor subunits of class 5 fimbriae may be superior to whole fimbriae in inducing antiadhesive immunity.
Collapse
Affiliation(s)
- Ravi P Anantha
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Froehlich B, Holtzapple E, Read TD, Scott JR. Horizontal transfer of CS1 pilin genes of enterotoxigenic Escherichia coli. J Bacteriol 2004; 186:3230-7. [PMID: 15126486 PMCID: PMC400639 DOI: 10.1128/jb.186.10.3230-3237.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CS1 is one of a limited number of serologically distinct pili found in enterotoxigenic Escherichia coli (ETEC) strains associated with disease in people. The genes for the CS1 pilus are on a large plasmid, pCoo. We show that pCoo is not self-transmissible, although our sequence determination for part of pCoo shows regions almost identical to those in the conjugative drug resistance plasmid R64. When we introduced R64 into a strain containing pCoo, we found that pCoo was transferred to a recipient strain in mating. Most of the transconjugant pCoo plasmids result from recombination with R64, leading to acquisition of functional copies of all of the R64 transfer genes. Temporary coresidence of the drug resistance plasmid R64 with pCoo leads to a permanent change in pCoo so that it is now self-transmissible. We conclude that when R64-like plasmids are transmitted to an ETEC strain containing pCoo, their recombination may allow for spread of the pCoo plasmid to other enteric bacteria.
Collapse
Affiliation(s)
- Barbara Froehlich
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
9
|
Sajjan US, Xie H, Lefebre MD, Valvano MA, Forstner JF. Identification and molecular analysis of cable pilus biosynthesis genes in Burkholderia cepacia. MICROBIOLOGY (READING, ENGLAND) 2003; 149:961-971. [PMID: 12686638 DOI: 10.1099/mic.0.26176-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia cepacia is an opportunistic respiratory pathogen in cystic fibrosis patients. One highly transmissible and virulent clone belonging to genomovar IIIa expresses pili with unique cable morphology, which enable the bacterium to bind cytokeratin 13 in epithelial cells. The cblA gene, encoding the major pilin subunit, is often used as a DNA marker to identify potentially virulent isolates. The authors have now cloned and sequenced four additional genes, cblB, cblC, cblD and cblS, in the pilus gene cluster. This work shows that the products of the first four genes of the cbl operon, cblA, cblB, cblC and cblD, are sufficient for pilus assembly on the bacterial surface. Deletion of cblB abrogated pilus assembly and compromised the stability of the CblA protein in the periplasm. In contrast, deletion of cblD resulted in no pili, but there was no effect on expression and stability of the CblA protein subunit. These results, together with protein sequence homologies, predicted structural analyses, and the presence of typical amino acid motifs, are consistent with the assignment of functional roles for CblB as a chaperone that stabilizes the major pilin subunit in the periplasm, and CblD as the initiator of pilus biogenesis. It is also shown that expression of Cbl pili in Escherichia coli is not sufficient to mediate the binding of bacteria to the epithelial cell receptor cytokeratin 13, and that B. cepacia still binds to cytokeratin 13 in the absence of Cbl pili, suggesting that additional bacterial components are required for effective binding.
Collapse
Affiliation(s)
- Umadevi S Sajjan
- Division of Structural Biology and Biochemistry, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Hong Xie
- Division of Structural Biology and Biochemistry, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Matthew D Lefebre
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Miguel A Valvano
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Janet F Forstner
- Division of Structural Biology and Biochemistry, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| |
Collapse
|
10
|
Duthy TG, Manning PA, Heuzenroeder MW. Characterization of the CsfC and CsfD proteins involved in the biogenesis of CS5 pili from enterotoxigenic Escherichia coli. Microb Pathog 2001; 31:115-29. [PMID: 11500097 DOI: 10.1006/mpat.2001.0452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The region required for biosynthesis of CS5 pili consists of six csf genes, with csfA encoding the major subunit. In this study, we describe the characterization of two of the genes constituting the region, csfC and csfD, but also identify the true morphology of the CS5 pilus by high resolution electron microscopy. CsfD was shown to be essential in the initiation of CS5 pilus biogenesis, did not possess any chaperone-like activity for the major subunit, and was an integral minor component of the pilus structure. Studies on CsfD translocation across the outer membrane in Escherichia coli K-12 using a csfA mutant also showed that CsfD is likely to be the first pilin subunit assembled. A specific in-frame deletion in the csfC gene resulted in the complete absence of cell surface CS5 pili and prevented the translocation of CsfA and CsfD pilins across the outer membrane. Specific cell localization studies showed an accumulation of CsfC in the outer membranes of E. coli K-12, while complementation experiments with homologous outer membrane assembly genes from CS1 and CFA/I pili systems were unable to restore assembly of CS5 pili. The CS5 pilus was shown to be a 2 nm flexible fibrillar structure, which adopted a predominantly open helical conformation under the electron microscope.
Collapse
Affiliation(s)
- T G Duthy
- Discipline of Microbiology and Immunology, Department of Molecular BioSciences, Adelaide University, Frome Road, Adelaide, SA 5005, Australia
| | | | | |
Collapse
|
11
|
Duthy TG, Staendner LH, Manning PA, Heuzenroeder MW. CS5 pilus biosynthesis genes from enterotoxigenic Escherichia coli O115:H40. J Bacteriol 1999; 181:5847-51. [PMID: 10482530 PMCID: PMC94109 DOI: 10.1128/jb.181.18.5847-5851.1999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have sequenced the entire region of DNA required for the biosynthesis of CS5 pili from enterotoxigenic Escherichia coli O115:H40 downstream of the major subunit gene, designated csfA (for coli surface factor five A). Five more open reading frames (ORFs) (csfB, csfC, csfE, csfF, and csfD) which are transcribed in the same direction as the major subunit and are flanked by a number of insertion sequence regions have been identified. T7 polymerase-mediated overexpression of the cloned csf ORFs confirmed protein sizes based on the DNA sequences that encode them. The expression of only the csf region in E. coli K-12 resulted in the hemagglutination of human erythrocytes and the cell surface expression of CS5 pili, suggesting that the cluster contains all necessary information for CS5 pilus biogenesis and function.
Collapse
Affiliation(s)
- T G Duthy
- Microbial Pathogenesis Unit, Department of Microbiology and Immunology, University of Adelaide, Adelaide, South Australia 5005
| | | | | | | |
Collapse
|
12
|
Sakellaris H, Penumalli VR, Scott JR. The level of expression of the minor pilin subunit, CooD, determines the number of CS1 pili assembled on the cell surface of Escherichia coli. J Bacteriol 1999; 181:1694-7. [PMID: 10049406 PMCID: PMC93564 DOI: 10.1128/jb.181.5.1694-1697.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CooD, the minor subunit of CS1 pili of enterotoxigenic Escherichia coli, is essential for the assembly of stable, functional pili. We previously proposed that CooD is a rate-limiting initiator of CS1 pilus assembly and predicted that the level of CooD expression should therefore determine the number of CS1 pili assembled on the cell surface. In this study, we confirm that CooD is required for the initiation of pilus assembly rather than for the stabilization of pili after they are assembled by demonstrating that specific modulation of cooD expression also modulates the number of CS1 pili on bacterial cells.
Collapse
Affiliation(s)
- H Sakellaris
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
13
|
Abstract
CS1 pili serve as the prototype for a large class of serologically distinct pili associated with enterotoxigenic Escherichia coli that cause diarrhoea in humans. The four genes essential for CS1 pilus morphogenesis, cooB, A, C and D, are arranged in an operon and encode structural and assembly proteins unlike those of other pilus systems commonly associated with Gram-negative bacteria. CS1 pili are composed primarily of the major pilin subunit, CooA, which determines the serological type of the pilus. The major pilin subunit is assembled into pili by the proteins CooB, CooC and CooD. CooD is both a minor component found at the pilus tip and an essential assembly protein, whereas CooC is an outer membrane protein thought to be involved in pilin transport. CooB is a novel periplasmic chaperone-like protein that forms intermolecular complexes with and stabilizes the major and minor pilins. Unlike other pilin chaperones, CooB also stabilizes the outer membrane component of the assembly system, CooC. The proteins of CS1 pili have no significant homology to those of the well-characterized Pap (pyelonephritis-associated) pili and related systems, although most of the features of pilus morphogenesis are similar. Therefore, these appear to be among the rare cases of convergent evolution. Thus, for CS1 pili, enterotoxigenic E. coli use new protein 'tools' in the old 'trade' of forming functional pili.
Collapse
Affiliation(s)
- H Sakellaris
- Department of Microbiology and Immunology, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
14
|
Voegele K, Sakellaris H, Scott JR. CooB plays a chaperone-like role for the proteins involved in formation of CS1 pili of enterotoxigenic Escherichia coli. Proc Natl Acad Sci U S A 1997; 94:13257-61. [PMID: 9371833 PMCID: PMC24296 DOI: 10.1073/pnas.94.24.13257] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CS1 pili serve as the prototype of a class of filamentous appendages found on the surface of strains of enterotoxigenic Escherichia coli. The four genes needed to synthesize functional CS1 pili in E. coli K12 are: cooA, which encodes the major pilin protein; cooD, which encodes a minor pilin protein found at the tip of the structure; cooC, which encodes a protein found in the outer membrane of piliated bacteria; and cooB. We show here that CooB, which is required for pilus assembly but is not part of the final structure, stabilizes CooA, CooC, and CooD. We previously reported that CooB is complexed with CooA in the periplasm and show here that CooB also is found complexed with CooD in the periplasm. CooB is associated with the membrane fraction only in the presence of CooC, suggesting that these two proteins also interact. This suggests that although it has no homology to known chaperone proteins, CooB serves a chaperone-like role for assembly of CS1.
Collapse
Affiliation(s)
- K Voegele
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
15
|
Murphree D, Froehlich B, Scott JR. Transcriptional control of genes encoding CS1 pili: negative regulation by a silencer and positive regulation by Rns. J Bacteriol 1997; 179:5736-43. [PMID: 9294429 PMCID: PMC179461 DOI: 10.1128/jb.179.18.5736-5743.1997] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The adherence of enterotoxigenic Escherichia coli (ETEC) to the human small intestine is an important early event in infection. Attachment is thought to be mediated by proteinaceous structures called pili. We have investigated the regulation of expression of the genes encoding CS1 pili found on human ETEC strains and find that there are at least three promoters, P1 and P2, upstream of the coo genes, and P3, downstream of the start of cooB translation. We identified a silencer of transcription which extends over several hundred bases overlapping the cooB open reading frame. This silencer is dependent on the promoter and/or upstream region for its negative effect. The DNA binding protein H-NS is a repressor of coo transcription that acts in the same region as the silencer, so it is possible that H-NS is involved in this silencing. Rns, a member of the AraC family, positively regulates transcription of the coo operon and relieves the silencing of CS1 expression.
Collapse
Affiliation(s)
- D Murphree
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
16
|
Mol O, Oudega B. Molecular and structural aspects of fimbriae biosynthesis and assembly in Escherichia coli. FEMS Microbiol Rev 1996; 19:25-52. [PMID: 8916554 DOI: 10.1111/j.1574-6976.1996.tb00252.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fimbriae are long filamentous polymeric protein structures located at the surface of bacterial cells. They enable the bacteria to bind to specific receptor structures and thereby to colonise specific surfaces. Fimbriae consist of so-called major and minor subunits, which form, in a specific order, the fimbrial structure. In this review emphasis is put on the genetic organisation, regulation and especially on the biosynthesis of fimbriae of enterotoxigenic Escherichia coli strains, and more in particular on K88 and related fimbriae, with ample reference to well-studied P and type 1 fimbriae. The biosynthesis of these fimbriae requires two specific and unique proteins, a periplasmic chaperone and an outer membrane located molecular usher ('doorkeeper'). Molecular and structural aspects of the secretion of fimbrial subunits across the cytoplasmic membrane, the interaction of these subunits with periplasmic molecular chaperone, their translocation to the inner site of the outer membrane and their interaction with the usher protein, as well as the (ordered) translocation of the subunits across the outer membrane and their assembly into a growing fimbrial structure will be described. A model for K88 fimbriae is presented.
Collapse
Affiliation(s)
- O Mol
- Department of Molecular Microbiology, IMBW, BioCentrum Amsterdam, Faculty of Biology, The Netherlands
| | | |
Collapse
|
17
|
Abstract
Some strains of enterotoxigenic Escherichia coli associated with human diarrhoeal disease produce a class of pili represented by those called CS1. For the assembly of the major-pilin subunit, CooA, into pili, each of four linked genes, cooB, A, C, and D, is required. In this study, we have determined the subcellular localization of CooB, C and D, and investigated the molecular interactions of these proteins using specific antisera. CooD appears to be an integral pilus protein because it co-purifies with, and is strongly associated with, CS1 pili. In keeping with its role as an assembly protein, the CooD minor pilin (when overexpressed in CS1-piliated strains) was detected in periplasmic intermolecular complexes with the major-pilin subunit CooA. CooB is an assembly protein found exclusively in the periplasm of CS1-piliated strains. CooB also forms periplasmic intermolecular complexes with CooA, but does not constitute part of the final pilus structure. Immunoblot analysis of cell fractions showed that CooC is an outer membrane protein of CS1-piliated E. coli. Based on this information, we have proposed a model for CS1-pilus assembly which is very similar to the model for polymerization of the PapA pilin of uropathogenic E. coli. As the assembly proteins of Pap and CS1 pili are structurally unrelated, this may represent a case of convergent evolution.
Collapse
Affiliation(s)
- H Sakellaris
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
18
|
Froehlich BJ, Karakashian A, Sakellaris H, Scott JR. Genes for CS2 pili of enterotoxigenic Escherichia coli and their interchangeability with those for CS1 pili. Infect Immun 1995; 63:4849-56. [PMID: 7591145 PMCID: PMC173694 DOI: 10.1128/iai.63.12.4849-4856.1995] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have cloned and sequenced the DNA needed for production of CS2 pili in Escherichia coli K-12. The four open reading frames, cotB, cotA, cotC, and cotD, show homology with the genes needed for production of CS1 and CFA/I pili, which are also found on enterotoxigenic E. coli associated with human diarrheal disease. We also report that CotA plus CotB interact with the CS1 gene products CooC and CooD to form pili that can be visualized by electron microscopy and, conversely, that the CS1 gene products CooA and CooB interact with CotC and CotD to form pili.
Collapse
Affiliation(s)
- B J Froehlich
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
19
|
Cassels FJ, Wolf MK. Colonization factors of diarrheagenic E. coli and their intestinal receptors. JOURNAL OF INDUSTRIAL MICROBIOLOGY 1995; 15:214-26. [PMID: 8519480 DOI: 10.1007/bf01569828] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
While Escherichia coli is common as a commensal organism in the distal ileum and colon, the presence of colonization factors (CF) on pathogenic strains of E. coli facilitates attachment of the organism to intestinal receptor molecules in a species- and tissue-specific fashion. After the initial adherence, colonization occurs, and the involvement of additional virulence determinants leads to illness. Enterotoxigenic E. coli (ETEC) is the most extensively studied of the five categories of E. coli that cause diarrheal disease, and has the greatest impact on health worldwide. ETEC can be isolated from domestic animals and humans. The biochemistry, genetics, epidemiology, antigenic characteristics, and cell and receptor binding properties of ETEC have been extensively described. Another major category, enteropathogenic E. coli (EPEC), has virulence mechanisms, primarily effacement and cytoskeletal rearrangement of intestinal brush borders, that are distinct from ETEC. An EPEC CF receptor has been purified and characterized as a sialidated transmembrane glycoprotein complex directly attached to actin, thereby associating CF-binding with host-cell response. Three additional categories of E. coli diarrheal disease, their colonization factors and their host cell receptors, are discussed. It appears that biofilms exist in the intestine in a manner similar to oral bacterial biofilms, and that E. coli is part of these biofilms as both commensals and pathogens.
Collapse
Affiliation(s)
- F J Cassels
- Department of Gastroenterology, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA
| | | |
Collapse
|
20
|
Froehlich BJ, Karakashian A, Melsen LR, Wakefield JC, Scott JR. CooC and CooD are required for assembly of CS1 pili. Mol Microbiol 1994; 12:387-401. [PMID: 7915003 DOI: 10.1111/j.1365-2958.1994.tb01028.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many strains of enterotoxigenic Escherichia coli (ETEC) isolated from patients with diarrhoeal disease exhibit CS1 pili on their surfaces. These appendages, which are thought to be important for colonization of the upper intestine, are composed largely of multiple identical protein subunits encoded by cooA. We have sequenced the DNA directly downstream of cooA and identified two open reading frames, cooC and cooD, transcribed in the same direction as cooB and cooA. Following cooD is DNA homologous to an insertion sequence, so cooB, A, C and D appear to encode all the information needed for E. coli K-12 to synthesize CS1 pili. Complementation analysis of mutants cloned in E. coli K-12 and constructed in an ETEC-derived strain indicates that cooC and cooD are not required for stability of the major CS1 pilin protein or for its transport to the periplasm, but, like cooB, both are needed for assembly of cooA into pili.
Collapse
Affiliation(s)
- B J Froehlich
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | | | | | | | | |
Collapse
|
21
|
Traore R, Boussard P, Devleeschouwer M. Adhesion of Klebsiellapneumoniae to human epithelial cells and influence of protamine. Colloids Surf B Biointerfaces 1994. [DOI: 10.1016/0927-7765(94)80025-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
|
23
|
Jordi BJ, op den Camp IE, de Haan LA, van der Zeijst BA, Gaastra W. Differential decay of RNA of the CFA/I fimbrial operon and control of relative gene expression. J Bacteriol 1993; 175:7976-81. [PMID: 7504669 PMCID: PMC206977 DOI: 10.1128/jb.175.24.7976-7981.1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CFA/I fimbriae on human enterotoxigenic Escherichia coli are composed of the CfaB protein, the product of the second gene of the CFA/I operon. We show here that CfaB is expressed at a higher level than other proteins of the CFA/I operon. mRNA encoding the CfaB protein is much more abundant than mRNA encoding CfaA, the first protein, together with CfaB or mRNA encoding CfaA only. Only one promoter, upstream of cfaA, is present. These data indicate that a primary transcript containing cfaA and cfaB is processed into a cfaA-specific mRNA and a cfaB-specific mRNA. The cfaA mRNA is unstable, while the cfaB mRNA is stable and therefore accumulates in CFA/I-producing E. coli. The cfaB mRNA is probably stabilized by a stem-loop structure downstream of the cfaB gene. No distinct mRNA fragments could be detected encoding the other two proteins, CfaC and CfaE, of the CFA/I operon. These results indicate that cfaC- and cfaE-specific mRNAs degrade very rapidly and/or are produced in small amounts.
Collapse
Affiliation(s)
- B J Jordi
- Department of Bacteriology, Faculty of Veterinary Medicine, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|