1
|
Kumari N, Götz F, Nguyen MT. Aspartate tightens the anchoring of staphylococcal lipoproteins to the cytoplasmic membrane. Microbiologyopen 2017; 6. [PMID: 28901671 PMCID: PMC5727369 DOI: 10.1002/mbo3.525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/22/2017] [Accepted: 07/03/2017] [Indexed: 12/16/2022] Open
Abstract
In gram-negative bacteria, the ABC transporter LolCDE complex translocates outer membrane-specific lipoproteins (Lpp) from the inner membrane to the outer membrane. Lpp possessing aspartate (Asp) at position +2 are not translocated because it functions as a LolCDE avoidance signal. In gram-positive bacteria, lacking an outer membrane and the Lol system, Lpp are only anchored at the outer leaflet of the cytoplasmic membrane. However, the release of Lpp particularly in pathogenic or commensal species is crucial for immune modulation. Here, we provide evidence that in Staphylococcus aureus Asp at position +2 plays a role in withholding Lpp to the cytoplasmic membrane. Screening of published exoproteomic data of S. aureus revealed that Lpp mainly with Gly or Ser at position +2 were found in exoproteome, but there was no Lpp with Asp+2. The occurrence of Lpp with Asp+2 is infrequent in gram-positive bacteria. In S. aureus USA300 only seven of the 67 Lpp possess Asp+2; among them five Lpp represented Lpl lipoproteins involved in host cell invasion. Our study demonstrated that replacing the Asp+2 present in Lpl8 with a Ser enhances its release into the supernatant. However, there is no different release of Asp+2 and Ser+2 in mprF mutant that lacks the positive charge of lysyl-phosphatidylglycerol (Lys-PG). Moreover, substitution of Ser+2 by Asp in SitC (MntC) did not lead to a decreased release indicating that in staphylococci positions +3 and +4 might also be important for a tighter anchoring of Lpp. Here, we show that Asp in position +2 and adjacent amino acids contribute in tightening the anchoring of Lpp by interaction of the negative charged Asp with the positive charged Lys-PG.
Collapse
Affiliation(s)
- Nimerta Kumari
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany.,Institute of Microbiology, University of Sindh, Jamshoro, Pakistan
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Minh-Thu Nguyen
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany.,School of Biological and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
2
|
Identification and localization of Myxococcus xanthus porins and lipoproteins. PLoS One 2011; 6:e27475. [PMID: 22132103 PMCID: PMC3222651 DOI: 10.1371/journal.pone.0027475] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/17/2011] [Indexed: 11/19/2022] Open
Abstract
Myxococcus xanthus DK1622 contains inner (IM) and outer membranes (OM) separated by a peptidoglycan layer. Integral membrane, β-barrel proteins are found exclusively in the OM where they form pores allowing the passage of nutrients, waste products and signals. One porin, Oar, is required for intercellular communication of the C-signal. An oar mutant produces CsgA but is unable to ripple or stimulate csgA mutants to develop suggesting that it is the channel for C-signaling. Six prediction programs were evaluated for their ability to identify β-barrel proteins. No program was reliable unless the predicted proteins were first parsed using Signal P, Lipo P and TMHMM, after which TMBETA-SVM and TMBETADISC-RBF identified β-barrel proteins most accurately. 228 β-barrel proteins were predicted from among 7331 protein coding regions, representing 3.1% of total genes. Sucrose density gradients were used to separate vegetative cell IM and OM fractions, and LC-MS/MS of OM proteins identified 54 β-barrel proteins. Another class of membrane proteins, the lipoproteins, are anchored in the membrane via a lipid moiety at the N-terminus. 44 OM proteins identified by LC-MS/MS were predicted lipoproteins. Lipoproteins are distributed between the IM, OM and ECM according to an N-terminal sorting sequence that varies among species. Sequence analysis revealed conservation of alanine at the +7 position of mature ECM lipoproteins, lysine at the +2 position of IM lipoproteins, and no noticable conservation within the OM lipoproteins. Site directed mutagenesis and immuno transmission electron microscopy showed that alanine at the +7 position is essential for sorting of the lipoprotein FibA into the ECM. FibA appears at normal levels in the ECM even when a +2 lysine is added to the signal sequence. These results suggest that ECM proteins have a unique method of secretion. It is now possible to target lipoproteins to specific IM, OM and ECM locations by manipulating the amino acid sequence near the +1 cysteine processing site.
Collapse
|
3
|
Le Blastier S, Hamels A, Cabeen M, Schille L, Tilquin F, Dieu M, Raes M, Matroule JY. Phosphate starvation triggers production and secretion of an extracellular lipoprotein in Caulobacter crescentus. PLoS One 2010; 5:e14198. [PMID: 21152032 PMCID: PMC2996285 DOI: 10.1371/journal.pone.0014198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/04/2010] [Indexed: 11/18/2022] Open
Abstract
Life in oligotrophic environments necessitates quick adaptive responses to a sudden lack of nutrients. Secretion of specific degradative enzymes into the extracellular medium is a means to mobilize the required nutrient from nearby sources. The aquatic bacterium Caulobacter crescentus must often face changes in its environment such as phosphate limitation. Evidence reported in this paper indicates that under phosphate starvation, C. crescentus produces a membrane surface-anchored lipoprotein named ElpS subsequently released into the extracellular medium. A complete set of 12 genes encoding a type II secretion system (T2SS) is located adjacent to the elpS locus in the C. crescentus genome. Deletion of this T2SS impairs release of ElpS in the environment, which surprisingly remains present at the cell surface, indicating that the T2SS is not involved in the translocation of ElpS to the outer membrane but rather in its release. Accordingly, treatment with protease inhibitors prevents release of ElpS in the extracellular medium suggesting that ElpS secretion relies on a T2SS-secreted protease. Finally, secretion of ElpS is associated with an increase in alkaline phosphatase activity in culture supernatants, suggesting a role of the secreted protein in inorganic phosphate mobilization. In conlusion, we have shown that upon phosphate starvation, C. crescentus produces an outer membrane bound lipoprotein, ElpS, which is further cleaved and released in the extracellular medium in a T2SS-dependent manner. Our data suggest that ElpS is associated with an alkaline phosphatase activity, thereby allowing the bacterium to gather inorganic phosphates from a poor environment.
Collapse
Affiliation(s)
- Sophie Le Blastier
- Unité de Recherche en Biologie Moléculaire, University of Namur, Namur, Belgium
| | - Aurore Hamels
- Unité de Recherche en Biologie Moléculaire, University of Namur, Namur, Belgium
| | - Matthew Cabeen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Lionel Schille
- Unité de Recherche en Biologie Moléculaire, University of Namur, Namur, Belgium
| | - Françoise Tilquin
- Unité de Recherche en Biologie Moléculaire, University of Namur, Namur, Belgium
| | - Marc Dieu
- Unité de Recherche en Biologie Cellulaire, University of Namur, Namur, Belgium
| | - Martine Raes
- Unité de Recherche en Biologie Cellulaire, University of Namur, Namur, Belgium
| | - Jean-Yves Matroule
- Unité de Recherche en Biologie Moléculaire, University of Namur, Namur, Belgium
- * E-mail:
| |
Collapse
|
4
|
Francetić O, Pugsley AP. Towards the identification of type II secretion signals in a nonacylated variant of pullulanase from Klebsiella oxytoca. J Bacteriol 2005; 187:7045-55. [PMID: 16199575 PMCID: PMC1251600 DOI: 10.1128/jb.187.20.7045-7055.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pullulanase (PulA) from the gram-negative bacterium Klebsiella oxytoca is a 116-kDa surface-anchored lipoprotein of the isoamylase family that allows growth on branched maltodextrin polymers. PulA is specifically secreted via a type II secretion system. PelBsp-PulA, a nonacylated variant of PulA made by replacing the lipoprotein signal peptide (sp) with the signal peptide of pectate lyase PelB from Erwinia chrysanthemi, was efficiently secreted into the medium. Two 80-amino-acid regions of PulA, designated A and B, were previously shown to promote secretion of beta-lactamase (BlaM) and endoglucanase CelZ fused to the C terminus. We show that A and B fused to the PelB signal peptide can also promote secretion of BlaM and CelZ but not that of nuclease NucB or several other reporter proteins. However, the deletion of most of region A or all of region B, either individually or together, had only a minor effect on PelBsp-PulA secretion. Four independent linker insertions between amino acids 234 and 324 in PelBsp-PulA abolished secretion. This part of PulA, region C, could contain part of the PulA secretion signal or be important for its correct presentation. Deletion of region C abolished PelBsp-PulA secretion without dramatically affecting its stability. PelBsp-PulA-NucB chimeras were secreted only if the PulA-NucB fusion point was located downstream from region C. The data show that at least three regions of PulA contain information that influences its secretion, depending on their context, and that some reporter proteins might contribute to the secretion of chimeras of which they are a part.
Collapse
Affiliation(s)
- Olivera Francetić
- Molecular Genetics Unit, CNRS URA2172, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | | |
Collapse
|
5
|
Affiliation(s)
- V T Lee
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA.
| | | |
Collapse
|
6
|
Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 2000; 64:515-47. [PMID: 10974125 PMCID: PMC99003 DOI: 10.1128/mmbr.64.3.515-547.2000] [Citation(s) in RCA: 589] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
One of the most salient features of Bacillus subtilis and related bacilli is their natural capacity to secrete a variety of proteins into their environment, frequently to high concentrations. This has led to the commercial exploitation of bacilli as major "cell factories" for secreted enzymes. The recent sequencing of the genome of B. subtilis has provided major new impulse for analysis of the molecular mechanisms underlying protein secretion by this organism. Most importantly, the genome sequence has allowed predictions about the composition of the secretome, which includes both the pathways for protein transport and the secreted proteins. The present survey of the secretome describes four distinct pathways for protein export from the cytoplasm and approximately 300 proteins with the potential to be exported. By far the largest number of exported proteins are predicted to follow the major "Sec" pathway for protein secretion. In contrast, the twin-arginine translocation "Tat" pathway, a type IV prepilin-like export pathway for competence development, and ATP-binding cassette transporters can be regarded as "special-purpose" pathways, through which only a few proteins are transported. The properties of distinct classes of amino-terminal signal peptides, directing proteins into the various protein transport pathways, as well as the major components of each pathway are discussed. The predictions and comparisons in this review pinpoint important differences as well as similarities between protein transport systems in B. subtilis and other well-studied organisms, such as Escherichia coli and the yeast Saccharomyces cerevisiae. Thus, they may serve as a lead for future research and applications.
Collapse
Affiliation(s)
- H Tjalsma
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, 9750 AA Haren, The Netherlands
| | | | | | | | | |
Collapse
|
7
|
Anantha RP, Stone KD, Donnenberg MS. Effects of bfp mutations on biogenesis of functional enteropathogenic Escherichia coli type IV pili. J Bacteriol 2000; 182:2498-506. [PMID: 10762251 PMCID: PMC111313 DOI: 10.1128/jb.182.9.2498-2506.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli expresses a type IV fimbria known as the bundle-forming pilus (BFP) that is required for autoaggregation and localized adherence (LA) to host cells. A cluster of 14 genes is sufficient to reconstitute BFP biogenesis in a laboratory strain of E. coli. We have undertaken a systematic mutagenesis of the individual genes to determine the effect of each mutation on BFP biogenesis and LA. Here we report the construction and analysis of nonpolar mutations in six genes of the bfp cluster, bfpG, bfpB, bfpC, bfpD, bfpP, and bfpH, as well as the further analysis of a previously described bfpA mutant strain that is unable to express bundlin, the pilin protein. We found that mutations in bfpB, which encodes an outer membrane protein; bfpD, which encodes a putative nucleotide-binding protein; and bfpG and bfpC, which do not have sequence homologues in other type IV pilus systems, do not affect prebundlin expression or processing but block both BFP biogenesis and LA. The mutation in bfpP, the prepilin peptidase gene, does not affect prebundlin expression but blocks signal sequence cleavage of prebundlin, BFP biogenesis, and LA. The mutation in bfpH, which is predicted to encode a lytic transglycosylase, has no effect on prebundlin expression, prebundlin processing, BFP biogenesis, or LA. For each mutant for which altered phenotypes were detected, complementation with a plasmid containing the corresponding wild-type allele restored the wild-type phenotypes. We also found that association of prebundlin or bundlin with sucrose density flotation gradient fractions containing both inner and outer membrane proteins does not require any accessory proteins. These studies indicate that many bfp gene products are required for biogenesis of functional type IV pili but that mutations in the individual genes do not lead to the identification of new phases of pilus assembly.
Collapse
Affiliation(s)
- R P Anantha
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
8
|
Hantash FM, Earhart CF. Membrane association of the Escherichia coli enterobactin synthase proteins EntB/G, EntE, and EntF. J Bacteriol 2000; 182:1768-73. [PMID: 10692387 PMCID: PMC94479 DOI: 10.1128/jb.182.6.1768-1773.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytosolic proteins EntE, EntF, and EntB/G, which are Escherichia coli enzymes necessary for the final stage of enterobactin synthesis, are released by osmotic shock. Here, consistent with the idea that cytoplasmic proteins found in shockates have an affinity for membranes, a small fraction of each was found in membrane preparations. Two procedures demonstrated that the enzymes were enriched in a minor membrane fraction of buoyant density intermediate between that of cytoplasmic and outer membranes, providing indirect support for the notion that these proteins have a role in enterobactin excretion as well as synthesis.
Collapse
Affiliation(s)
- F M Hantash
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, Texas 78712-1095, USA
| | | |
Collapse
|
9
|
Seydel A, Gounon P, Pugsley AP. Testing the '+2 rule' for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection. Mol Microbiol 1999; 34:810-21. [PMID: 10564520 DOI: 10.1046/j.1365-2958.1999.01647.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report a novel strategy for selecting mutations that mislocalize lipoproteins within the Escherichia coli cell envelope and describe the mutants obtained. A strain carrying a deletion of the chromosomal malE gene, coding for the periplasmic maltose-binding protein (MalE), cannot use maltose unless a wild-type copy of malE is present in trans. Replacement of the natural signal peptide of preMalE by the signal peptide and the first four amino acids of a cytoplasmic membrane-anchored lipoprotein resulted in N-terminal fatty acylation of MalE (lipoMalE) and anchoring to the periplasmic face of the cytoplasmic membrane, where it could still function. When the aspartate at position +2 of this protein was replaced by a serine, lipoMalE was sorted to the outer membrane, where it could not function. Chemical mutagenesis followed by selection for maltose-using mutants resulted in the identification of two classes of mutations. The single class I mutant carried a plasmid-borne mutation that replaced the serine at position +2 by phenylalanine. Systematic substitutions of the amino acid at position +2 revealed that, besides phenylalanine, tryptophan, tyrosine, glycine and proline could all replace classical cytoplasmic membrane lipoprotein sorting signal (aspartate +2). Analysis of known and putative lipoproteins encoded by the E. coli K-12 genome indicated that these amino acids are rarely found at position +2. In the class II mutants, a chromosomal mutation caused small and variable amounts of lipoMalE to remain associated with the cytoplasmic membrane. Similar amounts of another, endogenous outer membrane lipoprotein, NlpD, were also present in the cytoplasmic membrane in these mutants, indicating a minor, general defect in the sorting of outer membrane lipoproteins. Four representative class II mutants analysed were shown not to carry mutations in the lolA or lolB genes, known to be involved in the sorting of lipoproteins to the outer membrane.
Collapse
Affiliation(s)
- A Seydel
- Unité de Génétique moléculaire, CNRS URA 1773, Paris, France
| | | | | |
Collapse
|
10
|
Affiliation(s)
- G Georgiou
- Department of Chemical Engineering, University of Texas, Austin 78712, USA
| | | |
Collapse
|
11
|
Steinhauer J, Agha R, Pham T, Varga AW, Goldberg MB. The unipolar Shigella surface protein IcsA is targeted directly to the bacterial old pole: IcsP cleavage of IcsA occurs over the entire bacterial surface. Mol Microbiol 1999; 32:367-77. [PMID: 10231492 DOI: 10.1046/j.1365-2958.1999.01356.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Shigella flexneri is an intracellular pathogen that is able to move within the cytoplasm of infected cells by the continual assembly of actin onto one pole of the bacterium. IcsA, an outer membrane protein, is localized to the old pole of the bacterium and is both necessary and sufficient for actin assembly. IcsA is slowly cleaved from the bacterial surface by the protease IcsP (SopA). Absence of IcsP leads to an alteration in the distribution of surface IcsA, such that the polar cap is maintained and some IcsA is distributed along the lateral walls of the bacillus. The mechanism of unipolar localization of IcsA and the role of IcsP in its unipolar localization are incompletely understood. Here, we demonstrate that cleavage of IcsA occurs exclusively in the outer membrane and that IcsP is localized to the outer membrane. In addition, we show that IcsA at the old pole is susceptible to cleavage by IcsP and that native IcsP is active at the pole. Taken together, these data indicate that IcsP cleaves IcsA over the entire bacterial surface. Finally, we show that, immediately after induction from a tightly regulated promoter, IcsA is expressed exclusively at the old pole in both the icsP- icsA- and the icsA- background. These data demonstrate that unipolar localization of IcsA results from its direct targeting to the pole, followed by its diffusion laterally in the outer membrane.
Collapse
Affiliation(s)
- J Steinhauer
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461-1602, USA
| | | | | | | | | |
Collapse
|
12
|
Tjalsma H, Kontinen VP, Prágai Z, Wu H, Meima R, Venema G, Bron S, Sarvas M, van Dijl JM. The role of lipoprotein processing by signal peptidase II in the Gram-positive eubacterium bacillus subtilis. Signal peptidase II is required for the efficient secretion of alpha-amylase, a non-lipoprotein. J Biol Chem 1999; 274:1698-707. [PMID: 9880550 DOI: 10.1074/jbc.274.3.1698] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Computer-assisted analyses indicate that Bacillus subtilis contains approximately 300 genes for exported proteins with an amino-terminal signal peptide. About 114 of these are lipoproteins, which are retained in the cytoplasmic membrane. We have investigated the importance of lipoprotein processing by signal peptidase II (SPase II) for cellular homeostasis, using cells lacking SPase II. The results show that lipoprotein processing is important for cell viability at low and high temperatures, suggesting that lipoproteins are essential for growth under these conditions. Although certain lipoproteins are required for the development of genetic competence, sporulation, and germination, these developmental processes were not affected in the absence of SPase II. Cells lacking SPase II accumulated lipid-modified precursor and mature-like forms of PrsA, a folding catalyst for secreted proteins. These forms of PrsA seem to have a reduced activity, as the secretion of alpha-amylase was strongly impaired. Unexpectedly, type I signal peptidases, which process secretory preproteins, were not involved in alternative amino-terminal processing of pre-PrsA in the absence of SPase II. In conclusion, processing of lipoproteins by SPase II in B. subtilis is not strictly required for lipoprotein function, which is surprising as lipoproteins and type II SPases seem to be conserved in all eubacteria.
Collapse
Affiliation(s)
- H Tjalsma
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dabo SM, Confer AW, Murphy GL. Outer membrane proteins of bovine Pasteurella multocida serogroup A isolates. Vet Microbiol 1997; 54:167-83. [PMID: 9057260 DOI: 10.1016/s0378-1135(96)01274-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The outer membrane proteins (OMPs) of P. multocida serotypes A3 (7 isolates), A4 (2 isolates), A3,4 and A2 (one isolate each) obtained from pneumonic cattle (10 isolates) and from one pig isolate were investigated to identify potential immunogens. SDS-PAGE of P. multocida OM isolated by SDG centrifugation of spheroplasts revealed eight major OMPs. Outer membranes isolated by sarcosyl extraction or SDG had similar protein composition on Coomassie blue-stained SDS-PA gel and on immunoblots. Two major OMPs (M(r)s of 35 and 46 kDa at 100 degrees C) demonstrated heat modifiability with apparent M(r)s of 30 and 34 kDa at 37 degrees C, respectively. The N-terminal aa sequences of these heat modifiable proteins revealed homology with E. coli OmpA and Hib P1 proteins, respectively. Protease treatment of whole cells followed by western immunoblots using bovine convalescent sera identified several immunogenic, surface-exposed and conserved OMPs among the eleven P. multocida isolates examined. The whole organism SDS-PAGE profiles of the eleven P. multocida isolates differed such that six patterns were seen. These patterns could potentially be used as a typing system for P. multocida bovine isolates based on the molecular weights of whole cell proteins. The above observations have potentially important implications relative to the immunity to infection.
Collapse
Affiliation(s)
- S M Dabo
- Department of Anatomy, Pathology and Pharmacology, College of Veterinary Medicine, Oklahoma State University, Stillware 74078-2007, USA
| | | | | |
Collapse
|
14
|
Baron C, Thorstenson YR, Zambryski PC. The lipoprotein VirB7 interacts with VirB9 in the membranes of Agrobacterium tumefaciens. J Bacteriol 1997; 179:1211-8. [PMID: 9023204 PMCID: PMC178818 DOI: 10.1128/jb.179.4.1211-1218.1997] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
VirB9 and VirB7 are essential components of the putative VirB membrane channel required for transfer of the T-complex from Agrobacterium tumefaciens into plants. In this report, we present a biochemical analysis of their interaction and cellular localization. A comparison of relative electrophoretic mobilities under nonreducing and reducing conditions suggested that they form thiol-sensitive complexes with other proteins. Two-dimensional gel electrophoresis identified one complex as a heterodimer of VirB9 and VirB7 covalently linked by a disulfide bond, as well as VirB7 homodimers and monomers. Immunoprecipitation with VirB9-specific antiserum isolated the heterodimeric VirB9-VirB7 complex. Incubation with reducing agent split the complex into its constituent VirB9 and VirB7, which further confirmed linkage via cysteine residues. The interaction between VirB9 and VirB7 also was observed in the yeast two-hybrid system. Membrane attachment of VirB9-VirB7 may be conferred by lipoprotein modification, since labeling with [3H]palmitic acid in A. tumefaciens verified that VirB7 is a lipoprotein associated with VirB9. VirB9 and VirB7 showed equal distribution between inner and outer membranes, in accord with their proposed association with the transmembrane VirB complex.
Collapse
Affiliation(s)
- C Baron
- Department of Plant and Microbial Biology, University of California at Berkeley, 94720, USA
| | | | | |
Collapse
|
15
|
Pandher K, Murphy GL. Genetic and immunological analyses of a 38 kDa surface-exposed lipoprotein of Pasteurella haemolytica A1. Vet Microbiol 1996; 51:331-41. [PMID: 8870194 DOI: 10.1016/0378-1135(96)00029-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pasteurella haemolytica serotype A1 is the bacterial pathogen most frequently isolated from the lungs of cattle with bovine respiratory disease. As part of a study to characterize P. haemolytica antigens which are important in eliciting resistance to pneumonic pasteurellosis, we have cloned and sequenced the gene encoding a 38 kDa lipoprotein, Lpp38. The deduced amino acid sequence of Lpp38 is similar to those of the Escherichia coli polyamine transport proteins PotD (70%) and PotF (33%). P. haemolytica Lpp38 is present in both inner membrane and outer membrane fractions of the cell envelope. Susceptibility of Lpp38 to cleavage by extracellular proteases indicates that portions of the protein are surface-exposed. A protein of similar molecular mass in P. haemolytica strains from all 12 serotypes of biotype A and in an untypeable strain was detected by an anti-Lpp38 monoclonal antibody. Lpp38 is recognized by sera from calves resistant to infection after natural exposure to P. haemolytica and by sera from calves protected against infection by vaccination with P. haemolytica A1 outer membranes or with live bacteria. These data suggest a role for this protein in the development of immunity to P. haemolytica infection.
Collapse
Affiliation(s)
- K Pandher
- Department of Veterinary Pathology, College of Veterinary Medicine, Oklahoma State University, Stillwater 74078-2007, USA
| | | |
Collapse
|
16
|
Fernandez D, Dang TA, Spudich GM, Zhou XR, Berger BR, Christie PJ. The Agrobacterium tumefaciens virB7 gene product, a proposed component of the T-complex transport apparatus, is a membrane-associated lipoprotein exposed at the periplasmic surface. J Bacteriol 1996; 178:3156-67. [PMID: 8655494 PMCID: PMC178066 DOI: 10.1128/jb.178.11.3156-3167.1996] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Agrobacterium tumefaciens virB7 gene product contains a typical signal sequence ending with a consensus signal peptidase II cleavage site characteristic of bacterial lipoproteins. VirB7 was shown to be processed as a lipoprotein by (i) in vivo labeling of native VirB7 and a VirB7::PhoA fusion with [3H]palmitic acid and (ii) inhibition of VirB7 processing by globomycin, a known inhibitor of signal peptidase II. A VirB7 derivative sustaining a Ser substitution for the invariant Cys-15 residue within the signal peptidase II cleavage site could not be visualized immunologically and failed to complement a delta virB7 mutation, establishing the importance of this putative lipid attachment site for VirB7 maturation and function. VirB7 partitioned predominantly with outer membrane fractions from wild-type A348 cells as well as a delta virB operon derivative transformed with a virB7 expression plasmid. Expression of virB7 fused to phoA, the alkaline phosphatase gene of Escherichia coli, gave rise to high alkaline phosphatase activities in E. coli and A. tumefaciens cells, providing genetic evidence for the export of VirB7 in these hosts. VirB7 was shown to be intrinsically resistant to proteinase K; by contrast, a VirB7::PhoA derivative was degraded by proteinase K treatment of A. tumefaciens spheroplasts and remained intact upon treatment of whole cells. Together, the results of these studies favor a model in which VirB7 is topologically configured as a monotopic protein with its amino terminus anchored predominantly to the outer membrane and with its hydrophilic carboxyl domain located in the periplasmic space. Parallel studies of VirB5, VirB8, VirB9, and VirB10 established that each of these membrane-associated proteins also contains a large periplasmic domain whereas VirB11 resides predominantly or exclusively within the interior of the cell.
Collapse
Affiliation(s)
- D Fernandez
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, 77030, USA
| | | | | | | | | | | |
Collapse
|
17
|
Wengelnik K, Marie C, Russel M, Bonas U. Expression and localization of HrpA1, a protein of Xanthomonas campestris pv. vesicatoria essential for pathogenicity and induction ofthe hypersensitive reaction. J Bacteriol 1996; 178:1061-9. [PMID: 8576039 PMCID: PMC177766 DOI: 10.1128/jb.178.4.1061-1069.1996] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The hrp cluster of the pepper and tomato pathogen Xanthomonas campestris pv. vesicatoria is required for both pathogenicity on susceptible host plants and induction of the hypersensitive reaction on resistant plants. The hrpA locus is located at the left end of the 25-kb hrp region and encodes a single 64-kDa Hrp protein, HrpA1, which belongs to the PulD superfamily of proteins involved in type II and type III protein secretion. In this study, we developed a defined medium without any plant-derived molecules that induces expression of hrpA in vitro. The hrpA transcription start site was mapped in the coding region of the hrpB8 gene, which is the last gene of the hrpB operon. The inducible hrpA promoter shows no homology to known promoter elements or other hrp loci of X. campestris pv. vesicatoria. hrpA expression was shown to be independent of the hrp regulatory gene hrpX. The amino acid sequence of the HrpA1 protein is predicted to contain an N-terminal signal sequence and no further transmembrane domains and to be rich in beta-sheet stretches. Expression of HrpA1 in Escherichia coli cells causes induction of the psp operon like some of its counterparts, suggesting some commonality of function and that HrpA1 forms multimers. The protein product of hrpA1 was identified by using a specific polyclonal antibody. Cell fractionation studies demonstrated that the HrpA1 protein is localized in the outer membrane of X. campestris pv. vesicatoria. HrpA1 is the first component of the Hrp secretion system whose localization has been determined in the original organism.
Collapse
Affiliation(s)
- K Wengelnik
- Institut des Sciences Végétales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
18
|
Allaoui A, Scheen R, Lambert de Rouvroit C, Cornelis GR. VirG, a Yersinia enterocolitica lipoprotein involved in Ca2+ dependency, is related to exsB of Pseudomonas aeruginosa. J Bacteriol 1995; 177:4230-7. [PMID: 7635810 PMCID: PMC177167 DOI: 10.1128/jb.177.15.4230-4237.1995] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pathogenic yersiniae require Ca2+ for growth at 37 degrees C. They harbor closely related plasmids of about 70 kb that are essential for virulence. At 37 degrees C and in the absence of Ca2+ ions, these plasmids cause a decrease in growth rate and the release of large amounts of proteins called Yops. Here we describe the virG gene of Yersinia enterocolitica; virG is located just upstream of the virF gene, which encodes the transcriptional activator of some plasmid virulence factors. Analysis of the VirG amino acid sequence suggested that virG encodes a lipoprotein, which was confirmed by [3H]palmitate labeling of VirG-PhoA fusion proteins. A nonpolar virG mutant was constructed and found to be Ca2+ independent for growth at 37 degrees C but to still secrete Yops. This phenotype was complemented by the introduction of a plasmid harboring an intact virG gene. VirG was found to be homologous to ExsB, a protein encoded by a Pseudomonas aeruginosa gene located in the locus controlling exoenzyme S synthesis. Interestingly, the exsA gene, located just downstream of exsB, is also homologous to virF.
Collapse
Affiliation(s)
- A Allaoui
- Microbial Pathogenesis Unit, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
19
|
Ehlert K, Höltje JV, Templin MF. Cloning and expression of a murein hydrolase lipoprotein from Escherichia coli. Mol Microbiol 1995; 16:761-8. [PMID: 7476170 DOI: 10.1111/j.1365-2958.1995.tb02437.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
On the basis of the published N-terminal amino acid sequence of the soluble lytic transglycosylase 35 (Slt35) of Escherichia coli, an open reading frame (ORF) was cloned from the 60.8 min region of the E. coli chromosome. The nucleotide sequence of the ORF, containing a putative lipoprotein-processing site, was shown by [3H]-palmitate labelling to encode a lipoprotein with an apparent molecular mass of 36 kDa. A larger protein, presumably the prolipoprotein form, accumulated in the presence of globomycin. Over-expression of the gene, designated mltB (for membrane-bound lytic transglycosylase B), caused a 55-fold increase in murein hydrolase activity in the membrane fraction and resulted in rapid cell lysis. After membrane fractionation by sucrose-density-gradient centrifugation, most of the induced enzyme activity was present in the outer and intermediate membrane fractions. Murein hydrolase activity in the soluble fraction of a homogenate of cells induced for MltB increased with time. This release of enzyme activity into the supernatant could be inhibited by the addition of the serine-protease inhibitor phenylmethylsulphonyl fluoride. It is concluded that the previously isolated Slt35 protein is a proteolytic degradation product of the murein hydrolase lipoprotein MltB. Surprisingly, a deletion in the mltB gene showed no obvious phenotype.
Collapse
Affiliation(s)
- K Ehlert
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Biochemie, Tübingen, Germany
| | | | | |
Collapse
|
20
|
Abstract
Despite the potential significance of surface-localized antigens in the colonization by and disease processes of Helicobacter pylori, few such components have been unequivocally identified and/or characterized. To further investigate the surface of this bacterium, monoclonal antibodies (MAbs) to a sarcosine-insoluble outer membrane fraction prepared from H. pylori NCTC 11637 were raised. MAbs were selected on the basis of their surface reactivity to whole cells by enzyme-linked immunosorbent assay, immunofluorescence, and immunoelectron microscopy. By use of this selection protocol, 14 surface-reactive MAbs were chosen. These MAbs were used to identify six protein antigens (molecular masses, 80, 60, 51, 50, 48, and 31 kDa), all of which were localized within or associated with the outer membrane. Two of the MAbs recognized the core region of lipopolysaccharide (LPS). Only these two anti-LPS MAbs also recognized the flagellar sheath, indicating a structural difference between the sheath and outer membrane. Three of the protein antigens (80, 60, and 51 kDa) were strain specific, while the other three antigens were present in other strains of H. pylori. Both the 51- and 48-kDa antigens were heat modifiable and likely are porins. A conserved 31-kDa protein may represent another species of porin. A method involving sucrose density ultracentrifugation and Triton extraction that allows the preparation of H. pylori outer membranes with minimal inner membrane contamination is described. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the protein content of the H. pylori outer membrane is similar structurally to those of other species of Helicobacter but markedly different from those of taxonomically related Campylobacter spp. and Escherichia coli. H. pylori also appeared to lack peptidoglycan-associated proteins.
Collapse
Affiliation(s)
- P Doig
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | | |
Collapse
|
21
|
Kostrzynska M, O'Toole PW, Taylor DE, Trust TJ. Molecular characterization of a conserved 20-kilodalton membrane-associated lipoprotein antigen of Helicobacter pylori. J Bacteriol 1994; 176:5938-48. [PMID: 7928954 PMCID: PMC196810 DOI: 10.1128/jb.176.19.5938-5948.1994] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Antisera raised in rabbits to whole cells of Helicobacter pylori recognized as a major antigen a protein with an apparent molecular weight of 20,000. The antigen was purified by differential solubilization with N-octyl-beta-D-glucopyranoside, urea, and sodium dodecyl sulfate followed by molecular sieving. The mass of the protein, Lpp20, was 18,283 Da as determined by mass spectrometry. The lpp20 gene encoding this protein was cloned in Escherichia coli by using the vector lambda EMBL3, and plasmid subclones expressed the full-length protein from the native H. pylori promoter. lpp20 was mapped to the same 358-kb NruI fragment as flaB. DNA sequence analysis showed that the gene was 525 bp long and encoded a 175-amino-acid protein with a molecular weight of 19,094 containing a 21-residue typical lipoprotein signal peptide and consensus prolipoprotein processing site. The mass of the deduced 154-residue mature protein was 16,865 Da. Growth of E. coli cells expressing the cloned H. pylori lpp20 gene in the presence of [3H]palmitic acid resulted in radiolabelled Lpp20 while treatment of the E. coli cells with globomycin caused accumulation of unprocessed Lpp20, consistent with Lpp20 being a lipoprotein. Lpp20 cofractionated with the cytoplasmic membrane fraction, although a proportion of the protein was also found in the outer membrane. A mutant generated by mutant-allele exchange displayed normal viability, showing that Lpp20 belonged to the nonessential class of lipoproteins.
Collapse
Affiliation(s)
- M Kostrzynska
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | | | | | | |
Collapse
|
22
|
Doran TJ, Loh SM, Firth N, Skurray RA. Molecular analysis of the F plasmid traVR region: traV encodes a lipoprotein. J Bacteriol 1994; 176:4182-6. [PMID: 8021201 PMCID: PMC205621 DOI: 10.1128/jb.176.13.4182-4186.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The nucleotide sequences of the conjugative F plasmid transfer region genes, traV and traR, have been determined. The deduced amino acid sequence of TraV indicated that it may be a lipoprotein; this was confirmed by examining the effect of globomycin on traV-encoded polypeptides synthesized in minicells. An open reading frame that may represent a previously undetected transfer gene, now designated trbG, was identified immediately upstream of traV. The deduced product of traR was found to share amino acid similarity with proteins from the bacteriophages 186 and P2 and with the dosage-dependent dnaK suppressor DksA.
Collapse
Affiliation(s)
- T J Doran
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
23
|
Abstract
pulE, one of 14 genes specifically required for pullulanase secretion in Klebsiella oxytoca, codes for a putative nucleotide-binding protein. Subcellular fractionation indicated that the majority of PulE in Escherichia coli cells expressing all 14 secretion genes is mainly associated with the cytoplasmic membrane through both hydrophobic and non-hydrophobic interactions. Mutational analysis revealed that one of the two regions of PulE that are conserved in many nucleotide-binding proteins (Walker box A) is essential for pullulanase secretion. Likewise, mutations that removed aspartate residues from each of two regions immediately downstream from the Walker box A also reduced secretion. These aspartate-rich regions are highly conserved in all 16 known PulE homologues but not in any other nucleotide-binding proteins. Altogether, these results indicate that PulE might belong to a new family of nucleotide-binding proteins. The protein could not be cross-linked to the photoactivatable ATP analogue azido-ATP, however. Most pulE point or deletion mutations which prevented pullulanase secretion exhibited transdominance when expressed at high levels in cells producing wild-type PulE protein. Evidence presented suggests that PulE might be a homodimer.
Collapse
Affiliation(s)
- O Possot
- Unité de Génétique Moléculaire, CNRS URA 1149, Institut Pasteur, Paris, France
| | | |
Collapse
|
24
|
Alexander DM, St John AC. Characterization of the carbon starvation-inducible and stationary phase-inducible gene slp encoding an outer membrane lipoprotein in Escherichia coli. Mol Microbiol 1994; 11:1059-71. [PMID: 8022277 DOI: 10.1111/j.1365-2958.1994.tb00383.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Escherichia coli induces the expression of more than 50 proteins in response to starvation for a carbon source. Strains MC7 (csi7::phoA) and MC19 (csi19::phoA) contain fusions of a signal peptide-deficient phoA reporter sequence to a csi (carbon starvation-inducible) gene. PhoA expression increased when these strains were deprived of a carbon source or entered stationary phase but did not when the cells were deprived of a nitrogen source or subjected to osmotic, oxidative or thermal stress. Mapping and sequence analysis of the cloned phoA fusions in strains MC7 and MC19 indicated that they had occurred in different locations within the same previously unidentified gene. The wild-type allele of this gene was cloned and the encoded protein was found to be a new lipoprotein. Therefore we propose to call this locus slp (starvation lipoprotein). The 22 kDa Slp protein is associated with the outer membrane fraction. The slp gene was located at 78.6 centisomes on the E. coli genetic map. The -10 and -35 regions upstream of the mRNA start site were characteristic of a sigma 70 promoter. The major transcript from this promoter was sufficiently large to contain slp sequences but not the downstream open reading frame. Induction of beta-galactosidase activity from a slp::lacZ translational fusion during carbon starvation or stationary phase was independent of cAMP, RpoS (KatF) and DnaK, all of which are known to affect the expression of certain starvation-inducible or stationary phase-inducible proteins.
Collapse
Affiliation(s)
- D M Alexander
- Department of Biological Sciences, Rutgers, State University of New Jersey, Piscataway 08855-1059
| | | |
Collapse
|