1
|
Conway C, Beckett MC, Dorman CJ. The DNA relaxation-dependent OFF-to-ON biasing of the type 1 fimbrial genetic switch requires the Fis nucleoid-associated protein. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001283. [PMID: 36748578 PMCID: PMC9993118 DOI: 10.1099/mic.0.001283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The structural genes expressing type 1 fimbriae in Escherichia coli alternate between expressed (phase ON) and non-expressed (phase OFF) states due to inversion of the 314 bp fimS genetic switch. The FimB tyrosine integrase inverts fimS by site-specific recombination, alternately connecting and disconnecting the fim operon, encoding the fimbrial subunit protein and its associated secretion and adhesin factors, to and from its transcriptional promoter within fimS. Site-specific recombination by the FimB recombinase becomes biased towards phase ON as DNA supercoiling is relaxed, a condition that occurs when bacteria approach the stationary phase of the growth cycle. This effect can be mimicked in exponential phase cultures by inhibiting the negative DNA supercoiling activity of DNA gyrase. We report that this bias towards phase ON depends on the presence of the Fis nucleoid-associated protein. We mapped the Fis binding to a site within the invertible fimS switch by DNase I footprinting. Disruption of this binding site by base substitution mutagenesis abolishes both Fis binding and the ability of the mutated switch to sustain its phase ON bias when DNA is relaxed, even in bacteria that produce the Fis protein. In addition, the Fis binding site overlaps one of the sites used by the Lrp protein, a known directionality determinant of fimS inversion that also contributes to phase ON bias. The Fis–Lrp relationship at fimS is reminiscent of that between Fis and Xis when promoting DNA relaxation-dependent excision of bacteriophage λ from the E. coli chromosome. However, unlike the co-binding mechanism used by Fis and Xis at λ attR, the Fis–Lrp relationship at fimS involves competitive binding. We discuss these findings in the context of the link between fimS inversion biasing and the physiological state of the bacterium.
Collapse
Affiliation(s)
- Colin Conway
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland.,Present address: Technical University of the Atlantic, Galway, Ireland
| | - Michael C Beckett
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Stephenson SAM, Brown PD. Epigenetic Influence of Dam Methylation on Gene Expression and Attachment in Uropathogenic Escherichia coli. Front Public Health 2016; 4:131. [PMID: 27446897 PMCID: PMC4921776 DOI: 10.3389/fpubh.2016.00131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/09/2016] [Indexed: 11/13/2022] Open
Abstract
Urinary tract infections (UTI) are among the most frequently encountered infections in clinical practice globally. Predominantly a burden among female adults and infants, UTIs primarily caused by uropathogenic Escherichia coli (UPEC) results in high morbidity and fiscal health strains. During pathogenesis, colonization of the urinary tract via fimbrial adhesion to mucosal cells is the most critical point in infection and has been linked to DNA methylation. Furthermore, with continuous exposure to antibiotics as the standard therapeutic strategy, UPEC has evolved to become highly adaptable in circumventing the effect of antimicrobial agents and host defenses. Hence, the need for alternative treatment strategies arises. Since differential DNA methylation is observed as a critical precursor to virulence in various pathogenic bacteria, this body of work sought to assess the influence of the DNA adenine methylase (dam) gene on gene expression and cellular adhesion in UPEC and its potential as a therapeutic target. To monitor the influence of dam on attachment and FQ resistance, selected UPEC dam mutants created via one-step allelic exchange were transformed with cloned qnrA and dam complement plasmid for comparative analysis of growth rate, antimicrobial susceptibility, biofilm formation, gene expression, and mammalian cell attachment. The absence of DNA methylation among dam mutants was apparent. Varying deficiencies in cell growth, antimicrobial resistance and biofilm formation, alongside low-level increases in gene expression (recA and papI), and adherence to HEK-293 and HTB-9 mammalian cells were also detected as a factor of SOS induction to result in increased mutability. Phenotypic characteristics of parental strains were restored in dam complement strains. Dam's vital role in DNA methylation and gene expression in local UPEC isolates was confirmed. Similarly to dam-deficient Enterohemorrhagic E. coli (EHEC), these findings suggest unsuccessful therapeutic use of Dam inhibitors against UPEC or dam-deficient UPEC strains as attenuated live vaccines. However, further investigations are necessary to determine the post-transcriptional influence of dam on the regulatory network of virulence genes central to pathogenesis.
Collapse
Affiliation(s)
| | - Paul D Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of West Indies , Jamaica
| |
Collapse
|
3
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during the repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and the regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential, and, in C. crescentus, it is important for temporal gene expression, which, in turn, is required for coordinating chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage, decrease transformation frequency in certain bacteria, and decrease the stability of short direct repeats and are necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|
4
|
Aloui A, Tagourti J, El May A, Joseleau Petit D, Landoulsi A. The effect of methylation on some biological parameters in Salmonella enterica serovar Typhimurium. ACTA ACUST UNITED AC 2011; 59:192-8. [DOI: 10.1016/j.patbio.2009.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
|
5
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcmmethyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholera and Caulobactercrescentus) adenine methylation is essential, and in C.crescentus it is important for temporal gene expression which, in turn, is required for coordination of chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage,decrease transformation frequency in certain bacteria,and decrease the stability of short direct repeats andare necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|
6
|
Peterson SN, Reich NO. Competitive Lrp and Dam assembly at the pap regulatory region: implications for mechanisms of epigenetic regulation. J Mol Biol 2008; 383:92-105. [PMID: 18706913 DOI: 10.1016/j.jmb.2008.07.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
Abstract
Escherichia coli DNA adenine methyltransferase (Dam) and Leucine-responsive regulatory protein (Lrp) are key regulators of the pap operon, which codes for the pilus proteins necessary for uropathogenic E. coli cellular adhesion. The pap operon is regulated by a phase variation mechanism in which the methylation states of two GATC sites in the pap regulatory region and the binding position of Lrp determine whether the pilus genes are expressed. The post-replicative reassembly of Dam, Lrp, and the local regulator PapI onto a hemimethylated pap intermediate is a critical step of the phase variation switching mechanism and is not well understood. We show that Lrp, in the presence and in the absence of PapI and nonspecific DNA, specifically protects pap regulatory GATC sites from Dam methylation when allowed to compete with Dam for assembly on unmethylated and hemimethylated pap DNA. The methylation protection is dependent upon the concentration of Lrp and does not occur with non-regulatory GATC sites. Our data suggest that only at low Lrp concentrations will Dam compete effectively for binding and methylation of the proximal GATC site, leading to a phase switch resulting in the expression of pili.
Collapse
Affiliation(s)
- Stacey N Peterson
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
7
|
Seshasayee ASN. An assessment of the role of DNA adenine methyltransferase on gene expression regulation in E coli. PLoS One 2007; 2:e273. [PMID: 17342207 PMCID: PMC1804101 DOI: 10.1371/journal.pone.0000273] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 02/14/2007] [Indexed: 11/19/2022] Open
Abstract
N6-Adenine methylation is an important epigenetic signal, which regulates various processes, such as DNA replication and repair and transcription. In γ-proteobacteria, Dam is a stand-alone enzyme that methylates GATC sites, which are non-randomly distributed in the genome. Some of these overlap with transcription factor binding sites. This work describes a global computational analysis of a published Dam knockout microarray alongside other publicly available data to throw insights into the extent to which Dam regulates transcription by interfering with protein binding. The results indicate that DNA methylation by DAM may not globally affect gene transcription by physically blocking access of transcription factors to binding sites. Down-regulation of Dam during stationary phase correlates with the activity of TFs whose binding sites are enriched for GATC sites.
Collapse
Affiliation(s)
- Aswin Sai Narain Seshasayee
- Genomics and Regulatory Systems Group, EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Jarboe LR, Beckwith D, Liao JC. Stochastic modeling of the phase-variable pap operon regulation in uropathogenic Escherichia coli. Biotechnol Bioeng 2005; 88:189-203. [PMID: 15449298 DOI: 10.1002/bit.20228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulation of the pap operon in uropathogenic Escherichia coli is phase variable. This phase variation arises from competition between regulatory proteins at two sites within the regulatory region, GATC(dist) and GATC(prox). We have used the available literature data to design a stochastic model of the molecular interactions of pap regulation and expression during growth in a non-glucose environment at 37 degrees C. The resulting wild-type model is consistent with reported data. The wild-type model served as a basis for two "in silico" mutant models for investigating the role of key regulatory components, the GATC(dist) binding site and the PapI interaction with Lrp at the GATC(prox) site. Our results show that competition at GATC(dist) is required for phase variation, as previously reported. However, our results suggest that removal of competition at GATC(dist) does not affect initial state dependence. Additionally, the PapI involvement in Lrp translocation from GATC(prox) to GATC(dist) is required for the initial state dependence but not for phase variation. Our results also predict that pap expression is maximized at low growth rates and minimized at high growth rates. These predictions provide a basis for further experimental investigation.
Collapse
Affiliation(s)
- Laura R Jarboe
- Department of Chemical Engineering, University of California, University of California, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
9
|
Zhou B, Beckwith D, Jarboe LR, Liao JC. Markov Chain modeling of pyelonephritis-associated pili expression in uropathogenic Escherichia coli. Biophys J 2005; 88:2541-53. [PMID: 15681643 PMCID: PMC1305351 DOI: 10.1529/biophysj.104.052126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pyelonephritis-associated pili (Pap) expression in uropathogenic Escherichia coli is regulated by a complex phase variation mechanism involving the competition between leucine-responsive regulatory protein (Lrp) and DNA adenine methylase (Dam). Population dynamics of pap gene expression has been studied extensively and the detailed molecular mechanism has been largely elucidated, providing sufficient information for mathematical modeling. Although the Gillespie algorithm is suited for modeling of stochastic systems such as the pap operon, it becomes computationally expensive when detailed molecular steps are explicitly modeled in a population. Here we developed a Markov Chain model to simplify the computation. Our model is analytically derived from the molecular mechanism. The model presented here is able to reproduce results presented using the Gillespie method, but since the regulatory information is incorporated before simulation, our model runs more efficiently and allows investigation of additional regulatory features. The model predictions are consistent with experimental data obtained in this work and in the literature. The results show that pap expression in uropathogenic E. coli is initial-state-dependent, as previously reported. However, without environment stimuli, the pap-expressing fraction in a population will reach an equilibrium level after approximately 50-100 generations. The transient time before reaching equilibrium is determined by PapI stability and Lrp and Dam copy numbers per cell. This work demonstrates that the Markov Chain model captures the essence of the complex molecular mechanism and greatly simplifies the computation.
Collapse
Affiliation(s)
- Baiyu Zhou
- Department of Chemical Engineering, University of California at Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
10
|
Kuo JT, Chang YJ, Tseng CP. Growth rate regulation of lac operon expression in Escherichia coli is cyclic AMP dependent. FEBS Lett 2003; 553:397-402. [PMID: 14572658 DOI: 10.1016/s0014-5793(03)01071-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In contrast to the ribosomal RNA gene expression increasing with growth rate, transcription of the lac operon is downregulated by cell growth rate. In continuous culture, growth rate regulation of lac promoter was independent of carbon substrate used and its location on the chromosome. Since the lac operon is activated by cyclic adenosine monophosphate (cAMP), which decreases with increasing cell growth rate, expression of plac-lacZ reporter fusion was analyzed in cya mutant under various growth conditions. The results demonstrated that expression of plac-lacZ in cya mutant was both lower and growth rate independent. In addition, ppGpp (guanosine tetraphosphate) was not involved in the mechanism of growth rate regulation of the lac promoter. Thus, the results of this study indicate that cAMP mediates the growth rate-dependent regulation of lac operon expression in Escherichia coli.
Collapse
Affiliation(s)
- Jong-Tar Kuo
- Department of Biological Science and Technology, National Chiao Tung University, 75 PO-Ai Street, Hsin-Chu, R.O.C., Taiwan
| | | | | |
Collapse
|
11
|
Jordan SW, Cronan JE. The Escherichia coli lipB gene encodes lipoyl (octanoyl)-acyl carrier protein:protein transferase. J Bacteriol 2003; 185:1582-9. [PMID: 12591875 PMCID: PMC148080 DOI: 10.1128/jb.185.5.1582-1589.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an earlier study (S. W. Jordan and J. E. Cronan, Jr., J. Biol. Chem. 272:17903-17906, 1997) we reported a new enzyme, lipoyl-[acyl carrier protein]-protein N-lipoyltransferase, in Escherichia coli and mitochondria that transfers lipoic acid from lipoyl-acyl carrier protein to the lipoyl domains of pyruvate dehydrogenase. It was also shown that E. coli lipB mutants lack this enzyme activity, a finding consistent with lipB being the gene that encoded the lipoyltransferase. However, it remained possible that lipB encoded a positive regulator required for lipoyltransferase expression or action. We now report genetic and biochemical evidence demonstrating that lipB encodes the lipoyltransferase. A lipB temperature-sensitive mutant was shown to produce a thermolabile lipoyltransferase and a tagged version of the lipB-encoded protein was purified to homogeneity and shown to catalyze the transfer of either lipoic acid or octanoic acid from their acyl carrier protein thioesters to the lipoyl domain of pyruvate dehydrogenase. In the course of these experiments the ATG initiation codon commonly assigned to lipB genes in genomic databases was shown to produce a nonfunctional E. coli LipB protein, whereas initiation at an upstream TTG codon gave a stable and enzymatically active protein. Prior genetic results (T. W. Morris, K. E. Reed, and J. E. Cronan, Jr., J. Bacteriol. 177:1-10, 1995) suggested that lipoate protein ligase (LplA) could also utilize (albeit poorly) acyl carrier protein substrates in addition to its normal substrates lipoic acid plus ATP. We have detected a very slow LplA-catalyzed transfer of lipoic acid and octanoic acid from their acyl carrier protein thioesters to the lipoyl domain of pyruvate dehydrogenase. A nonhydrolyzable lipoyl-AMP analogue was found to competitively inhibit both ACP-dependent and ATP-dependent reactions of LplA, suggesting that the same active site catalyzes two chemically diverse reactions.
Collapse
Affiliation(s)
- Sean W Jordan
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
12
|
Iwobi A, Rakin A, Garcia E, Heesemann J. Representational difference analysis uncovers a novel IS10-like insertion element unique to pathogenic strains of Yersinia enterocolitica. FEMS Microbiol Lett 2002; 210:251-5. [PMID: 12044683 DOI: 10.1111/j.1574-6968.2002.tb11189.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The method of suppressive subtractive hybridization was employed to map out genomic differences between the highly pathogenic Yersinia enterocolitica (Ye) biogroup 1B, serotype O:8 strain (WA-314) and the closely related apathogenic Y. enterocolitica biogroup 1A, serotype O:5 strain (NF-O). A novel IS10-like element, IS1330, uncovered by this technique was found to be uniquely present in high copy numbers among the highly pathogenic Y. enterocolitica 1B strains, while a single copy of the element was found in the low pathogenic Ye biogroup 4 serotype O:3 strain. The 1321-bp repetitive element has 19-bp imperfect inverted terminal repeats and is bracketed by a 10-bp duplication of the target sequence. The predicted transposase shares high homology with the IS10 open reading frame of the large virulence plasmid pWR501, of Shigella flexneri, with IS10 transposase of Salmonella typhi, and with IS1999 (tnpA) of Pseudomonas aeruginosa. The IS1330 tnp gene is transcribed in vitro and in vivo in HeLa cells. At least one copy of IS1330 flanks the recently described chromosomal type III secretion cluster in Y. enterocolitica WA-314, O:8, and future studies should shed light on whether this novel transposase mediates transposition events in highly pathogenic Y. enterocolitica strains, thus enhancing the genetic plasticity of this species.
Collapse
Affiliation(s)
- A Iwobi
- Max-von-Pettenkofer Institut für Hygiene und Medizinische Mikrobiologie, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | | | | | | |
Collapse
|
13
|
Correnti J, Munster V, Chan T, Woude MVD. Dam-dependent phase variation of Ag43 in Escherichia coli is altered in a seqA mutant. Mol Microbiol 2002; 44:521-32. [PMID: 11972788 DOI: 10.1046/j.1365-2958.2002.02918.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, phase variation of the outer membrane protein Ag43 encoded by the agn43 gene is mediated by DNA methylation and the global regulator OxyR. Transcription of agn43 occurs (ON phase) when three Dam target sequences in the agn43 regulatory region are methylated, which prevents the repressor OxyR from binding. Conversely, transcription is repressed (OFF) when these Dam target sequences are unmethylated and OxyR binds. A change in expression phase requires a concomitant change in the DNA methylation state of these Dam target sequences. To gain insight into the process of inheritance of the expression phase and the DNA methylation state, protein-DNA interactions at agn43 were examined. Binding of OxyR at agn43 was sufficient to protect the three GATC sequences contained within its binding site from Dam-dependent methylation in vitro, suggesting that no other factors are required to maintain the unmethylated state and OFF phase. To maintain the methylated state of the ON phase, however, Dam must access the hemimethylated agn43 region after DNA replication, and OxyR binding must not occur. OxyR bound hemimethylated agn43 DNA, but the affinity was severalfold lower than for unmethylated DNA. This presumably contributes to the maintenance of the methylated state but, at the same time, may allow for infrequent OxyR binding and a switch to the OFF phase. Hemimethylated agn43 DNA was also a binding substrate for the sequestration protein SeqA. Thus, SeqA, OxyR and Dam may compete for the same hemimethylated agn43 DNA that is formed after DNA replication in an ON phase cell. In isolates with a mutant seqA allele, agn43 phase variation rates were altered and resulted in a bias to the OFF phase. In part, this can be attributed to the observed decrease in the level of DNA methylation in the seqA mutant.
Collapse
Affiliation(s)
- Jason Correnti
- 202A Johnson Pavilion, Department of Microbiology, School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia 19104-6076, USA
| | | | | | | |
Collapse
|
14
|
Pease AJ, Roa BR, Luo W, Winkler ME. Positive growth rate-dependent regulation of the pdxA, ksgA, and pdxB genes of Escherichia coli K-12. J Bacteriol 2002; 184:1359-69. [PMID: 11844765 PMCID: PMC134838 DOI: 10.1128/jb.184.5.1359-1369.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found that transcription of the pdxA and pdxB genes, which mediate steps in the biosynthesis of the essential coenzyme pyridoxal 5"-phosphate, and the ksgA gene, which encodes an rRNA modification enzyme and is partly cotranscribed with pdxA, is subject to positive growth rate regulation in Escherichia coli K-12. The amounts of the pdxA-ksgA cotranscript and pdxB- and ksgA-specific transcripts and expression from pdxA- and pdxB-lacZ fusions increased as the growth rate increased. The half-lives of ksgA- and pdxB-specific transcripts were not affected by the growth rate, whereas the half-life of the pdxA-ksgA cotranscript was too short to be measured accurately. A method of normalization was applied to determine the amount of mRNA synthesized per gene and the rate of protein accumulation per gene. Normalization removed an apparent anomaly at fast growth rates and demonstrated that positive regulation of pdxB occurs at the level of transcription initiation over the whole range of growth rates tested. RNA polymerase limitation and autoregulation could not account for the positive growth rate regulation of pdxA, pdxB, and ksgA transcription. On the other hand, growth rate regulation of the amount of the pdxA-ksgA cotranscript was abolished by a fis mutation, suggesting a role for the Fis protein. In contrast, the fis mutation had no effect on pdxB- or ksgA-specific transcript amounts. The amounts of the pdxA-ksgA cotranscript and ksgA-specific transcript were repressed in the presence of high intracellular concentrations of guanosine tetraphosphate; however, this effect was independent of relA function for the pdxA-ksgA cotranscript. Amounts of the pdxB-specific transcript remained unchanged during amino acid starvation in wild-type and relA mutant strains.
Collapse
Affiliation(s)
- Andrew J Pease
- Department of Microbiology and Molecular Genetics, University of Texas Houston Medical School, Houston, TX 77030-1501, USA
| | | | | | | |
Collapse
|
15
|
Vaisvila R, Rasmussen LJ, Lobner-Olesen A, von Freiesleben U, Marinus MG. The LipB protein is a negative regulator of dam gene expression in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1494:43-53. [PMID: 11072067 DOI: 10.1016/s0167-4781(00)00209-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transcription initiation of the major promoter (P2) of the Escherichia coli dam gene increases with growth rate. The presence of three partially palindromic motifs, (TTCAGT(N(20))TGAG), designated G (growth)-boxes, within the -52 to +31 region of the promoter, may be related to growth rate control. Deletion of two of these repeats, downstream of the transcription initiation point, result in constitutive high activity of the promoter. The unlinked cde-4::miniTn10 insertion also results in severalfold higher activity of the dam P2 promoter, suggesting that this mutation resulted in the loss of a putative dam P2 repressor. The cde-4 mutation was mapped to the lipB (lipoic acid) gene, which we show encodes a 24 kDa protein initiating at a TTG codon. LipB is a highly conserved protein in animal and plant species, other bacteria, Archaea, and yeast. Plasmids expressing the native or hexahistidine-tagged LipB complement the phenotype of the cde-4 mutant strain. The level of LipB in vivo was higher in exponentially growing cells than those in the stationary phase. Three G-box motifs were also found in the lipB region. Models for the regulation of expression of the two genes are discussed.
Collapse
Affiliation(s)
- R Vaisvila
- New England Biolabs, Beverly. MA 01915-5599, USA
| | | | | | | | | |
Collapse
|
16
|
Lyngstadaas A, Løbner-Olesen A, Grelland E, Boye E. The gene for 2-phosphoglycolate phosphatase (gph) in Escherichia coli is located in the same operon as dam and at least five other diverse genes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1472:376-84. [PMID: 10572959 DOI: 10.1016/s0304-4165(99)00146-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Downstream of the dam gene in the Escherichia coli genome the following three genes are located: first rpe, then a gene encoding a 27 kDa protein and finally trpS. Here we present evidence that the 27 kDa protein has 2-phosphoglycolate phosphatase activity, and we name the gene gph. Phosphoglycolate phosphatase is needed in autotrophic organisms performing the Calvin-Benson-Bassham (CBB) reductive pentose-phosphate cycle. E. coli is not capable of autotrophic growth and probably utilizes Gph activity for other function(s) than in the CBB cycle. We found no physiological effect of deleting gph and its function in E. coli remains unclear. The use of fusion plasmids, where lacZ was inserted into gph and trpS, and deletion derivatives of these fusion plasmids, showed that rpe, gph and trpS are all members of the dam-containing operon. A novel promoter was identified in the distal part of the dam gene. The operon, which contains aroK, aroB, urf74.3, dam, rpe, gph, and trpS, can be termed a superoperon, since it consists of (at least) seven apparently unrelated genes which are under complex regulatory control.
Collapse
Affiliation(s)
- A Lyngstadaas
- Department of Cell Biology, Institute of Cancer Research, Montebello, Oslo, Norway.
| | | | | | | |
Collapse
|
17
|
Ostendorf T, Cherepanov P, de Vries J, Wackernagel W. Characterization of a dam mutant of Serratia marcescens and nucleotide sequence of the dam region. J Bacteriol 1999; 181:3880-5. [PMID: 10383952 PMCID: PMC93874 DOI: 10.1128/jb.181.13.3880-3885.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA of Serratia marcescens has N6-adenine methylation in GATC sequences. Among 2-aminopurine-sensitive mutants isolated from S. marcescens Sr41, one was identified which lacked GATC methylation. The mutant showed up to 30-fold increased spontaneous mutability and enhanced mutability after treatment with 2-aminopurine, ethyl methanesulfonate, or UV light. The gene (dam) coding for the adenine methyltransferase (Dam enzyme) of S. marcescens was identified on a gene bank plasmid which alleviated the 2-aminopurine sensitivity and the higher mutability of a dam-13::Tn9 mutant of Escherichia coli. Nucleotide sequencing revealed that the deduced amino acid sequence of Dam (270 amino acids; molecular mass, 31.3 kDa) has 72% identity to the Dam enzyme of E. coli. The dam gene is located between flanking genes which are similar to those found to the sides of the E. coli dam gene. The results of complementation studies indicated that like Dam of E. coli and unlike Dam of Vibrio cholerae, the Dam enzyme of S. marcescens plays an important role in mutation avoidance by allowing the mismatch repair enzymes to discriminate between the parental and newly synthesized strands during correction of replication errors.
Collapse
Affiliation(s)
- T Ostendorf
- Genetik, Fachbereich Biologie, Universität Oldenburg, D-26111 Oldenburg, Germany
| | | | | | | |
Collapse
|
18
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
19
|
Abstract
The plasmid encoded LlaI R/M system from Lactococcus lactis ssp. lactis consists of a bidomain methylase, with close evolutionary ties to type IIS methylases, and a trisubunit restriction complex. Both the methylase and restriction subunits are encoded on a polycistronic 6.9 kb operon. In this study, the 5' end of the llal 6.9 kb transcript was determined by primer extension analysis to be 254 bp upstream from the first R/M gene on the operon, llalM. Deletion of this promoter region abolished LlaI restriction in L. lactis. Analysis of the intervening sequence revealed a 72-amino-acid open reading frame, designated llalC, with a conserved ribosome binding site and helix-turn-helix domain. Overexpression of llalC in Escherichia coli with a T7 expression vector produced the predicted protein of 8.2 kDa. Mutation and in trans complementation analyses indicated that C-LlaI positively enhanced LlaI restriction activity in vivo. Northern analysis and transcriptional fusions of the llal promoter to a lacZ reporter gene indicated that C x LlaI did not enhance transcription of the llal operon. Databank searches with the deduced protein sequence for llalC revealed significant homologies to the E. coli Rop regulatory and mRNA stabilizer protein. Investigation of the effect of C x LlaI on enhancement of LlaI restriction in L. lactis revealed that growth at elevated temperatures (40 degrees C) completely abolished any enhancement of restriction activity. These data provide molecular evidence for a mechanism on how the expression of a restriction system in a prokaryote can be drastically reduced during elevated growth temperatures, by a small regulatory protein.
Collapse
Affiliation(s)
- D J O'Sullivan
- Department of Food Science, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695-7624, USA
| | | |
Collapse
|
20
|
Rakin A, Heesemann J. Virulence-associated fyuA/irp2 gene cluster of Yersinia enterocolitica biotype 1B carries a novel insertion sequence IS1328. FEMS Microbiol Lett 1995; 129:287-92. [PMID: 7607411 DOI: 10.1111/j.1574-6968.1995.tb07594.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The fyuA/irp2 gene cluster, which is part of the Yersinia pestis pigmentation (pgm) locus encoding genes involved in iron uptake and virulence, is present in all pesticin-sensitive bacteria. In Y. enterocolitica biotype 1B strains (serotypes O8, O20, O21), the fyuA/irp2 gene cluster carries an insertion of a novel repetitive sequence, IS1328. It was also found in the genome of Y. enterocolitica O5 (biotype 1A) and O13 (biotype 1B), but not in pesticin-sensitive Y. pseudotuberculosis O1 and Escherichia coli Phi. The 1353-bp repetitive element has 12-bp perfect inverted terminal repeats. A single open reading frame is capable of encoding a 334-amino acid polypeptide. IS1328 DNA has high homology with the DNA sequences located downstream of the aggR gene from the enteroaggregative E. coli (EAggEC), to the region of the R751 plasmid flanking Tn501, to the sequence following the merR gene of S. marcescens pDU1358 plasmid, and to the sequences of K. pneumoniae plasmid pCFF04. The putative polypeptide has 36.4% identity with the transposase encoded by the Coxiella burnetii IS1111a insertion sequence. The IS1328 insertion sequence could be responsible for the deletions of the fyuA/irp2 gene cluster observed in Y. enterocolitica O8 and could represent a member of a new group of widely distributed repetitive elements.
Collapse
Affiliation(s)
- A Rakin
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Germany
| | | |
Collapse
|
21
|
Lyngstadaas A, Løbner-Olesen A, Boye E. Characterization of three genes in the dam-containing operon of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:546-54. [PMID: 7603433 DOI: 10.1007/bf00290345] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The dam-containing operon in Escherichia coli is located at 74 min on the chromosomal map and contains the genes aroK, aroB, a gene called urf74.3, dam and trpS. We have determined the nucleotide sequence between the dam and trpS genes and show that it encodes two proteins with molecular weights of 24 and 27 kDa. Furthermore, we characterize the three genes urf74.3, 24kDa, 27kDa and the proteins they encode. The predicted amino acid sequences of the 24 and 27 kDa proteins are similar to those of the CbbE and CbbZ proteins, respectively, of the Alcaligenes eutrophus cbb operon, which encodes enzymes involved in the Calvin cycle. In separate experiments, we have shown that the 24 kDa protein has d-ribulose-5-phosphate epimerase activity (similar to CbbE), and we call the gene rpe. Similarly, the 27 kDa protein has 2-phosphoglycolate phosphatase activity (similar to CbbZ), and we name the gene gph. The Urf74.3 protein, with a predicted molecular weight of 46 kDa, migrated as a 70 kDa product under denaturing conditions. Overexpression of Urf74.3 induced cell filamentation, indicating that Urf74.3 directly or indirectly interferes with cell division. We present evidence for translational coupling between aroB and urf74.3 and also between rpe and gph. Proteins encoded in the dam superoperon appear to be largely unrelated: Dam, and perhaps Urf74.3, are involved in cell cycle regulation, AroK, AroB, and TrpS function in aromatic amino acid biosynthesis, whereas Rpe and Gph are involved in carbohydrate metabolism.
Collapse
Affiliation(s)
- A Lyngstadaas
- Department of Biophysics, Institute for Cancer Research, Montebello, Oslo, Norway
| | | | | |
Collapse
|
22
|
Garmyn D, Ferain T, Bernard N, Hols P, Delplace B, Delcour J. Pediococcus acidilactici ldhD gene: cloning, nucleotide sequence, and transcriptional analysis. J Bacteriol 1995; 177:3427-37. [PMID: 7539419 PMCID: PMC177045 DOI: 10.1128/jb.177.12.3427-3437.1995] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The gene encoding D-lactate dehydrogenase was isolated on a 2.9-kb insert from a library of Pediococcus acidilactici DNA by complementation for growth under anaerobiosis of an Escherichia coli lactate dehydrogenase and pyruvate-formate lyase double mutant. The nucleotide sequence of ldhD encodes a protein of 331 amino acids (predicted molecular mass of 37,210 Da) which shows similarity to the family of D-2-hydroxyacid dehydrogenases. The enzyme encoded by the cloned fragment is equally active on pyruvate and hydroxypyruvate, indicating that the enzyme has both D-lactate and D-glycerate dehydrogenase activities. Three other open reading frames were found in the 2.9-kb insert, one of which (rpsB) is highly similar to bacterial genes coding for ribosomal protein S2. Northern (RNA) blotting analyses indicated the presence of a 2-kb dicistronic transcript of ldhD (a metabolic gene) and rpsB (a putative ribosomal protein gene) together with a 1-kb monocistronic rpsB mRNA. These transcripts are abundant in the early phase of exponential growth but steadily fade away to disappear in the stationary phase. Primer extension analysis identified two distinct promoters driving either cotranscription of ldhD and rpsB or transcription of rpsB alone.
Collapse
Affiliation(s)
- D Garmyn
- Laboratoire de Génétique Moléculaire, Université Catholique, Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
23
|
Rasmussen LJ, Løbner-Olesen A, Marinus MG. Growth-rate-dependent transcription initiation from the dam P2 promoter. Gene X 1995; 157:213-5. [PMID: 7607492 DOI: 10.1016/0378-1119(94)00619-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transcription of the dam gene in Escherichia coli is dependent on growth rate. Using single-copy promoter::lacZYA fusions we found that of the five promoter regions which affect dam expression, only the P2 promoter shows growth-rate dependence. The determinants for growth-rate control must lie in the region -52 to +27 relative to the transcription start point.
Collapse
Affiliation(s)
- L J Rasmussen
- Department of Pharmacology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | |
Collapse
|