1
|
Adaptive Evolution of Rhizobial Symbiosis beyond Horizontal Gene Transfer: From Genome Innovation to Regulation Reconstruction. Genes (Basel) 2023; 14:genes14020274. [PMID: 36833201 PMCID: PMC9957244 DOI: 10.3390/genes14020274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
There are ubiquitous variations in symbiotic performance of different rhizobial strains associated with the same legume host in agricultural practices. This is due to polymorphisms of symbiosis genes and/or largely unexplored variations in integration efficiency of symbiotic function. Here, we reviewed cumulative evidence on integration mechanisms of symbiosis genes. Experimental evolution, in concert with reverse genetic studies based on pangenomics, suggests that gain of the same circuit of key symbiosis genes through horizontal gene transfer is necessary but sometimes insufficient for bacteria to establish an effective symbiosis with legumes. An intact genomic background of the recipient may not support the proper expression or functioning of newly acquired key symbiosis genes. Further adaptive evolution, through genome innovation and reconstruction of regulation networks, may confer the recipient of nascent nodulation and nitrogen fixation ability. Other accessory genes, either co-transferred with key symbiosis genes or stochastically transferred, may provide the recipient with additional adaptability in ever-fluctuating host and soil niches. Successful integrations of these accessory genes with the rewired core network, regarding both symbiotic and edaphic fitness, can optimize symbiotic efficiency in various natural and agricultural ecosystems. This progress also sheds light on the development of elite rhizobial inoculants using synthetic biology procedures.
Collapse
|
2
|
Jiménez-Guerrero I, Medina C, Vinardell JM, Ollero FJ, López-Baena FJ. The Rhizobial Type 3 Secretion System: The Dr. Jekyll and Mr. Hyde in the Rhizobium–Legume Symbiosis. Int J Mol Sci 2022; 23:ijms231911089. [PMID: 36232385 PMCID: PMC9569860 DOI: 10.3390/ijms231911089] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 01/14/2023] Open
Abstract
Rhizobia are soil bacteria that can establish a symbiotic association with legumes. As a result, plant nodules are formed on the roots of the host plants where rhizobia differentiate to bacteroids capable of fixing atmospheric nitrogen into ammonia. This ammonia is transferred to the plant in exchange of a carbon source and an appropriate environment for bacterial survival. This process is subjected to a tight regulation with several checkpoints to allow the progression of the infection or its restriction. The type 3 secretion system (T3SS) is a secretory system that injects proteins, called effectors (T3E), directly into the cytoplasm of the host cell, altering host pathways or suppressing host defense responses. This secretion system is not present in all rhizobia but its role in symbiosis is crucial for some symbiotic associations, showing two possible faces as Dr. Jekyll and Mr. Hyde: it can be completely necessary for the formation of nodules, or it can block nodulation in different legume species/cultivars. In this review, we compile all the information currently available about the effects of different rhizobial effectors on plant symbiotic phenotypes. These phenotypes are diverse and highlight the importance of the T3SS in certain rhizobium–legume symbioses.
Collapse
|
3
|
Acosta-Jurado S, Fuentes-Romero F, Ruiz-Sainz JE, Janczarek M, Vinardell JM. Rhizobial Exopolysaccharides: Genetic Regulation of Their Synthesis and Relevance in Symbiosis with Legumes. Int J Mol Sci 2021; 22:6233. [PMID: 34207734 PMCID: PMC8227245 DOI: 10.3390/ijms22126233] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/11/2022] Open
Abstract
Rhizobia are soil proteobacteria able to engage in a nitrogen-fixing symbiotic interaction with legumes that involves the rhizobial infection of roots and the bacterial invasion of new organs formed by the plant in response to the presence of appropriate bacterial partners. This interaction relies on a complex molecular dialogue between both symbionts. Bacterial N-acetyl-glucosamine oligomers called Nod factors are indispensable in most cases for early steps of the symbiotic interaction. In addition, different rhizobial surface polysaccharides, such as exopolysaccharides (EPS), may also be symbiotically relevant. EPS are acidic polysaccharides located out of the cell with little or no cell association that carry out important roles both in free-life and in symbiosis. EPS production is very complexly modulated and, frequently, co-regulated with Nod factors, but the type of co-regulation varies depending on the rhizobial strain. Many studies point out a signalling role for EPS-derived oligosaccharides in root infection and nodule invasion but, in certain symbiotic couples, EPS can be dispensable for a successful interaction. In summary, the complex regulation of the production of rhizobial EPS varies in different rhizobia, and the relevance of this polysaccharide in symbiosis with legumes depends on the specific interacting couple.
Collapse
Affiliation(s)
- Sebastián Acosta-Jurado
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| | - Francisco Fuentes-Romero
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| | - Jose-Enrique Ruiz-Sainz
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| | - Monika Janczarek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - José-María Vinardell
- Department of Microbiology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain; (S.A.-J.); (F.F.-R.); (J.-E.R.-S.)
| |
Collapse
|
4
|
Acosta-Jurado S, Rodríguez-Navarro DN, Kawaharada Y, Rodríguez-Carvajal MA, Gil-Serrano A, Soria-Díaz ME, Pérez-Montaño F, Fernández-Perea J, Niu Y, Alias-Villegas C, Jiménez-Guerrero I, Navarro-Gómez P, López-Baena FJ, Kelly S, Sandal N, Stougaard J, Ruiz-Sainz JE, Vinardell JM. Sinorhizobium fredii HH103 nolR and nodD2 mutants gain capacity for infection thread invasion of Lotus japonicus Gifu and Lotus burttii. Environ Microbiol 2019; 21:1718-1739. [PMID: 30839140 DOI: 10.1111/1462-2920.14584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 02/01/2023]
Abstract
Sinorhizobium fredii HH103 RifR , a broad-host-range rhizobial strain, forms ineffective nodules with Lotus japonicus but induces nitrogen-fixing nodules in Lotus burttii roots that are infected by intercellular entry. Here we show that HH103 RifR nolR or nodD2 mutants gain the ability to induce infection thread formation and to form nitrogen-fixing nodules in L. japonicus Gifu. Microscopy studies showed that the mode of infection of L. burttii roots by the nodD2 and nolR mutants switched from intercellular entry to infection threads (ITs). In the presence of the isoflavone genistein, both mutants overproduced Nod-factors. Transcriptomic analyses showed that, in the presence of Lotus japonicus Gifu root exudates, genes related to Nod factors production were overexpressed in both mutants in comparison to HH103 RifR . Complementation of the nodD2 and nolR mutants provoked a decrease in Nod-factor production, the incapacity to form nitrogen-fixing nodules with L. japonicus Gifu and restored the intercellular way of infection in L. burttii. Thus, the capacity of S. fredii HH103 RifR nodD2 and nolR mutants to infect L. burttii and L. japonicus Gifu by ITs and fix nitrogen L. japonicus Gifu might be correlated with Nod-factor overproduction, although other bacterial symbiotic signals could also be involved.
Collapse
Affiliation(s)
- Sebastián Acosta-Jurado
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | | | - Yasuyuki Kawaharada
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus, CDK-8000, Denmark.,Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Miguel A Rodríguez-Carvajal
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, C. P, 41012, Sevilla, Spain
| | - Antonio Gil-Serrano
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, C. P, 41012, Sevilla, Spain
| | - María E Soria-Díaz
- Servicio de Espectrometría de Masas, Centro de Investigación, Tecnología e Innovación (CITIUS), Universidad de Sevilla, Sevilla, Spain
| | - Francisco Pérez-Montaño
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Juan Fernández-Perea
- IFAPA, Centro Las Torres-Tomejil, Apartado Oficial 41200, Alcalá del Río, Sevilla, Spain
| | - Yanbo Niu
- Department of Resources and Environmental Microbiology, Institute of Microbiology, Heilongjiang Academy of Sciences, No. 68, Zhaolin Street, Daoli District, Harbin, Heilongjiang Province, China
| | - Cynthia Alias-Villegas
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Irene Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Pilar Navarro-Gómez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Francisco Javier López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus, CDK-8000, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus, CDK-8000, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus, CDK-8000, Denmark
| | - José E Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - José-María Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| |
Collapse
|
5
|
Roy R, Samanta S, Patra S, Mahato NK, Saha RP. In silico identification and characterization of sensory motifs in the transcriptional regulators of the ArsR-SmtB family. Metallomics 2018; 10:1476-1500. [PMID: 30191942 DOI: 10.1039/c8mt00082d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ArsR-SmtB family of proteins displays the greatest diversity among the bacterial metal-binding transcriptional regulators with regard to the variety of metal ions that they can sense. In the presence of increased levels of toxic heavy metals, these proteins dissociate from their cognate DNA upon the direct binding of metal ions to the appropriate sites, designated motifs on the proteins, either at the interface of the dimers or at the intra-subunit locations. In addition to the metal-mediated regulation, some proteins were also found to control transcription via redox reactions. In the present work, we have identified several new sequence motifs and expanded the knowledge base of metal binding sites in the ArsR-SmtB family of transcriptional repressors, and characterized them in terms of the ligands to the metal, distribution among different phyla of bacteria and archaea, amino acid propensities, protein length distributions and evolutionary interrelationships. We built structural models of the motifs to show the importance of specific residues in an individual motif. The wide abundance of these motifs in sequences of bacteria and archaea indicates the importance of these regulators in combating metal-toxicity within and outside of the hosts. We also show that by using residue composition, one can distinguish the ArsR-SmtB proteins from other metalloregulatory families. In addition, we show the importance of horizontal gene transfer in microorganisms, residing in similar habitats, on the evolution of the structural motifs in the family. Knowledge of the diverse metalloregulatory systems in microorganisms could enable us to manipulate specific genes that may result in a toxic metal-free environment.
Collapse
Affiliation(s)
- Rima Roy
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata 700 126, India.
| | - Saikat Samanta
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata 700 126, India.
| | - Surajit Patra
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata 700 126, India.
| | - Nav Kumar Mahato
- Department of Mathematics, School of Science, Adamas University, Kolkata 700 126, India
| | - Rudra P Saha
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata 700 126, India.
| |
Collapse
|
6
|
Saha RP, Samanta S, Patra S, Sarkar D, Saha A, Singh MK. Metal homeostasis in bacteria: the role of ArsR-SmtB family of transcriptional repressors in combating varying metal concentrations in the environment. Biometals 2017; 30:459-503. [PMID: 28512703 DOI: 10.1007/s10534-017-0020-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 02/02/2023]
Abstract
Bacterial infections cause severe medical problems worldwide, resulting in considerable death and loss of capital. With the ever-increasing rise of antibiotic-resistant bacteria and the lack of development of new antibiotics, research on metal-based antimicrobial therapy has now gained pace. Metal ions are essential for survival, but can be highly toxic to organisms if their concentrations are not strictly controlled. Through evolution, bacteria have acquired complex metal-management systems that allow them to acquire metals that they need for survival in different challenging environments while evading metal toxicity. Metalloproteins that controls these elaborate systems in the cell, and linked to key virulence factors, are promising targets for the anti-bacterial drug development. Among several metal-sensory transcriptional regulators, the ArsR-SmtB family displays greatest diversity with several distinct metal-binding and nonmetal-binding motifs that have been characterized. These prokaryotic metolloregulatory transcriptional repressors represses the expression of operons linked to stress-inducing concentrations of metal ions by directly binding to the regulatory regions of DNA, while derepression results from direct binding of metal ions by these homodimeric proteins. Many bacteria, e.g., Mycobacterium tuberculosis, Bacillus anthracis, etc., have evolved to acquire multiple metal-sensory motifs which clearly demonstrate the importance of regulating concentrations of multiple metal ions. Here, we discussed the mechanisms of how ArsR-SmtB family regulates the intracellular bioavailability of metal ions both inside and outside of the host. Knowledge of the metal-challenges faced by bacterial pathogens and their survival strategies will enable us to develop the next generation drugs.
Collapse
Affiliation(s)
- Rudra P Saha
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata, 700126, India.
| | - Saikat Samanta
- Department of Microbiology, School of Science, Adamas University, Kolkata, 700126, India
| | - Surajit Patra
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata, 700126, India
| | - Diganta Sarkar
- Department of Biotechnology, Techno India University, Kolkata, 700091, India
| | - Abinit Saha
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata, 700126, India
| | - Manoj Kumar Singh
- Department of Biotechnology, School of Biotechnology, Adamas University, Kolkata, 700126, India
| |
Collapse
|
7
|
Del Cerro P, Pérez-Montaño F, Gil-Serrano A, López-Baena FJ, Megías M, Hungria M, Ollero FJ. The Rhizobium tropici CIAT 899 NodD2 protein regulates the production of Nod factors under salt stress in a flavonoid-independent manner. Sci Rep 2017; 7:46712. [PMID: 28488698 PMCID: PMC5424341 DOI: 10.1038/srep46712] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/23/2017] [Indexed: 11/09/2022] Open
Abstract
In the symbiotic associations between rhizobia and legumes, NodD promotes the expression of the nodulation genes in the presence of appropriate flavonoids. This set of genes is implied in the synthesis of Nodulation factors, which are responsible for launching the nodulation process. Rhizobium tropici CIAT 899 is the most successful symbiont of Phaseolus vulgaris and can nodulate a variety of legumes. This strain produces Nodulation factors under abiotic stress such as acidity or high concentration of salt. Genome sequencing of CIAT 899 allowed the identification of five nodD genes. Whereas NodD1 is essential to nodulate Leucaena leucocephala, Lotus japonicus and Macroptilium atropurpureum, symbiosis with P. vulgaris and Lotus burtii decreased the nodule number but did not abolish the symbiotic process when NodD1 is absent. Nodulation factor synthesis under salt stress is not regulated by NodD1. Here we confirmed that NodD2 is responsible for the activation of the CIAT 899 symbiotic genes under salt stress. We have demonstrated that NodD1 and NodD2 control the synthesis of the Nod factor necessary for a successful symbiosis with P. vulgaris and L. burtii. This is the first time that NodD is directly implied in the activation of the symbiotic genes under an abiotic stress.
Collapse
Affiliation(s)
- Pablo Del Cerro
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Antonio Gil-Serrano
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | | | - Manuel Megías
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | | |
Collapse
|
8
|
del Cerro P, Rolla-Santos AAP, Valderrama-Fernández R, Gil-Serrano A, Bellogín RA, Gomes DF, Pérez-Montaño F, Megías M, Hungría M, Ollero FJ. NrcR, a New Transcriptional Regulator of Rhizobium tropici CIAT 899 Involved in the Legume Root-Nodule Symbiosis. PLoS One 2016; 11:e0154029. [PMID: 27096734 PMCID: PMC4838322 DOI: 10.1371/journal.pone.0154029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/07/2016] [Indexed: 11/19/2022] Open
Abstract
The establishment of nitrogen-fixing rhizobium-legume symbioses requires a highly complex cascade of events. In this molecular dialogue the bacterial NodD transcriptional regulators in conjunction with plant inducers, mostly flavonoids, are responsible for the biosynthesis and secretion of Nod factors which are key molecules for successful nodulation. Other transcriptional regulators related to the symbiotic process have been identified in rhizobial genomes, including negative regulators such as NolR. Rhizobium tropici CIAT 899 is an important symbiont of common bean (Phaseolus vulgaris L.), and its genome encompasses intriguing features such as five copies of nodD genes, as well as other possible transcriptional regulators including the NolR protein. Here we describe and characterize a new regulatory gene located in the non-symbiotic plasmid pRtrCIAT899c, that shows homology (46% identity) with the nolR gene located in the chromosome of CIAT 899. The mutation of this gene, named nrcR (nolR-like plasmid c Regulator), enhanced motility and exopolysaccharide production in comparison to the wild-type strain. Interestingly, the number and decoration of Nod Factors produced by this mutant were higher than those detected in the wild-type strain, especially under salinity stress. The nrcR mutant showed delayed nodulation and reduced competitiveness with P. vulgaris, and reduction in nodule number and shoot dry weight in both P. vulgaris and Leucaena leucocephala. Moreover, the mutant exhibited reduced capacity to induce the nodC gene in comparison to the wild-type CIAT 899. The finding of a new nod-gene regulator located in a non-symbiotic plasmid may reveal the existence of even more complex mechanisms of regulation of nodulation genes in R. tropici CIAT 899 that may be applicable to other rhizobial species.
Collapse
Affiliation(s)
- Pablo del Cerro
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | | | | | - Antonio Gil-Serrano
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla. Sevilla, Spain
| | - Ramón A. Bellogín
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | | | | | - Manuel Megías
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | | | - Francisco Javier Ollero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
- * E-mail:
| |
Collapse
|
9
|
The Sinorhizobium meliloti SyrM regulon: effects on global gene expression are mediated by syrA and nodD3. J Bacteriol 2015; 197:1792-806. [PMID: 25777671 DOI: 10.1128/jb.02626-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/06/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED In Sinorhizobium meliloti, three NodD transcriptional regulators activate bacterial nodulation (nod) gene expression. NodD1 and NodD2 require plant compounds to activate nod genes. The NodD3 protein does not require exogenous compounds to activate nod gene expression; instead, another transcriptional regulator, SyrM, activates nodD3 expression. In addition, NodD3 can activate syrM expression. SyrM also activates expression of another gene, syrA, which when overexpressed causes a dramatic increase in exopolysaccharide production. In a previous study, we identified more than 200 genes with altered expression in a strain overexpressing nodD3. In this work, we define the transcriptomes of strains overexpressing syrM or syrA. The syrM, nodD3, and syrA overexpression transcriptomes share similar gene expression changes; analyses imply that nodD3 and syrA are the only targets directly activated by SyrM. We propose that most of the gene expression changes observed when nodD3 is overexpressed are due to NodD3 activation of syrM expression, which in turn stimulates SyrM activation of syrA expression. The subsequent increase in SyrA abundance results in broad changes in gene expression, most likely mediated by the ChvI-ExoS-ExoR regulatory circuit. IMPORTANCE Symbioses with bacteria are prevalent across the animal and plant kingdoms. Our system of study, the rhizobium-legume symbiosis (Sinorhizobium meliloti and Medicago spp.), involves specific host-microbe signaling, differentiation in both partners, and metabolic exchange of bacterial fixed nitrogen for host photosynthate. During this complex developmental process, both bacteria and plants undergo profound changes in gene expression. The S. meliloti SyrM-NodD3-SyrA and ChvI-ExoS-ExoR regulatory circuits affect gene expression and are important for optimal symbiosis. In this study, we defined the transcriptomes of S. meliloti overexpressing SyrM or SyrA. In addition to identifying new targets of the SyrM-NodD3-SyrA regulatory circuit, our work further suggests how it is linked to the ChvI-ExoS-ExoR regulatory circuit.
Collapse
|
10
|
Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR. Proc Natl Acad Sci U S A 2014; 111:6509-14. [PMID: 24733893 DOI: 10.1073/pnas.1402243111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory protein. Here, we present the X-ray crystal structures of NolR in the unliganded form and complexed with two different 22-base pair (bp) double-stranded operator sequences (oligos AT and AA). Structural and biochemical analysis of NolR reveals protein-DNA interactions with an asymmetric operator site and defines a mechanism for conformational switching of a key residue (Gln56) to accommodate variation in target DNA sequences from diverse rhizobial genes for nodulation and symbiosis. This conformational switching alters the energetic contributions to DNA binding without changes in affinity for the target sequence. Two possible models for the role of NolR in the regulation of different nodulation and symbiosis genes are proposed. To our knowledge, these studies provide the first structural insight on the regulation of genes involved in the agriculturally and ecologically important symbiosis of microbes and plants that leads to nodule formation and nitrogen fixation.
Collapse
|
11
|
Sugawara M, Sadowsky MJ. Enhanced nodulation and nodule development by nolR mutants of Sinorhizobium medicae on specific Medicago host genotypes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:328-335. [PMID: 24283939 DOI: 10.1094/mpmi-10-13-0312-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The nolR gene encodes a negatively acting, transcriptional regulatory protein of core Nod-factor biosynthetic genes in the sinorhizobia. Although previous reports showed that nolR modulates Nod-factor production and enhances nodulation speed of Sinorhizobium meliloti on alfalfa, there have been no reports for the symbiotic function of this gene in the S. medicae-Medicago truncatula symbiosis. Here, we constructed an nolR mutant of S. medicae WSM419 and evaluated mutant and wild-type strains for their nodulation ability, competitiveness, host specificity, and density-dependent nodulation phenotypes. When the mutant was inoculated at low and medium population densities, it showed enhanced nodule formation during the initial stages of nodulation. Results of quantitative competitive nodulation assays indicated that an nolR mutant had 2.3-fold greater competitiveness for nodulation on M. truncatula 'A17' than did the wild-type strain. Moreover, the nodulation phenotype of the nolR mutant differed among Medicago genotypes and showed significantly enhanced nodule development on M. tricycla. Taken together, these results indicated that mutation of nolR in S. medicae positively influenced nodule initiation, competitive nodulation, and nodule development at later nodulation stages. This may allow nolR mutants of S. medicae to have a selective advantage under field conditions.
Collapse
|
12
|
Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti. J Bacteriol 2013; 195:3224-36. [PMID: 23687265 DOI: 10.1128/jb.00234-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sin quorum sensing (QS) system of S. meliloti activates exopolysaccharide and represses flagellum production. The system consists of an N-acyl-homoserine lactone (AHL) synthase, SinI, and at least two LuxR-type regulators, SinR and ExpR. SinR appears to be independent of AHLs for its control of sinI expression, while ExpR is almost completely dependent upon AHLs. In this study, we confirmed 7 previously detected ExpR-DNA binding sites and used the consensus sequence to identify another 26 sites, some of which regulate genes previously not known to be members of the ExpR/AHL regulon. The activities of promoters dependent upon ExpR/AHL were titrated against AHL levels, with varied outcomes in AHL sensitivity. The data suggest a type of temporal expression program whereby the activity of each promoter is subject to a specific range of AHL concentrations. For example, genes responsible for exopolysaccharide production are activated at lower concentrations of AHLs than those required for the repression of genes controlling flagellum production. Several features of ExpR-regulated promoters appear to determine their response to AHLs. The location of the ExpR-binding site with respect to the relevant transcription start within each promoter region determines whether ExpR/AHL activates or represses promoter activity. Furthermore, the strength of the response is dependent upon the concentration of AHLs. We propose that this differential sensitivity to AHLs provides a bacterial colony with a transcription control program that is dynamic and precise.
Collapse
|
13
|
Diverse genetic regulon of the virulence-associated transcriptional regulator MucR in Brucella abortus 2308. Infect Immun 2013; 81:1040-51. [PMID: 23319565 DOI: 10.1128/iai.01097-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Ros-type regulator MucR is one of the few transcriptional regulators that have been linked to virulence in Brucella. Here, we show that a Brucella abortus in-frame mucR deletion strain exhibits a pronounced growth defect during in vitro cultivation and, more importantly, that the mucR mutant is attenuated in cultured macrophages and in mice. The genetic basis for the attenuation of Brucella mucR mutants has not been defined previously, but in the present study the genes regulated by MucR in B. abortus have been elucidated using microarray analysis and real-time reverse transcription-PCR (RT-PCR). In B. abortus 2308, MucR regulates a wide variety of genes whose products may function in establishing and maintaining cell envelope integrity, polysaccharide biosynthesis, iron homeostasis, genome plasticity, and transcriptional regulation. Particularly notable among the MucR-regulated genes identified is arsR6 (nolR), which encodes a transcriptional regulator previously linked to virulence in Brucella melitensis 16 M. Importantly, electrophoretic mobility shift assays (EMSAs) determined that a recombinant MucR protein binds directly to the promoter regions of several genes repressed by MucR (including arsR6 [nolR]), and in Brucella, as in other alphaproteobacteria, MucR binds to its own promoter to repress expression of the gene that encodes it. Overall, these studies have uncovered the diverse genetic regulon of MucR in Brucella, and in doing so this work has begun to define the MucR-controlled genetic circuitry whose misregulation contributes to the virulence defect of Brucella mucR mutants.
Collapse
|
14
|
Li F, Hou B, Hong G. Symbiotic plasmid is required for NolR to fully repress nodulation genes inRhizobium leguminosarumA34. Acta Biochim Biophys Sin (Shanghai) 2008. [DOI: 10.1111/j.1745-7270.2008.00467.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
15
|
López-Baena FJ, Vinardell JM, Pérez-Montaño F, Crespo-Rivas JC, Bellogín RA, Espuny MDR, Ollero FJ. Regulation and symbiotic significance of nodulation outer proteins secretion in Sinorhizobium fredii HH103. MICROBIOLOGY-SGM 2008; 154:1825-1836. [PMID: 18524937 DOI: 10.1099/mic.0.2007/016337-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this work we show that the Sinorhizobium fredii HH103 ttsI gene is essential for the expression of the tts genes and secretion of nodulation outer proteins (Nops). Moreover, we demonstrate for the first time, to our knowledge, that the nod box preceding ttsI is necessary for Nops secretion. TtsI is responsible for the transcriptional activation of nopX, nopA, rhcJ and rhcQ. We confirm that the S. fredii HH103 ttsI gene is activated by NodD1 and repressed by NolR. In contrast, NodD2 is not involved in the regulation of ttsI expression. Despite the dependence of expression of both ttsI and nodA on NodD1 and flavonoids, clear differences in the capacity of some flavonoids to activate these genes were found. The expression of the ttsI and nodA genes was also sensitive to differences in the pH of the media. Secretion of Nops in the ttsI mutant could not be complemented with a DNA fragment containing the ttsI gene and its nod box, but it was restored when a plasmid harbouring the ttsI, rhcC2 and y4xK genes was transferred to the mutant strain. The symbiotic effect of Nops secretion was host-dependent but independent of the type of nodule formed by the host legume. Nops are beneficial in the symbiosis with Glycine max and Glycyrrhiza uralensis, and detrimental in the case of the tropical legume Erythrina variegata.
Collapse
Affiliation(s)
| | - José María Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | | | - Ramón A Bellogín
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Ma Del Rosario Espuny
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
16
|
Chen H, Gao K, Kondorosi E, Kondorosi A, Rolfe BG. Functional genomic analysis of global regulator NolR in Sinorhizobium meliloti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1340-52. [PMID: 16478054 DOI: 10.1094/mpmi-18-1340] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
NolR is a regulator of nodulation genes present in species belonging to the genera Rhizobium and Sinorhizobium. The expression of the nolR gene in Sinorhizobium meliloti AK631 was investigated in relation to stage of growth, availability of nutrients, and different environmental stimuli using the nolR::lacZ fusion report system. It has been shown that the nolR gene is regulated in a population-density-dependent fashion and influenced by a number of environmental stimuli, including nutrients, pH, and oxygen. Exploration of the physiological functions of NolR under various laboratory conditions has shown that NolR is required for the optimal growth of the bacteria on solid media, optimal survival of the bacteria in carbon-starved minimal medium, and after heat shock challenge. NolR also is involved in recipient-induced conjugative transfer of a plasmid. Proteome analysis of strain AK631 and its Tn5-induced nolR-deficient mutant EK698 revealed that a functional NolR induced significant differences in the accumulation of 20 polypeptides in peptide mass fingerprinting early-log-phase cultures and 48 polypeptides in stationary-phase cultures. NolR acted mainly as a repressor in the early-log-phase cultures, whereas it acted as both repressor and activator in the stationary-phase cultures. The NolR protein and 59 NolR-associated proteins have been identified by peptide mass fingerprinting. The NolR protein was differentially expressed only in the NolR+ wild-type strain AK631 but not in its NolR- derivative EK698, confirming that no functional NolR was produced in the mutant. The NolR-associated proteins have diverse functions in amino acid metabolism, carbohydrate metabolism, lipid metabolism, nucleotide metabolism, energy metabolism, metabolism of Co-factors, and cellular adaptation and transportation. These results further support our previous proposal that the NolR is a global regulatory protein which is required for the optimization of nodulation, bacterial growth and survival, and conjugative transfer of a plasmid.
Collapse
Affiliation(s)
- Hancai Chen
- Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | |
Collapse
|
17
|
Brencic A, Winans SC. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 2005; 69:155-94. [PMID: 15755957 PMCID: PMC1082791 DOI: 10.1128/mmbr.69.1.155-194.2005] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diverse interactions between hosts and microbes are initiated by the detection of host-released chemical signals. Detection of these signals leads to altered patterns of gene expression that culminate in specific and adaptive changes in bacterial physiology that are required for these associations. This concept was first demonstrated for the members of the family Rhizobiaceae and was later found to apply to many other plant-associated bacteria as well as to microbes that colonize human and animal hosts. The family Rhizobiaceae includes various genera of rhizobia as well as species of Agrobacterium. Rhizobia are symbionts of legumes, which fix nitrogen within root nodules, while Agrobacterium tumefaciens is a pathogen that causes crown gall tumors on a wide variety of plants. The plant-released signals that are recognized by these bacteria are low-molecular-weight, diffusible molecules and are detected by the bacteria through specific receptor proteins. Similar phenomena are observed with other plant pathogens, including Pseudomonas syringae, Ralstonia solanacearum, and Erwinia spp., although here the signals and signal receptors are not as well defined. In some cases, nutritional conditions such as iron limitation or the lack of nitrogen sources seem to provide a significant cue. While much has been learned about the process of host detection over the past 20 years, our knowledge is far from being complete. The complex nature of the plant-microbe interactions makes it extremely challenging to gain a comprehensive picture of host detection in natural environments, and thus many signals and signal recognition systems remain to be described.
Collapse
Affiliation(s)
- Anja Brencic
- Department of Microbiology, 361A Wing Hall, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
18
|
Fineran PC, Slater H, Everson L, Hughes K, Salmond GPC. Biosynthesis of tripyrrole and β-lactam secondary metabolites inSerratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol Microbiol 2005; 56:1495-517. [PMID: 15916601 DOI: 10.1111/j.1365-2958.2005.04660.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Summary Serratia sp. ATCC 39006 (39006) uses a complex hierarchical regulatory network allowing multiple inputs to be assessed before genes involved in secondary metabolite biosynthesis are expressed. This taxonomically ill-defined Serratia sp. produces a carbapenem antibiotic (Car; a beta-lactam) and a red pigmented antibiotic, prodigiosin (Pig; a tripyrrole), which are controlled by the smaIR quorum sensing (QS) locus. SmaR is a repressor of Pig and Car when levels of N-acyl- l-homoserine lactones, produced by SmaI, are low. In this study, we demonstrate direct DNA binding of purified SmaR to the promoter of the Car biosynthetic genes and abolition of this binding by the QS ligand. We have also identified multiple new secondary metabolite regulators. QS controls production of secondary metabolites, at least in part, by modulating transcription of three genes encoding regulatory proteins, including a putative response regulator of the GacAS two-component signalling system family, a novel putative adenylate cyclase and Rap (regulator of antibiotic and pigment). Mutations in another gene encoding a novel predicted global regulator, pigP, are highly pleiotropic; PigP has a significant "master" regulatory role in 39006 where it controls the transcription of six other regulators. The PigP protein and its homologues define a new family of regulators and are predicted to bind DNA via a helix-turn-helix domain. There are regulatory overlaps between the QS and PigP regulons that enable the information from different physiological cues to be funnelled into the control of secondary metabolite production.
Collapse
Affiliation(s)
- Peter C Fineran
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | | | | | | |
Collapse
|
19
|
Chen XC, Feng J, Hou BH, Li FQ, Li Q, Hong GF. Modulating DNA bending affects NodD-mediated transcriptional control in Rhizobium leguminosarum. Nucleic Acids Res 2005; 33:2540-8. [PMID: 15872217 PMCID: PMC1088969 DOI: 10.1093/nar/gki537] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Rhizobium leguminosarum NodD binds to the nod box of the inducible nod gene nodA as a V-shaped tetramer and bends the nod box. In this work, we show that the nod gene inducer naringenin decreased gel mobility of nod box DNA–NodD complexes by sharpening the NodD-induced DNA bend, which correlated with nodA transcription activation. NodD can induce different DNA bends when the distance between the two half-sites of the nod box was modified, which severely affected NodD-mediated transcriptional control. One or two base pairs were deleted from, or inserted into, the two half-sites of the nod box of nodA. Circular permutation assays showed that such distance modulations allowed NodD to induce relaxed or sharpened DNA bending. In the case of 1 bp deletion, where the DNA bends were more relaxed than in the wild type, nodA transcription was repressed both in the absence and in the presence of inducer naringenin. In the cases of 1 and 2 bp insertion, where the DNA bends were much sharper than in wild type in the absence or presence of the inducer naringenin, nodA transcription was initiated constitutively with no requirement for the inducer naringenin or, even, the NodD regulating protein.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo-Fan Hong
- To whom correspondence should be addressed: Tel: +86 21 54921223; Fax: +86 21 54921011;
| |
Collapse
|
20
|
Vinardell JM, Ollero FJ, Hidalgo A, López-Baena FJ, Medina C, Ivanov-Vangelov K, Parada M, Madinabeitia N, Espuny MDR, Bellogín RA, Camacho M, Rodríguez-Navarro DN, Soria-Díaz ME, Gil-Serrano AM, Ruiz-Sainz JE. NolR regulates diverse symbiotic signals of Sinorhizobium fredii HH103. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:676-685. [PMID: 15195950 DOI: 10.1094/mpmi.2004.17.6.676] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have investigated in Sinorhizobium fredii HH103-1 (=HH103 Str(r)) the influence of the nolR gene on the production of three different bacterial symbiotic signals: Nod factors, signal responsive (SR) proteins, and exopolysaccharide (EPS). The presence of multiple copies of nolR (in plasmid pMUS675) repressed the transcription of all the flavonoid-inducible genes analyzed: nodA, nodD1, nolO, nolX, noeL, rhcJ, hesB, and y4pF. Inactivation of nolR (mutant SVQ517) or its overexpression (presence of pMUS675) altered the amount of Nod factors detected. Mutant SVQ517 produced Nod factors carrying N-methyl residues at the nonreducing N-acetyl-glucosamine, which never have been detected in S. fredii HH103. Plasmid pMUS675 increased the amounts of EPS produced by HH103-1 and SVQ517. The flavonoid genistein repressed EPS production of HH103-1 and SVQ517 but the presence of pMUS675 reduced this repression. The presence of plasmid pMUS675 clearly decreased the secretion of SR proteins. Inactivation, or overexpression, of nolR decreased the capacity of HH103 to nodulate Glycine max. However, HH103-1 and SVQ517 carrying plasmid pMUS675 showed enhanced nodulation capacity with Vigna unguiculata. The nolR gene was positively identified in all S. fredii strains investigated, S. xinjiangense CCBAU110, and S. saheli USDA4102. Apparently, S. teranga USDA4101 does not contain this gene.
Collapse
Affiliation(s)
- José María Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P. 41012, Sevilla, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kobayashi H, Naciri-Graven Y, Broughton WJ, Perret X. Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol Microbiol 2004; 51:335-47. [PMID: 14756776 DOI: 10.1046/j.1365-2958.2003.03841.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rhizobia, soil bacteria of the Rhizobiales, enter the roots of homologous legumes, where they induce the formation of nitrogen-fixing nodules. Signals emanating from both symbiotic partners control nodule development. Efficient nodulation requires precise, temporal regulation of symbiotic genes. Roots continuously release flavonoids that interact with transcriptional activators of the LysR family. NodD proteins, which are members of this family, act both as sensors of the environment and modulate the expression of genes preceded by conserved promoter sequences called nod-boxes. The symbiotic plasmid of the broad host-range Rhizobium sp. NGR234 caries 19 nod-boxes (NB1 to NB19), all of which were cloned upstream of a lacZ-reporter gene. A flavonoid, daidzein was able to induce 18 of the 19 nod-boxes in a NodD1-dependent manner. Interestingly, induction of four nod-boxes (NB6, NB15, NB16 and NB17) is highly dependent on NodD2 and was delayed in comparison with the others. In turn, NodD2 is involved in the repression of the NB8 nodABCIJnolOnoeI operon. Activation of transcription of nodD2 is also dependent on flavonoids despite the absence of a nod-box like sequence in the upstream promoter region. Mutational analysis showed that syrM 2 (another member of the LysR family), which is controlled by NB19, is also necessary for expression of nodD 2. Thus, NodD1, NodD2 and SyrM2 co-modulate a flavonoid-inducible regulatory cascade that coordinates the expression of symbiotic genes with nodule development.
Collapse
Affiliation(s)
- Hajime Kobayashi
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Université de Genève, 1 chemin de l'Impératrice, 1292 Chambésy, Genève, Switzerland
| | | | | | | |
Collapse
|
22
|
Loh J, Stacey G. Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Appl Environ Microbiol 2003; 69:10-7. [PMID: 12513971 PMCID: PMC152446 DOI: 10.1128/aem.69.1.10-17.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- John Loh
- Department of Plant Microbiology and Pathology, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
23
|
Wais RJ, Wells DH, Long SR. Analysis of differences between Sinorhizobium meliloti 1021 and 2011 strains using the host calcium spiking response. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:1245-1252. [PMID: 12481997 DOI: 10.1094/mpmi.2002.15.12.1245] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the Rhizobium-legume symbiosis, compatible partners recognize each other through an exchange of signals. Plant inducers act together with bacterial transcriptional activators, the NodD proteins, to regulate the expression of bacterial biosynthetic nodulation (nod) genes. These genes direct the synthesis of a lipochito-oligosaccharide signal called Nod factor (NF). NFs elicit an early host response, root hair calcium spiking, that is initiated in root hair cells within 15 min of NF or live Rhizobium inoculation. We used calcium spiking as an assay to compare two closely related strains of Sinorhizobium meliloti, Rm1021 and Rm2011, derived from the same field isolate. We found that the two strains show a kinetic difference in the calcium spiking assay: Rm1021 elicits calcium spiking in host root hairs as rapidly as purified NF, whereas Rm2011 shows a significant delay. This difference can be overcome by raising expression levels of either the NodD transcriptional activators or GroEL, a molecular chaperone that affects expression of the biosynthetic nod genes. We further demonstrate that the delay in triggering calcium spiking exhibited by Rm2011 is correlated with a reduced amount of nod gene expression compared with Rm1021. Therefore, calcium spiking is a useful tool in detecting subtle differences in bacterial gene expression that affect the early stages of the Rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Rebecca J Wais
- Department of Biological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | | | | |
Collapse
|
24
|
Loh JT, Yuen-Tsai JP, Stacey MG, Lohar D, Welborn A, Stacey G. Population density-dependent regulation of the Bradyrhizobium japonicum nodulation genes. Mol Microbiol 2001; 42:37-46. [PMID: 11679065 DOI: 10.1046/j.1365-2958.2001.02625.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nodulation genes of Bradyrhizobium japonicum are essential for infection and establishment of a nitrogen-fixing symbiosis. Here, we demonstrate that plant-produced isoflavones induce nodulation gene expression in a population density-dependent fashion. Nodulation gene induction is highest at a low population density and significantly reduced in more dense cultures. A quorum signal molecule in the conditioned medium of B. japonicum cultures mediates this repression. Repression in response to the quorum signal results from the induction of NolA which, in turn, induces NodD2 leading to inhibition of nod gene expression. Consistent with this, nolA-lacZ and nodD2-lacZ expression increased with increasing population density. Unlike the wild type, the ability to induce nodY-lacZ expression did not decline with population density in a NolA mutant. Normally, nod gene expression is repressed in planta (i.e. within nodules). However, expression of a nodY-GUS fusion was not repressed in a NolA mutant, suggesting that quorum-sensing control may mediate in planta repression of the nod genes. Addition of conditioned medium to cultures significantly reduced nod gene expression. Treatment of inoculant cultures with conditioned medium also reduced the ability of B. japonicum to nodulate soybean plants.
Collapse
Affiliation(s)
- J T Loh
- Center for Legume Research, Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Lipochitin Nod signals are produced by rhizobia and are required for the establishment of a nitrogen-fixing symbiosis with a legume host. The nodulation genes encode products required for the synthesis of this signal and are induced in response to plant-produced flavonoid compounds. The addition of chitin and lipo-chitin oligomers to Bradyrhizobium japonicum cultures resulted in a significant reduction in the expression of a nod-lacZ fusion. Intracellular expression of NodC, encoding a chitin synthase, also reduced nod gene expression. In contrast, expression of the ChiB chitinase increased nod gene expression. The chain length of the oligosaccharide was important in feedback regulation, with chitotetraose molecules the best modulators of nod gene expression. Feedback regulation is mediated by the induction of nolA by chitin, resulting in elevated levels of the repressor protein, NodD2.
Collapse
Affiliation(s)
- J T Loh
- Center for Legume Research, Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA
| | | |
Collapse
|
26
|
Chen H, Higgins J, Kondorosi E, Kondorosi A, Djordjevic MA, Weinman JJ, Rolfe BG. Identification of nolR-regulated proteins in Sinorhizobium meliloti using proteome analysis. Electrophoresis 2000; 21:3823-32. [PMID: 11271500 DOI: 10.1002/1522-2683(200011)21:17<3823::aid-elps3823>3.0.co;2-k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Extractable proteins from Sinorhizobium meliloti strains AK631 and EK698 (a Tn5-induced noIR-deficient mutant of AK631), grown in tryptone agar (TA) medium with or without the addition of the plant signal luteolin, were separated by two-dimensional gel electrophoresis and compared. Analysis of silver-stained gels showed that the noIR mutant had 189 proteins that were significantly altered in their levels (101 protein spots up- and 88 downregulated). Coomassie-stained preparative two-dimensional (2-D) gels or polyvinylidene difluoride (PVDF) membranes blotted from preparative gels showed that at least 52 of the altered proteins could be reproducibly detected and isolated from the noIR mutant. These 52 altered protein spots were classified into five groups based on an assessment of protein abundance by computer analysis and the effect of the presence or absence of luteolin addition to the growth medium. N-terminal microsequencing of 38 proteins revealed that the most striking feature of the consequence of the noIR mutation is the number and broad spectrum of cellular functions that are affected by the loss of the NoIR function. These include proteins involved in the tricarboxylic acid (TCA) cycle, heat shock and cold shock proteins, protein synthesis, a translation elongation factor, oxidative stress and cell growth and maintenance functions. We propose that the NoIR repressor is a global regulatory protein which responds to environmental factors to fine-tune intracellular metabolism.
Collapse
Affiliation(s)
- H Chen
- Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra City
| | | | | | | | | | | | | |
Collapse
|
27
|
Hu H, Liu S, Yang Y, Chang W, Hong G. In Rhizobium leguminosarum, NodD represses its own transcription by competing with RNA polymerase for binding sites. Nucleic Acids Res 2000; 28:2784-93. [PMID: 10908336 PMCID: PMC102654 DOI: 10.1093/nar/28.14.2784] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2000] [Revised: 05/26/2000] [Accepted: 05/26/2000] [Indexed: 11/15/2022] Open
Abstract
We isolated RNA polymerase (RNAP) from Rhizobium leguminosarum, the nitrogen-fixing symbiont of peas and VICIA: Its 91 kDa subunit, which is homologous to sigma(70) of Escherichia coli RNAP, is necessary for transcription of the regulatory nodD gene, which in the presence of certain flavonoids induces transcription of other nod genes that are needed for the early steps of infection. We also show that negative autoregulation of nodD was achieved through competition between RNAP and NodD for their respective binding sites, which largely overlap. Combined with the result that high concentrations of the flavonoid inducer naringenin relieved the binding affinity of NodD for its target DNA, the way in which the nod genes are activated is discussed.
Collapse
Affiliation(s)
- H Hu
- Shanghai Institute of Biochemistry, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
28
|
Abstract
Eukaryotes often form symbioses with microorganisms. Among these, associations between plants and nitrogen-fixing bacteria are responsible for the nitrogen input into various ecological niches. Plants of many different families have evolved the capacity to develop root or stem nodules with diverse genera of soil bacteria. Of these, symbioses between legumes and rhizobia (Azorhizobium, Bradyrhizobium, Mesorhizobium, and Rhizobium) are the most important from an agricultural perspective. Nitrogen-fixing nodules arise when symbiotic rhizobia penetrate their hosts in a strictly controlled and coordinated manner. Molecular codes are exchanged between the symbionts in the rhizosphere to select compatible rhizobia from pathogens. Entry into the plant is restricted to bacteria that have the "keys" to a succession of legume "doors". Some symbionts intimately associate with many different partners (and are thus promiscuous), while others are more selective and have a narrow host range. For historical reasons, narrow host range has been more intensively investigated than promiscuity. In our view, this has given a false impression of specificity in legume-Rhizobium associations. Rather, we suggest that restricted host ranges are limited to specific niches and represent specialization of widespread and more ancestral promiscuous symbioses. Here we analyze the molecular mechanisms governing symbiotic promiscuity in rhizobia and show that it is controlled by a number of molecular keys.
Collapse
Affiliation(s)
- X Perret
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Université de Genève, 1292 Chambésy/Geneva, Switzerland
| | | | | |
Collapse
|
29
|
Capela D, Barloy-Hubler F, Gatius MT, Gouzy J, Galibert F. A high-density physical map of Sinorhizobium meliloti 1021 chromosome derived from bacterial artificial chromosome library. Proc Natl Acad Sci U S A 1999; 96:9357-62. [PMID: 10430947 PMCID: PMC17787 DOI: 10.1073/pnas.96.16.9357] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/1999] [Accepted: 05/27/1999] [Indexed: 11/18/2022] Open
Abstract
As part of the European Sinorhizobium meliloti (strain 1021) chromosome sequencing project, four genomic bacterial artificial chromosome (BAC) libraries have been constructed, one of which was mainly used for chromosome mapping. This library consists of 1,824 clones with an average insert size of 80 kilobases and represents approximately 20-fold total genome coverage [6.8 megabases (Mbs)]. PCR screening of 384 BAC clones with 447 chromosomal markers (PCR primer pairs), consisting of 73 markers representing 118 genes (40 individual genes and 78 genes clustered in 23 operons), two markers from the rrn operon (three loci), four markers from insertion sequences (approximately 16 loci) and 368 sequence-tagged sites allowed the identification of 252 chromosomal BAC clones and the construction of a high-density physical map of the whole 3.7-Mb chromosome of S. meliloti. An average of 5.5 overlapping and colinear BAC clones per marker, correlated with a low rate of deleted or rearranged clones (0.8%) indicate a solid BAC contigation and a correct mapping. Systematic BLASTX analysis of sequence-tagged site marker sequences allowed prediction of a biological function for a number of putative ORFs. Results are available at. This map, whose resolution averages one marker every 9 kilobases, should provide a valuable tool for further sequencing, functional analysis, and positional cloning.
Collapse
Affiliation(s)
- D Capela
- Laboratoire Recombinaisons Génétiques, Centre National de la Recherche Scientifique-UPR41, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
30
|
Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R. High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol 1999; 32:415-25. [PMID: 10231496 DOI: 10.1046/j.1365-2958.1999.01361.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most of the bacterial genes involved in nodulation of legumes (nod, nol and noe ) as well as nitrogen fixation (nif and fix ) are carried on pNGR234a, the 536 kb symbiotic plasmid (pSym) of the broad-host-range Rhizobium sp. NGR234. Putative transcription regulators comprise 24 of the predicted 416 open reading frames (ORFs) contained on this replicon. Computational analyses identified 19 nod boxes and 16 conserved NifA-sigma54 regulatory sequences, which are thought to co-ordinate the expression of nodulation and nitrogen fixation genes respectively. To analyse transcription of all putative ORFs, the nucleotide sequence of pNGR234a was divided into 441 segments designed to represent all coding and intergenic regions. Each of these segments was amplified by polymerase chain reactions, transferred to filters and probed with radioactively labelled RNA. RNA was extracted from bacterial cultures grown under various experimental conditions, as well as from bacteroids of determinate and indeterminate nodules. Generally, genes involved in the synthesis of Nod factors (e.g. the three hsn loci) were induced rapidly after the addition of flavonoids, whereas others thought to act within the plant (e.g. those encoding the type III secretion system) responded more slowly. Many insertion (IS) and transposon (Tn)-like sequences were expressed strongly under all conditions tested, while a number of loci other than those known to encode nod, noe, nol, nif and fix genes were also transcribed in nodules. Many more diverse transcripts were found in bacteroids of determinate as opposed to indeterminate nodules.
Collapse
Affiliation(s)
- X Perret
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, University of Geneva, 1 chemin de l'Impératrice, 1292 Chambésy, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Abstract
Symbiosis between rhizobia and leguminous plants leads to the formation of N2-fixing root nodules. The interaction of rhizobia and plants shows a high degree of host specificity based on the exchange of chemical signals between the symbiotic partners. The plant signals, flavonoids exuded by the roots, activate the expression of nodulation genes, resulting in the production of the rhizobial lipochitooligosaccharide signals (Nod factors). Nod factors act as morphogens that, under conditions of nitrogen limitation, induce cells within the root cortex to divide and to develop into nodule primordia. This review focuses on how the production of Nod factors is regulated, how these signals are perceived and transduced by the plant root, and the physiological conditions and plant factors that control the early events leading to root nodule development.
Collapse
Affiliation(s)
- M Schultze
- Institut des Sciences Végétales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.
| | | |
Collapse
|
32
|
Fellay R, Hanin M, Montorzi G, Frey J, Freiberg C, Golinowski W, Staehelin C, Broughton WJ, Jabbouri S. nodD2 of Rhizobium sp. NGR234 is involved in the repression of the nodABC operon. Mol Microbiol 1998; 27:1039-50. [PMID: 9535093 DOI: 10.1046/j.1365-2958.1998.00761.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcriptional regulators of the lysR family largely control the expression of bacterial symbiotic genes. Rhizobium sp. NGR234 contains at least four members of this family: two resemble nodD, while two others are more closely related to syrM. Part of the extremely broad host range of NGR234 can be attributed to nodD1, although the second gene shares a high degree of DNA sequence homology with nodD2 of R. fredii USDA191. A nodD2 mutant of NGR234 was constructed by insertional mutagenesis. This mutant (NGR omega nodD2) was deficient in nitrogen fixation on Vigna unguiculata and induced pseudonodules on Tephrosia vogelii. Several other host plants were tested, but no correlation could be drawn between the phenotype and nodule morphology. Moreover, nodD2 has a negative effect on the production of Nod factors: mutation of this gene results in a fivefold increase in Nod factor production. Surprisingly, while the structure of Nod factors from free-living cultures of NGR omega nodD2 remained unchanged, those from V. unguiculata nodules induced by the same strain are non-fucosylated and have a lower degree of oligomerization. In other words, developmental regulation of Nod factor production is also abolished in this mutant. Competitive RNA hybridizations, gene fusions and mobility shift assays confirmed that nodD2 downregulates expression of the nodABC operon.
Collapse
Affiliation(s)
- R Fellay
- LBMPS, Université de Genève, Chambésy/Genève, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kamst E, Spaink HP, Kafetzopoulos D. Biosynthesis and secretion of rhizobial lipochitin-oligosaccharide signal molecules. Subcell Biochem 1998; 29:29-71. [PMID: 9594644 DOI: 10.1007/978-1-4899-1707-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- E Kamst
- Leiden University, Institute of Molecular Plant Sciences, Clusius Laboratory, The Netherlands
| | | | | |
Collapse
|
34
|
Barnett MJ, Long SR. Identification and characterization of a gene on Rhizobium meliloti pSyma, syrB, that negatively affects syrM expression. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:550-559. [PMID: 9204561 DOI: 10.1094/mpmi.1997.10.5.550] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The Rhizobium meliloti SyrM protein activates transcription of nodD3 and syrA. Regulation of syrM is complex and may involve as yet undiscovered genes. Here we report the isolation of insertion mutants showing increased expression of a syrM-gusA gene fusion. Characterization of one mutant strain, designated SYR-B, revealed a mutation consisting of a transposon insertion linked to a large deletion. The corresponding wild-type DNA was cloned as a 5.3-kb BamHI fragment. Genetic and physical analysis of this DNA demonstrated that an open reading frame (ORF) near one end of the fragment, encoding the 16.5-kDa SyrB protein, is responsible for the repression of syrM activity. Results of complementation experiments with the 5.3-kb BamHI DNA led us to hypothesize that other genes within this DNA fragment interfere with the expression or activity of SyrB. Our analysis showed that the region upstream of syrB contains three ORFs. One ORF is similar to the Ros repressor of Agrobacterium tumefaciens and the MucR repressor of R. meliloti.
Collapse
Affiliation(s)
- M J Barnett
- Department of Biological Sciences, Stanford University, CA 94305, USA
| | | |
Collapse
|
35
|
Rkenes TP, Lamark T, Strøm AR. DNA-binding properties of the BetI repressor protein of Escherichia coli: the inducer choline stimulates BetI-DNA complex formation. J Bacteriol 1996; 178:1663-70. [PMID: 8626295 PMCID: PMC177852 DOI: 10.1128/jb.178.6.1663-1670.1996] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The betT and betIBA genes govern glycine betaine synthesis from choline in Escherichia coli. In an accompanying paper we report that the betT and betI promoters are divergently organized and partially overlapping and that both are negatively regulated by BetI in response to choline. (T. Lamark, T.P. Rokenes, J. McDougall, and A.R. Strom, J. Bacteriol. 178:1655-1662, 1996). In this paper, we report that the in vivo synthesis rate of the BetI protein constituted only 10% of that of BetA and BetB dehydrogenase proteins, indicating the existence of a posttranscriptional control of the betIBA operon. A genetically modified BetI protein called BetI*, which carries 7 extra N-terminal amino acids, was purified as a glutathione S-transferase fusion protein. Gel mobility shift assays showed that BetI* formed a complex with a 41-bp DNA fragment containing the -10 and -35 regions of both promoters. Only one stable complex was detected with the 41-bp fragment and all larger promoter-containing fragments tested. In DNase I footprinting, BetI* protected a region of 21 nucleotides covering both the -35 boxes. Choline stimulated complex formation but did not change the binding site of BetI*. We conclude that in vivo BetI is bound to its operator in both repressed and induced cells and that BetI represents a new type of repressor.
Collapse
Affiliation(s)
- T P Rkenes
- Norwegian College of Fishery Science, University of Tromsø, Norway
| | | | | |
Collapse
|
36
|
Schultze M, Kondorosi A. The role of Nod signal structures in the determination of host specificity in the Rhizobium-legume symbiosis. World J Microbiol Biotechnol 1996; 12:137-49. [DOI: 10.1007/bf00364678] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|