1
|
Demtröder L, Pfänder Y, Schäkermann S, Bandow JE, Masepohl B. NifA is the master regulator of both nitrogenase systems in Rhodobacter capsulatus. Microbiologyopen 2019; 8:e921. [PMID: 31441241 PMCID: PMC6925177 DOI: 10.1002/mbo3.921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023] Open
Abstract
Rhodobacter capsulatus fixes atmospheric nitrogen (N2) by a molybdenum (Mo)‐nitrogenase and a Mo‐free iron (Fe)‐nitrogenase, whose production is induced or repressed by Mo, respectively. At low nanomolar Mo concentrations, both isoenzymes are synthesized and contribute to nitrogen fixation. Here we examined the regulatory interplay of the central transcriptional activators NifA and AnfA by proteome profiling. As expected from earlier studies, synthesis of the structural proteins of Mo‐nitrogenase (NifHDK) and Fe‐nitrogenase (AnfHDGK) required NifA and AnfA, respectively, both of which depend on the alternative sigma factor RpoN to activate expression of their target genes. Unexpectedly, NifA was found to be essential for the synthesis of Fe‐nitrogenase, electron supply to both nitrogenases, biosynthesis of their cofactors, and production of RpoN. Apparently, RpoN is the only NifA‐dependent factor required for target gene activation by AnfA, since plasmid‐borne rpoN restored anfH transcription in a NifA‐deficient strain. However, plasmid‐borne rpoN did not restore Fe‐nitrogenase activity in this strain. Taken together, NifA requirement for synthesis and activity of both nitrogenases suggests that Fe‐nitrogenase functions as a complementary nitrogenase rather than an alternative isoenzyme in R. capsulatus.
Collapse
Affiliation(s)
- Lisa Demtröder
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Yvonne Pfänder
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sina Schäkermann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Bernd Masepohl
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
2
|
RpoN (σ 54) Is Required for Floc Formation but Not for Extracellular Polysaccharide Biosynthesis in a Floc-Forming Aquincola tertiaricarbonis Strain. Appl Environ Microbiol 2017; 83:AEM.00709-17. [PMID: 28500044 DOI: 10.1128/aem.00709-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/08/2017] [Indexed: 11/20/2022] Open
Abstract
Some bacteria are capable of forming flocs, in which bacterial cells become self-flocculated by secreted extracellular polysaccharides and other biopolymers. The floc-forming bacteria play a central role in activated sludge, which has been widely utilized for the treatment of municipal sewage and industrial wastewater. Here, we use a floc-forming bacterium, Aquincolatertiaricarbonis RN12, as a model to explore the biosynthesis of extracellular polysaccharides and the regulation of floc formation. A large gene cluster for exopolysaccharide biosynthesis and a gene encoding the alternative sigma factor RpoN1, one of the four paralogues, have been identified in floc formation-deficient mutants generated by transposon mutagenesis, and the gene functions have been further confirmed by genetic complementation analyses. Interestingly, the biosynthesis of exopolysaccharides remained in the rpoN1-disrupted flocculation-defective mutants, but most of the exopolysaccharides were secreted and released rather than bound to the cells. Furthermore, the expression of exopolysaccharide biosynthesis genes seemed not to be regulated by RpoN1. Taken together, our results indicate that RpoN1 may play a role in regulating the expression of a certain gene(s) involved in the self-flocculation of bacterial cells but not in the biosynthesis and secretion of exopolysaccharides required for floc formation.IMPORTANCE Floc formation confers bacterial resistance to predation of protozoa and plays a central role in the widely used activated sludge process. In this study, we not only identified a large gene cluster for biosynthesis of extracellular polysaccharides but also identified four rpoN paralogues, one of which (rpoN1) is required for floc formation in A. tertiaricarbonis RN12. In addition, this RpoN sigma factor regulates the transcription of genes involved in biofilm formation and swarming motility, as previously shown in other bacteria. However, this RpoN paralogue is not required for the biosynthesis of exopolysaccharides, which are released and dissolved into culture broth by the rpoN1 mutant rather than remaining tightly bound to cells, as observed during the flocculation of the wild-type strain. These results indicate that floc formation is a regulated complex process, and other yet-to-be identified RpoN1-dependent factors are involved in self-flocculation of bacterial cells via exopolysaccharides and/or other biopolymers.
Collapse
|
3
|
Gürgan M, Erkal NA, Özgür E, Gündüz U, Eroglu I, Yücel M. Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis. Int J Mol Sci 2015; 16:13781-97. [PMID: 26086826 PMCID: PMC4490523 DOI: 10.3390/ijms160613781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/09/2015] [Indexed: 12/28/2022] Open
Abstract
Biohydrogen is a clean and renewable form of hydrogen, which can be produced by photosynthetic bacteria in outdoor large-scale photobioreactors using sunlight. In this study, the transcriptional response of Rhodobacter capsulatus to cold (4 °C) and heat (42 °C) stress was studied using microarrays. Bacteria were grown in 30/2 acetate/glutamate medium at 30 °C for 48 h under continuous illumination. Then, cold and heat stresses were applied for two and six hours. Growth and hydrogen production were impaired under both stress conditions. Microarray chips for R. capsulatus were custom designed by Affymetrix (GeneChip®. TR_RCH2a520699F). The numbers of significantly changed genes were 328 and 293 out of 3685 genes under cold and heat stress, respectively. Our results indicate that temperature stress greatly affects the hydrogen production metabolisms of R. capsulatus. Specifically, the expression of genes that participate in nitrogen metabolism, photosynthesis and the electron transport system were induced by cold stress, while decreased by heat stress. Heat stress also resulted in down regulation of genes related to cell envelope, transporter and binding proteins. Transcriptome analysis and physiological results were consistent with each other. The results presented here may aid clarification of the genetic mechanisms for hydrogen production in purple non-sulfur (PNS) bacteria under temperature stress.
Collapse
Affiliation(s)
- Muazzez Gürgan
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey.
| | - Nilüfer Afşar Erkal
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey.
| | - Ebru Özgür
- Micro-Electro-Mechanical Systems, Middle East Technical University, Ankara 06800, Turkey.
| | - Ufuk Gündüz
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey.
| | - Inci Eroglu
- Department of Chemical Engineering, Middle East Technical University, Ankara 06800, Turkey.
| | - Meral Yücel
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey.
| |
Collapse
|
4
|
NifA- and CooA-coordinated cowN expression sustains nitrogen fixation by Rhodobacter capsulatus in the presence of carbon monoxide. J Bacteriol 2014; 196:3494-502. [PMID: 25070737 DOI: 10.1128/jb.01754-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter capsulatus fixes atmospheric dinitrogen via two nitrogenases, Mo- and Fe-nitrogenase, which operate under different conditions. Here, we describe the functions in nitrogen fixation and regulation of the rcc00574 (cooA) and rcc00575 (cowN) genes, which are located upstream of the structural genes of Mo-nitrogenase, nifHDK. Disruption of cooA or cowN specifically impaired Mo-nitrogenase-dependent growth at carbon monoxide (CO) concentrations still tolerated by the wild type. The cooA gene was shown to belong to the Mo-nitrogenase regulon, which is exclusively expressed when ammonium is limiting. Its expression was activated by NifA1 and NifA2, the transcriptional activators of nifHDK. AnfA, the transcriptional activator of Fe-nitrogenase genes, repressed cooA, thereby counteracting NifA activation. CooA activated cowN expression in response to increasing CO concentrations. Base substitutions in the presumed CooA binding site located upstream of the cowN transcription start site abolished cowN expression, indicating that cowN regulation by CooA is direct. In conclusion, a transcription factor-based network controls cowN expression to protect Mo-nitrogenase (but not Fe-nitrogenase) under appropriate conditions.
Collapse
|
5
|
Mercer RG, Lang AS. Identification of a predicted partner-switching system that affects production of the gene transfer agent RcGTA and stationary phase viability in Rhodobacter capsulatus. BMC Microbiol 2014; 14:71. [PMID: 24645667 PMCID: PMC3999984 DOI: 10.1186/1471-2180-14-71] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/12/2014] [Indexed: 11/30/2022] Open
Abstract
Background Production of the gene transfer agent RcGTA in the α-proteobacterium Rhodobacter capsulatus is dependent upon the response regulator protein CtrA. Loss of this regulator has widespread effects on transcription in R. capsulatus, including the dysregulation of numerous genes encoding other predicted regulators. This includes a set of putative components of a partner-switching signaling pathway with sequence homology to the σ-regulating proteins RsbV, RsbW, and RsbY that have been extensively characterized for their role in stress responses in gram-positive bacteria. These R. capsulatus homologues, RbaV, RbaW, and RbaY, have been investigated for their possible role in controlling RcGTA gene expression. Results A mutant strain lacking rbaW showed a significant increase in RcGTA gene expression and production. Mutation of rbaV or rbaY led to a decrease in RcGTA gene expression and production, and these mutants also showed decreased viability in the stationary phase and produced unusual colony morphologies. In vitro and in vivo protein interaction assays demonstrated that RbaW and RbaV interact. A combination of gene disruptions and protein-protein interaction assays were unsuccessful in attempts to identify a cognate σ factor, and the genetic data support a model where the RbaV protein that is the determinant regulator of RcGTA gene expression in this system. Conclusions These findings provide new information about RcGTA regulation by a putative partner-switching system and further illustrate the integration of RcGTA production into R. capsulatus physiology.
Collapse
Affiliation(s)
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave, St, John's A1B 3X9, NL, Canada.
| |
Collapse
|
6
|
Coordinated expression of fdxD and molybdenum nitrogenase genes promotes nitrogen fixation by Rhodobacter capsulatus in the presence of oxygen. J Bacteriol 2013; 196:633-40. [PMID: 24272776 DOI: 10.1128/jb.01235-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Rhodobacter capsulatus is able to grow with N2 as the sole nitrogen source using either a molybdenum-dependent or a molybdenum-free iron-only nitrogenase whose expression is strictly inhibited by ammonium. Disruption of the fdxD gene, which is located directly upstream of the Mo-nitrogenase genes, nifHDK, abolished diazotrophic growth via Mo-nitrogenase at oxygen concentrations still tolerated by the wild type, thus demonstrating the importance of FdxD under semiaerobic conditions. In contrast, FdxD was not beneficial for diazotrophic growth depending on Fe-nitrogenase. These findings suggest that the 2Fe2S ferredoxin FdxD specifically supports the Mo-nitrogenase system, probably by protecting Mo-nitrogenase against oxygen, as previously shown for its Azotobacter vinelandii counterpart, FeSII. Expression of fdxD occurred under nitrogen-fixing conditions, but not in the presence of ammonium. Expression of fdxD strictly required NifA1 and NifA2, the transcriptional activators of the Mo-nitrogenase genes, but not AnfA, the transcriptional activator of the Fe-nitrogenase genes. Expression of the fdxD and nifH genes, as well as the FdxD and NifH protein levels, increased with increasing molybdate concentrations. Molybdate induction of fdxD was independent of the molybdate-sensing regulators MopA and MopB, which repress anfA transcription at micromolar molybdate concentrations. In this report, we demonstrate the physiological relevance of an fesII-like gene, fdxD, and show that the cellular nitrogen and molybdenum statuses are integrated to control its expression.
Collapse
|
7
|
Role of alternative sigma factor 54 (RpoN) from Vibrio anguillarum M3 in protease secretion, exopolysaccharide production, biofilm formation, and virulence. Appl Microbiol Biotechnol 2012; 97:2575-85. [DOI: 10.1007/s00253-012-4372-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 08/07/2012] [Accepted: 08/14/2012] [Indexed: 01/24/2023]
|
8
|
Loss of the response regulator CtrA causes pleiotropic effects on gene expression but does not affect growth phase regulation in Rhodobacter capsulatus. J Bacteriol 2010; 192:2701-10. [PMID: 20363938 DOI: 10.1128/jb.00160-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purple nonsulfur photosynthetic bacterium Rhodobacter capsulatus has been extensively studied for its metabolic versatility as well as for production of a gene transfer agent called RcGTA. Production of RcGTA is highest in the stationary phase of growth and requires the response regulator protein CtrA. The CtrA protein in Caulobacter crescentus has been thoroughly studied for its role as an essential, master regulator of the cell cycle. Although the CtrA protein in R. capsulatus shares a high degree of sequence similarity with the C. crescentus protein, it is nonessential and clearly plays a different role in this bacterium. We have used transcriptomic and proteomic analyses of wild-type and ctrA mutant cultures to identify the genes dysregulated by the loss of CtrA in R. capsulatus. We have also characterized gene expression differences between the logarithmic and stationary phases of growth. Loss of CtrA has pleiotropic effects, with dysregulation of expression of approximately 6% of genes in the R. capsulatus genome. This includes all flagellar motility genes and a number of other putative regulatory proteins but does not appear to include any genes involved in the cell cycle. Quantitative proteomic data supported 88% of the CtrA transcriptome results. Phylogenetic analysis of CtrA sequences supports the hypothesis of an ancestral ctrA gene within the alphaproteobacteria, with subsequent diversification of function in the major alphaproteobacterial lineages.
Collapse
|
9
|
Nitrogen and Molybdenum Control of Nitrogen Fixation in the Phototrophic Bacterium Rhodobacter capsulatus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 675:49-70. [DOI: 10.1007/978-1-4419-1528-3_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
|
11
|
Dombrecht B, Heusdens C, Beullens S, Verreth C, Mulkers E, Proost P, Vanderleyden J, Michiels J. Defence of Rhizobium etli bacteroids against oxidative stress involves a complexly regulated atypical 2-Cys peroxiredoxin. Mol Microbiol 2005; 55:1207-21. [PMID: 15686565 DOI: 10.1111/j.1365-2958.2005.04457.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In general, oxidative stress, the consequence of an aerobic lifestyle, induces bacterial antioxidant defence enzymes. Here we report on a peroxiredoxin of Rhizobium etli, prxS, strongly expressed under microaerobic conditions and during the symbiotic interaction with Phaseolus vulgaris. The microaerobic induction of the prxS-rpoN2 operon is mediated by the alternative sigma factor RpoN and the enhancer-binding protein NifA. The RpoN-dependent promoter is also active under low-nitrogen conditions through the enhancer-binding protein NtrC. An additional symbiosis-specific weak promoter is located between prxS and rpoN2. Constitutive expression of prxS confers enhanced survival and growth to R. etli in the presence of H2O2. Single prxS mutants are not affected in their symbiotic abilities or defence response against oxidative stress under free-living conditions. In contrast, a prxS katG double mutant has a significantly reduced (>40%) nitrogen fixation capacity, suggesting a functional redundancy between PrxS and KatG, a bifunctional catalase-peroxidase. In vitro assays demonstrate the reduction of PrxS protein by DTT and thioredoxin. PrxS displays substrate specificity towards H2O2 (Km = 62 microM) over alkyl hydroperoxides (Km > 1 mM). Peroxidase activity is abolished in both the peroxidatic (C56) and resolving (C156) cysteine PrxS mutants, while the conserved C81 residue is required for proper folding of the protein. Resolving of the R. etli PrxS peroxidatic cysteine is probably an intramolecular process and intra- and intersubunit associations were observed. Taken together, our data support, for the first time, a role for an atypical 2-Cys peroxiredoxin against oxidative stress in R. etli bacteroids.
Collapse
Affiliation(s)
- Bruno Dombrecht
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Raabe K, Drepper T, Riedel KU, Masepohl B, Klipp W. The H-NS-like protein HvrA modulates expression of nitrogen fixation genes in the phototrophic purple bacterium Rhodobacter capsulatus by binding to selected nif promoters. FEMS Microbiol Lett 2002; 216:151-8. [PMID: 12435496 DOI: 10.1111/j.1574-6968.2002.tb11429.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Genetic analyses based on chromosomal lac fusions to nitrogen fixation (nif) genes demonstrated that NifA-dependent transcriptional activation of expression of Rhodobacter capsulatus nifH and nifB1 was negatively modulated by HvrA, whereas regulation of rpoN, nifA1, and nifA2 was independent of HvrA. Expression of hvrA itself was not influenced by a mutation in ntrC, which is absolutely essential for N(2) fixation. Furthermore, HvrA accumulated to comparable levels in the presence and absence of ammonium, suggesting that the amount of HvrA in the cells does not differ under nitrogenase-repressing or -derepressing conditions. In addition, competitive gel retardation studies with HvrA-His(6) purified from R. capsulatus were carried out, demonstrating preferential binding of HvrA to the nifH promoter region.
Collapse
Affiliation(s)
- Karsten Raabe
- Ruhr-Universität Bochum, Fakultät für Biologie, Lehrstuhl für Biologie der Mikroorganismen, 44780, Bochum, Germany
| | | | | | | | | |
Collapse
|
13
|
Poggio S, Osorio A, Dreyfus G, Camarena L. The four different sigma(54) factors of Rhodobacter sphaeroides are not functionally interchangeable. Mol Microbiol 2002; 46:75-85. [PMID: 12366832 DOI: 10.1046/j.1365-2958.2002.03158.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sigma(54) factor is highly conserved in a large number of bacterial species. From the complete genome sequence of Rhodobacter sphaeroides, it was possible to identify four different sequences encoding potentially functional sigma(54) factors. In this work, we provide evidence that one of these copies (rpoN2) is specifically required to express the flagellar genes in this bacterium. A mutant strain carrying a lesion in the rpoN2 gene was unable to swim even though the RpoN1 and RpoN3 proteins were present in the cytoplasm. The possibility that the different copies of the sigma(54) factor might be specific for the transcription of a particular subset of sigma(54) promoters was reinforced by the fact that a mutant strain carrying a lesion in rpoN1 showed a severe growth defect in nitrogen-free culture medium, even though the rpoN2 and rpoN4 genes were actively transcribed from a plasmid or from the chromosome. Different mechanisms that might be responsible for this specificity are discussed.
Collapse
Affiliation(s)
- Sebastian Poggio
- Departamento de Biología Molecular, Instituto de Investigaciones Biomédicas, Ap. Postal 70-228, 04510, México, DF
| | | | | | | |
Collapse
|
14
|
Buck M, Gallegos MT, Studholme DJ, Guo Y, Gralla JD. The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J Bacteriol 2000; 182:4129-36. [PMID: 10894718 PMCID: PMC101881 DOI: 10.1128/jb.182.15.4129-4136.2000] [Citation(s) in RCA: 344] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- M Buck
- Department of Biology, Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom.
| | | | | | | | | |
Collapse
|
15
|
Hendrickson EL, Guevera P, Ausubel FM. The alternative sigma factor RpoN is required for hrp activity in Pseudomonas syringae pv. maculicola and acts at the level of hrpL transcription. J Bacteriol 2000; 182:3508-16. [PMID: 10852884 PMCID: PMC101944 DOI: 10.1128/jb.182.12.3508-3516.2000] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta-Glucuronidase (uidA) reporter gene fusions were constructed for the hrpZ, hrpL, and hrpS genes from the phytopathogen Pseudomonas syringae pv. maculicola strain ES4326. These reporters, as well as an avrRpt2-uidA fusion, were used to measure transcriptional activity in ES4326 and a ES4326 rpoN mutant. rpoN was required for the expression of avrRpt2, hrpZ, and hrpL in vitro in minimal media and in vivo when infiltrated into Arabidopsis thaliana leaves. In contrast, the expression of hrpS was essentially the same in wild-type and rpoN mutant strains. Constitutive expression of hrpL in an rpoN mutant restored hrpZ transcription to wild-type levels, restored the hypersensitive response when infiltrated into tobacco (Nicotiana tobacum), and partially restored the elicitation of virulence-related symptoms but not growth when infiltrated into Arabidopsis leaves. These data indicate that rpoN-mediated control of hrp gene expression acts at the level of hrpL and that in planta growth of P. syringae is not required for the elicitation of disease symptoms.
Collapse
Affiliation(s)
- E L Hendrickson
- Department of Genetics, Harvard Medical School, Massachusetts General Hospital, Boston 02114, USA
| | | | | |
Collapse
|
16
|
Barrios H, Valderrama B, Morett E. Compilation and analysis of sigma(54)-dependent promoter sequences. Nucleic Acids Res 1999; 27:4305-13. [PMID: 10536136 PMCID: PMC148710 DOI: 10.1093/nar/27.22.4305] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Promoters recognized by the RNA-polymerase with the alternative sigma factor sigma(54) (Esigma54) are unique in having conserved positions around -24 and -12 nucleotides upstream from the transcriptional start site, instead of the typical -35 and -10 boxes. Here we compile 186 -24/-12 promoter sequences reported in the literature and generate an updated and extended consensus sequence. The use of the extended consensus increases the probability of identifying genuine -24/-12 promoters. The effect of several reported mutations at the -24/-12 elements on RNA-polymerase binding and promoter strength is discussed in the light of the updated consensus.
Collapse
Affiliation(s)
- H Barrios
- Departamento de Reconocimiento Molecular y Bioestructura, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62271, México
| | | | | |
Collapse
|
17
|
Kelly MT, Hoover TR. Mutant forms of Salmonella typhimurium sigma54 defective in transcription initiation but not promoter binding activity. J Bacteriol 1999; 181:3351-7. [PMID: 10348845 PMCID: PMC93800 DOI: 10.1128/jb.181.11.3351-3357.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription initiation with sigma54-RNA polymerase holoenzyme (sigma54-holoenzyme) has absolute requirements for an activator protein and ATP hydrolysis. sigma54's binding to core RNA polymerase and promoter DNA has been well studied, but little is known about its role in the subsequent steps of transcription initiation. Following random mutagenesis, we isolated eight mutant forms of Salmonella typhimurium sigma54 that were deficient in transcription initiation but still directed sigma54-holoenzyme to the promoter to form a closed complex. Four of these mutant proteins had amino acid substitutions in region I, which had been shown previously to be required for sigma54-holoenzyme to respond to the activator. From the remaining mutants, we identified four residues in region III which when altered affect the function of sigma54 at some point after closed-complex formation. These results suggest that in addition to its role in core and DNA binding, region III participates in one or more steps of transcription initiation that follow closed-complex formation.
Collapse
Affiliation(s)
- M T Kelly
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
18
|
Leary BA, Ward-Rainey N, Hoover TR. Cloning and characterization of Planctomyces limnophilus rpoN: complementation of a Salmonella typhimurium rpoN mutant strain. Gene 1998; 221:151-7. [PMID: 9852960 DOI: 10.1016/s0378-1119(98)00423-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The rpoN gene, which encodes the alternative sigma factor sigma 54, was cloned from the budding, peptidoglycan-less bacterium Planctomyces limnophilus. P. limnophilus rpoN complemented the Ntr- phenotype of a Salmonella typhimurium rpoN mutant strain. The P. limnophilus rpoN gene encoded a predicted polypeptide that was 495 residues in length and shared a significant homology with other members of the sigma 54 family. The protein sequence displayed all of the characteristic motifs found in members of this family, including the C-terminal helix-turn-helix motif and the well-conserved RpoN box. A potential sigma 54-dependent activator was also identified in P. limnophilus. These findings extend the range of phylogenetic groups within the Domain Bacteria that are known to contain sigma 54.
Collapse
Affiliation(s)
- B A Leary
- Department of Microbiology, University of Georgia, Athens 30602, USA
| | | | | |
Collapse
|
19
|
Michiels J, Moris M, Dombrecht B, Verreth C, Vanderleyden J. Differential regulation of Rhizobium etli rpoN2 gene expression during symbiosis and free-living growth. J Bacteriol 1998; 180:3620-8. [PMID: 9658006 PMCID: PMC107331 DOI: 10.1128/jb.180.14.3620-3628.1998] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Rhizobium etli rpoN1 gene, encoding the alternative sigma factor sigma54 (RpoN), was recently characterized and shown to be involved in the assimilation of several nitrogen and carbon sources during free-living aerobic growth (J. Michiels, T. Van Soom, I. D'hooghe, B. Dombrecht, T. Benhassine, P. de Wilde, and J. Vanderleyden, J. Bacteriol. 180:1729-1740, 1998). We identified a second rpoN gene copy in R. etli, rpoN2, encoding a 54.0-kDa protein which displays 59% amino acid identity with the R. etli RpoN1 protein. The rpoN2 gene is cotranscribed with a short open reading frame, orf180, which codes for a protein with a size of 20.1 kDa that is homologous to several prokaryotic and eukaryotic proteins of similar size. In contrast to the R. etli rpoN1 mutant strain, inactivation of the rpoN2 gene did not produce any phenotypic defects during free-living growth. However, symbiotic nitrogen fixation was reduced by approximately 90% in the rpoN2 mutant, whereas wild-type levels of nitrogen fixation were observed in the rpoN1 mutant strain. Nitrogen fixation was completely abolished in the rpoN1 rpoN2 double mutant. Expression of rpoN1 was negatively autoregulated during aerobic growth and was reduced during microaerobiosis and symbiosis. In contrast, rpoN2-gusA and orf180-gusA fusions were not expressed aerobically but were strongly induced at low oxygen tensions or in bacteroids. Expression of rpoN2 and orf180 was abolished in R. etli rpoN1 rpoN2 and nifA mutants under all conditions tested. Under free-living microaerobic conditions, transcription of rpoN2 and orf180 required the RpoN1 protein. In symbiosis, expression of rpoN2 and orf180 occurred independently of the rpoN1 gene, suggesting the existence of an alternative symbiosis-specific mechanism of transcription activation.
Collapse
Affiliation(s)
- J Michiels
- F. A. Janssens Laboratory of Genetics, K. U. Leuven, B-3001 Heverlee, Belgium
| | | | | | | | | |
Collapse
|
20
|
Bowman WC, Kranz RG. A bacterial ATP-dependent, enhancer binding protein that activates the housekeeping RNA polymerase. Genes Dev 1998; 12:1884-93. [PMID: 9637689 PMCID: PMC316913 DOI: 10.1101/gad.12.12.1884] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A commonly accepted view of gene regulation in bacteria that has emerged over the last decade is that promoters are transcriptionally activated by one of two general mechanisms. The major type involves activator proteins that bind to DNA adjacent to where the RNA polymerase (RNAP) holoenzyme binds, usually assisting in recruitment of the RNAP to the promoter. This holoenzyme uses the housekeeping sigma70 or a related factor, which directs the core RNAP to the promoter and assists in melting the DNA near the RNA start site. A second type of mechanism involves the alternative sigma factor (called sigma54 or sigmaN) that directs RNAP to highly conserved promoters. In these cases, an activator protein with an ATPase function oligomerizes at tandem sites far upstream from the promoter. The nitrogen regulatory protein (NtrC) from enteric bacteria has been the model for this family of activators. Activation of the RNAP/sigma54 holoenzyme to form the open complex is mediated by the activator, which is tethered upstream. Hence, this class of protein is sometimes called the enhancer binding protein family or the NtrC class. We describe here a third system that has properties of each of these two types. The NtrC enhancer binding protein from the photosynthetic bacterium, Rhodobacter capsulatus, is shown in vitro to activate the housekeeping RNAP/sigma70 holoenzyme. Transcriptional activation by this NtrC requires ATP binding but not hydrolysis. Oligomerization at distant tandem binding sites on a supercoiled template is also necessary. Mechanistic and evolutionary questions of these systems are discussed.
Collapse
Affiliation(s)
- W C Bowman
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
21
|
Kern M, Kamp PB, Paschen A, Masepohl B, Klipp W. Evidence for a regulatory link of nitrogen fixation and photosynthesis in Rhodobacter capsulatus via HvrA. J Bacteriol 1998; 180:1965-9. [PMID: 9537402 PMCID: PMC107117 DOI: 10.1128/jb.180.7.1965-1969.1998] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A Rhodobacter capsulatus reporter strain, carrying a constitutively expressed nifA gene and a nifH-lacZ gene fusion, was used for random transposon Tn5 mutagenesis to search for genes required for the NtrC-independent ammonium repression of NifA activity. A mutation in hvrA, which is known to be involved in low-light activation of the photosynthetic apparatus, released both ammonium and oxygen control of nifH expression in this reporter strain, demonstrating a regulatory link of nitrogen fixation and photosynthesis via HvrA. In addition, a significant increase in bacteriochlorophyll alpha (BChl alpha) content was found in cells under nitrogen-fixing conditions. HvrA was not involved in this up-regulation of BChl alpha. Instead, the presence of active nitrogenase seemed to be sufficient for this process, since no increase in BChl alpha content was observed in different nif mutants.
Collapse
Affiliation(s)
- M Kern
- Ruhr-Universität Bochum, Fakultät für Biologie, Lehrstuhl für Biologie der Mikroorganismen, Germany
| | | | | | | | | |
Collapse
|
22
|
Cannon WV, Chaney MK, Wang X, Buck M. Two domains within sigmaN (sigma54) cooperate for DNA binding. Proc Natl Acad Sci U S A 1997; 94:5006-11. [PMID: 9144180 PMCID: PMC24621 DOI: 10.1073/pnas.94.10.5006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The sigma-N (sigmaN) subunit of the bacterial RNA polymerase is a sequence specific DNA-binding protein. The RNA polymerase holoenzyme formed with sigmaN binds to promoters in an inactive form and only initiates transcription when activated by enhancer-binding positive control proteins. We now provide evidence to show that the DNA-binding activity of sigmaN involves two distinct domains: a C-terminal DNA-binding domain that directly contacts DNA and an adjacent domain that enhances DNA-binding activity. The sequences required for the enhancement of DNA binding can be separated from the sequences required for core RNA polymerase binding. These results provide strong evidence for communication between domains within a transcription factor, likely to be important for the function of sigmaN in enhancer-dependent transcription.
Collapse
Affiliation(s)
- W V Cannon
- Department of Biology, Imperial College of Science, Technology and Medicine, London, SW7 2BB, United Kingdom
| | | | | | | |
Collapse
|
23
|
Abstract
PCR mutagenesis was used to obtain libraries of mutations in the region between amino acids 300 and 400 in the DNA-binding domain of Escherichia coli sigma 54. Two hundred changes that did not alter function were identified. These were compared with a somewhat smaller number of changes that did alter function. Several important regions were identified. Single point mutations in two of these, near amino acids 363 and 383, destroyed the ability of sigma to bind DNA, as assayed by band shift analysis. A third segment from amino acids 327 to 347 is also a candidate for contributing to DNA binding. Comparison with data in the literature leads to testable proposals for the complex mode of DNA binding that is associated with sigma 54.
Collapse
Affiliation(s)
- Y Guo
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 90095-1569, USA
| | | |
Collapse
|
24
|
Cullen PJ, Bowman WC, Kranz RG. In vitro reconstitution and characterization of the Rhodobacter capsulatus NtrB and NtrC two-component system. J Biol Chem 1996; 271:6530-6. [PMID: 8626457 DOI: 10.1074/jbc.271.11.6530] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Enhancer-dependent transcription in enteric bacteria depends upon an activator protein that binds DNA far upstream from the promoter and an alternative sigma factor (sigma 54) that binds with the core RNA polymerase at the promoter. In the photosynthetic bacterium Rhodobacter capsulatus, the NtrB and NtrC proteins (RcNtrB and RcNtrC) are putative members of a two-component system that is novel because the enhancer-binding RcNtrC protein activates transcription of sigma 54-independent promoters. To reconstitute this putative two-component system in vitro, the ReNtrB protein was overexpressed in Escherichia coli and purified as a maltose-binding protein fusion (MBP-RcNtrB). MBP-RcNtrB autophosphorylates in vitro to the same steady state level and with the same stability as the Salmonella typhimurium NtrB (StNtrB) protein but at a lower initial rate. MBP-RcNtrB autophosphorylates the S.typhimurium NtrC (St-NtrC) and RcNtrC proteins in vitro. The enteric NtrC protein is also phosphorylated in vivo by RcNtrB because plasmids that encode either RcNtrB or MBP-Rc-NtrB activate transcription of an NtrC-dependent nifL-lacZ fusion. The rate of phosphotransfer to RcNtrC and autophosphatase activity of phosphorylated RcNtrC (RcNtrC---P) are comparable to the StNtrC protein. However, the RcNtrC protein appears to be a specific RcNtrB P phosphatase since RcNtrC is not phosphorylated by small molecular weight phosphate compounds or by the StNtrB protein. RcNtrC forms a dimer in solution, and RcNtrC - P binds the upstream tandem binding sites of the g1nB promoter 4-fold better than the unphos-phorylated RcNtrC protein, presumably due to oligomerization of RcNtrC -P. Therefore, the R. capsulatus NtrB and NtrC proteins form a two-component system similar to other NtrC-like systems, where specific Rc- NtrB phosphotransfer to the RcNtrC protein results in increased oligoinerization at the enhancer but with subsequent activation of a sigma 54-independent promoter.
Collapse
Affiliation(s)
- P J Cullen
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
25
|
Abstract
Nitrogen metabolism in prokaryotes involves the coordinated expression of a large number of enzymes concerned with both utilization of extracellular nitrogen sources and intracellular biosynthesis of nitrogen-containing compounds. The control of this expression is determined by the availability of fixed nitrogen to the cell and is effected by complex regulatory networks involving regulation at both the transcriptional and posttranslational levels. While the most detailed studies to date have been carried out with enteric bacteria, there is a considerable body of evidence to show that the nitrogen regulation (ntr) systems described in the enterics extend to many other genera. Furthermore, as the range of bacteria in which the phenomenon of nitrogen control is examined is being extended, new regulatory mechanisms are also being discovered. In this review, we have attempted to summarize recent research in prokaryotic nitrogen control; to show the ubiquity of the ntr system, at least in gram-negative organisms; and to identify those areas and groups of organisms about which there is much still to learn.
Collapse
Affiliation(s)
- M J Merrick
- Nitrogen Fixation Laboratory, John Innes Centre, Norwich, United Kingdom
| | | |
Collapse
|
26
|
|
27
|
Abstract
This review presents a comparison between the complex genetic regulatory networks that control nitrogen fixation in three representative rhizobial species, Rhizobium meliloti, Bradyrhizobium japonicum, and Azorhizobium caulinodans. Transcription of nitrogen fixation genes (nif and fix genes) in these bacteria is induced primarily by low-oxygen conditions. Low-oxygen sensing and transmission of this signal to the level of nif and fix gene expression involve at least five regulatory proteins, FixL, FixJ, FixK, NifA, and RpoN (sigma 54). The characteristic features of these proteins and their functions within species-specific regulatory pathways are described. Oxygen interferes with the activities of two transcriptional activators, FixJ and NifA. FixJ activity is modulated via phosphorylation-dephosphorylation by the cognate sensor hemoprotein FixL. In addition to the oxygen responsiveness of the NifA protein, synthesis of NifA is oxygen regulated at the level of transcription. This type of control includes FixLJ in R. meliloti and FixLJ-FixK in A. caulinodans or is brought about by autoregulation in B. japonicum. NifA, in concert with sigma 54 RNA polymerase, activates transcription from -24/-12-type promoters associated with nif and fix genes and additional genes that are not directly involved in nitrogen fixation. The FixK proteins constitute a subgroup of the Crp-Fnr family of bacterial regulators. Although the involvement of FixLJ and FixK in nifA regulation is remarkably different in the three rhizobial species discussed here, they constitute a regulatory cascade that uniformly controls the expression of genes (fixNOQP) encoding a distinct cytochrome oxidase complex probably required for bacterial respiration under low-oxygen conditions. In B. japonicum, the FixLJ-FixK cascade also controls genes for nitrate respiration and for one of two sigma 54 proteins.
Collapse
Affiliation(s)
- H M Fischer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|
28
|
Foster-Hartnett D, Kranz RG. The Rhodobacter capsulatus glnB gene is regulated by NtrC at tandem rpoN-independent promoters. J Bacteriol 1994; 176:5171-6. [PMID: 8051036 PMCID: PMC196364 DOI: 10.1128/jb.176.16.5171-5176.1994] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The protein encoded by glnB of Rhodobacter capsulatus is part of a nitrogen-sensing cascade which regulates the expression of nitrogen fixation genes (nif). The expression of glnB was studied by using lacZ fusions, primer extension analysis, and in vitro DNase I footprinting. Our results suggest that glnB is transcribed from two promoters, one of which requires the R. capsulatus ntrC gene but is rpoN independent. Another promoter upstream of glnB is repressed by NtrC; purified R. capsulatus NtrC binds to sites that overlap this distal promoter region.
Collapse
|
29
|
Ehrt S, Ornston LN, Hillen W. RpoN (sigma 54) is required for conversion of phenol to catechol in Acinetobacter calcoaceticus. J Bacteriol 1994; 176:3493-9. [PMID: 8206826 PMCID: PMC205536 DOI: 10.1128/jb.176.12.3493-3499.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Members of the sigma 54 protein family, encoded by rpoN, are required for the transcription of genes associated with specialized metabolic functions. The ability to grow with phenol appears to be a specialized trait because it is expressed by few of the microorganisms that grow with catechol, the metabolic product of phenol monooxygenase. A mutation preventing the expression of phenol monooxygenase in the bacterial strain Acinetobacter calcoaceticus NCIB8250 was complemented by wild-type DNA segments containing an open reading frame encoding a member of the sigma 54 protein family. DNA sequencing revealed a second open reading frame, designated ORF2, directly downstream of A. calcoaceticus rpoN. The locations of both ORF2 and the 113-residue amino acid sequence of its product are highly conserved in other bacteria. The mutation preventing the expression of rpoN results in an opal codon that terminates the translation of RpoN at a position corresponding to Trp-91 in the 483-residue amino acid sequence of the wild-type protein. Negative autoregulation of rpoN was suggested by the fact that the mutation inactivating RpoN enhanced the transcription of rpoN. Primer extension revealed independent transcription start sites for rpoN and ORF2.
Collapse
Affiliation(s)
- S Ehrt
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|