1
|
Bedore AM, Waters CM. Plasmid-free cheater cells commonly evolve during laboratory growth. Appl Environ Microbiol 2024; 90:e0231123. [PMID: 38446071 PMCID: PMC11022567 DOI: 10.1128/aem.02311-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
It has been nearly a century since the isolation and use of penicillin, heralding the discovery of a wide range of different antibiotics. In addition to clinical applications, such antibiotics have been essential laboratory tools, allowing for selection and maintenance of laboratory plasmids that encode cognate resistance genes. However, antibiotic resistance mechanisms can additionally function as public goods. For example, extracellular beta-lactamases produced by resistant cells that subsequently degrade penicillin and related antibiotics allow neighboring plasmid-free susceptible bacteria to survive antibiotic treatment. How such cooperative mechanisms impact selection of plasmids during experiments in laboratory conditions is poorly understood. Here, we show in multiple bacterial species that the use of plasmid-encoded beta-lactamases leads to significant curing of plasmids in surface-grown bacteria. Furthermore, such curing was also evident for aminoglycoside phosphotransferase and tetracycline antiporter resistance mechanisms. Alternatively, antibiotic selection in liquid growth led to more robust plasmid maintenance, although plasmid loss was still observed. The net outcome of such plasmid loss is the generation of a heterogenous population of plasmid-containing and plasmid-free cells, leading to experimental confounds that are not widely appreciated.IMPORTANCEPlasmids are routinely used in microbiology as readouts of cell biology or tools to manipulate cell function. Central to these studies is the assumption that all cells in an experiment contain the plasmid. Plasmid maintenance in a host cell typically depends on a plasmid-encoded antibiotic resistance marker, which provides a selective advantage when the plasmid-containing cell is grown in the presence of antibiotic. Here, we find that growth of plasmid-containing bacteria on a surface and to a lesser extent in liquid culture in the presence of three distinct antibiotic families leads to the evolution of a significant number of plasmid-free cells, which rely on the resistance mechanisms of the plasmid-containing cells. This process generates a heterogenous population of plasmid-free and plasmid-containing bacteria, an outcome which could confound further experimentation.
Collapse
Affiliation(s)
- Amber M. Bedore
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Sarkar D, Manna M, Adhikary A, Reja S, Ghosh S, Saha T, Bhandari S, Kumar Das R. Nanometal surface energy transfer (NSET) from biologically active heterocyclic ligands to silver nanoparticles induces enhanced antimicrobial activity against gram-positive bacteria. Colloids Surf B Biointerfaces 2024; 234:113733. [PMID: 38219637 DOI: 10.1016/j.colsurfb.2023.113733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Herein we report the formation of a nanometal surface energy transfer (NSET) pair between a donor biologically active heterocyclic luminescent ligand such as 3-(1,3-Dioxoisoindolin-2-yl)-N, N-dimethylpropan-1-ammonium perchlorate (S4PNL; λem-408 nm) and an acceptor silver nanoparticle (Ag NP; λabs-406 nm). When the S4PNL ligand interacts with Ag NPs, the quenching in their luminescence intensity at 408 nm is noticed, with a Stern-Volmer constant of 0.8 × 104 M-1. The present donor-acceptor pair displays a binding constant of 2.8 × 104 M-1 and binding sites of 1.12. The current work shows the energy transfer from a molecular dipole (S4PNL) to a nanometal surface (Ag NP) and thus follows the nanometal surface energy transfer (NSET) ruler with an energy transfer efficiency of 80.0%, 50% energy transfer efficiency distance (d0) of 4.9 nm, donor-acceptor distance of 3.4 nm. The alteration in the zeta potential value of S4PNL upon interaction with AgNP clearly demonstrates the strong electrostatic interaction between donor and acceptor. Importantly, the current NSET pair shows enhanced antimicrobial activity against gram-positive bacteria such as Bacillus cereus (B. cereus) in comparison to their parent components i.e. S4PNL ligand and Ag NP. The NSET pair shows maximum inhibition against B. cereus (9202.21 ± 463.26 CFU/ml.) at 10% while minimum inhibition is observed at 0.01% of it (39,887.19 ± 242.67 CFU/ml.).
Collapse
Affiliation(s)
- Dilip Sarkar
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Mihir Manna
- Centre for Nano Technology, Indian Institute of Technology, Guwahati, Assam, India
| | - Amisha Adhikary
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Sahin Reja
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Supriyo Ghosh
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Tilak Saha
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Satyapriya Bhandari
- Department of Chemistry, Kandi Raj College (Govt. Aided), Affiliated to University of Kalyani, Kandi, Murshidabad, India.
| | - Rajesh Kumar Das
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India.
| |
Collapse
|
3
|
Hervin V, Roy V, Agrofoglio LA. Antibiotics and Antibiotic Resistance-Mur Ligases as an Antibacterial Target. Molecules 2023; 28:8076. [PMID: 38138566 PMCID: PMC10745416 DOI: 10.3390/molecules28248076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of Multidrug Resistance (MDR) strains of bacteria has accelerated the search for new antibacterials. The specific bacterial peptidoglycan biosynthetic pathway represents opportunities for the development of novel antibacterial agents. Among the enzymes involved, Mur ligases, described herein, and especially the amide ligases MurC-F are key targets for the discovery of multi-inhibitors, as they share common active sites and structural features.
Collapse
Affiliation(s)
| | - Vincent Roy
- ICOA UMR CNRS 7311, Université d’Orléans et CNRS, Rue de Chartres, 45067 Orléans, France;
| | - Luigi A. Agrofoglio
- ICOA UMR CNRS 7311, Université d’Orléans et CNRS, Rue de Chartres, 45067 Orléans, France;
| |
Collapse
|
4
|
Bedore AM, Waters CM. Plasmid-free cheater cells commonly evolve during laboratory growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541508. [PMID: 37292590 PMCID: PMC10245762 DOI: 10.1101/2023.05.19.541508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It has been nearly a century since the isolation and use of penicillin, heralding the discovery of a wide range of different antibiotics. In addition to clinical applications, such antibiotics have been essential laboratory tools, allowing for selection and maintenance of laboratory plasmids that encode cognate resistance genes. However, antibiotic resistance mechanisms can additionally function as public goods. For example, secretion of beta-lactamase from resistant cells, and subsequent degradation of nearby penicillin and related antibiotics, allows neighboring plasmid-free susceptible bacteria to survive antibiotic treatment. How such cooperative mechanisms impact selection of plasmids during experiments in laboratory conditions is poorly understood. Here, we show that the use of plasmid-encoded beta-lactamases leads to significant curing of plasmids in surface grown bacteria. Furthermore, such curing was also evident for aminoglycoside phosphotransferase and tetracycline antiporter resistance mechanisms. Alternatively, antibiotic selection in liquid growth led to more robust plasmid maintenance, although plasmid loss still occurred. The net outcome of such plasmid loss is the generation of a heterogenous population of plasmid-containing and plasmid-free cells, leading to experimental confounds that are not widely appreciated.
Collapse
Affiliation(s)
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA, 48824
| |
Collapse
|
5
|
Qumsani AT. Role of Nanocarrier Systems in Drug Delivery for Overcoming Multi-Drug Resistance in Bacteria. Pak J Biol Sci 2023; 26:131-137. [PMID: 37480270 DOI: 10.3923/pjbs.2023.131.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Multidrug-resistant (MDR) bacteria have risen alarmingly in the last few decades, posing a serious threat to human health. The need for effective bacterial resistance treatment is urgent and unmet due to the rise in morbidity and mortality that has coincided with the prevalence of infections caused by MDR bacteria. Using its creative and unconventional methods, effective antibiotics for MDR bacteria could be developed using nanomedicine techniques. To combat microbial resistance, a number of strategies have been developed, including the use of natural bactericides, the introduction of fresh antibiotics, the application of combination therapy and the creation of NP-based antibiotic nanocarriers. The absence of novel antibacterial agents has worsened the situation for MDR bacteria. Ineffective antibiotics used to treat MDR bacteria also contribute to the bacteria's tolerance growing. Nanoparticles (NPs) are the most efficient method for eliminating MDR bacteria because they serve as both carriers of natural antibiotics and antimicrobials and active agents against bacteria. Additionally, surface engineering of nanocarriers has important benefits for focusing on and modifying a variety of resistance mechanisms. The use of nanocarrier systems in drug delivery for overcoming bacterial resistance is covered in this review along with various mechanisms of antibiotic resistance.
Collapse
|
6
|
Ji Z, Boxer SG. β-Lactamases Evolve against Antibiotics by Acquiring Large Active-Site Electric Fields. J Am Chem Soc 2022; 144:22289-22294. [PMID: 36399691 PMCID: PMC10075085 DOI: 10.1021/jacs.2c10791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A compound bound covalently to an enzyme active site can act either as a substrate if the covalent linkage is readily broken up by the enzyme or as an inhibitor if the bond dissociates slowly. We tracked the reactivity of such bonds associated with the rise of the resistance to penicillin G (PenG) in protein evolution from penicillin-binding proteins (PBPs) to TEM β-lactamases and with the development of avibactam (Avb) to overcome the resistance. We found that the ester linkage in PBP-PenG is resistant to hydrolysis mainly due to the small electric fields present in the protein active site. Conversely, the same linkage in the descendant TEM-PenG experiences large electric fields that stabilize the more charge-separated transition state and thus lower the free energy barrier to hydrolysis. Specifically, the electric fields were improved from -59 to -140 MV/cm in an ancient evolution dating back billions of years, contributing 5 orders of magnitude rate acceleration. This trend continues today in the nullification of newly developed antibiotic drugs. The fast linkage hydrolysis acquired from evolution is counteracted by the upgrade of PenG to Avb whose linkage escapes from the hydrolysis by returning to a low-field environment. Using the framework of electrostatic catalysis, the electric field, an observable from vibrational spectroscopy, provides a unifying physical metric to understand protein evolution and to guide the design of covalent drugs.
Collapse
Affiliation(s)
- Zhe Ji
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Ji Z, Kozuch J, Mathews II, Diercks CS, Shamsudin Y, Schulz MA, Boxer SG. Protein Electric Fields Enable Faster and Longer-Lasting Covalent Inhibition of β-Lactamases. J Am Chem Soc 2022; 144:20947-20954. [PMID: 36324090 PMCID: PMC10066720 DOI: 10.1021/jacs.2c09876] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The widespread design of covalent drugs has focused on crafting reactive groups of proper electrophilicity and positioning toward targeted amino-acid nucleophiles. We found that environmental electric fields projected onto a reactive chemical bond, an overlooked design element, play essential roles in the covalent inhibition of TEM-1 β-lactamase by avibactam. Using the vibrational Stark effect, the magnitudes of the electric fields that are exerted by TEM active sites onto avibactam's reactive C═O were measured and demonstrate an electrostatic gating effect that promotes bond formation yet relatively suppresses the reverse dissociation. These results suggest new principles of covalent drug design and off-target site prediction. Unlike shape and electrostatic complementary which address binding constants, electrostatic catalysis drives reaction rates, essential for covalent inhibition, and deepens our understanding of chemical reactivity, selectivity, and stability in complex systems.
Collapse
Affiliation(s)
- Zhe Ji
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jacek Kozuch
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
- Research Building SupraFAB, Altensteinstreet 23a, 14195 Berlin, Germany
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Christian S Diercks
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Yasmin Shamsudin
- Department of Chemistry-BMC, Uppsala University, 752 37 Uppsala, Sweden
| | - Mirjam A Schulz
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
- Research Building SupraFAB, Altensteinstreet 23a, 14195 Berlin, Germany
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Martin JF, Alvarez-Alvarez R, Liras P. Penicillin-Binding Proteins, β-Lactamases, and β-Lactamase Inhibitors in β-Lactam-Producing Actinobacteria: Self-Resistance Mechanisms. Int J Mol Sci 2022; 23:5662. [PMID: 35628478 PMCID: PMC9146315 DOI: 10.3390/ijms23105662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
The human society faces a serious problem due to the widespread resistance to antibiotics in clinical practice. Most antibiotic biosynthesis gene clusters in actinobacteria contain genes for intrinsic self-resistance to the produced antibiotics, and it has been proposed that the antibiotic resistance genes in pathogenic bacteria originated in antibiotic-producing microorganisms. The model actinobacteria Streptomyces clavuligerus produces the β-lactam antibiotic cephamycin C, a class A β-lactamase, and the β lactamases inhibitor clavulanic acid, all of which are encoded in a gene supercluster; in addition, it synthesizes the β-lactamase inhibitory protein BLIP. The secreted clavulanic acid has a synergistic effect with the cephamycin produced by the same strain in the fight against competing microorganisms in its natural habitat. High levels of resistance to cephamycin/cephalosporin in actinobacteria are due to the presence (in their β-lactam clusters) of genes encoding PBPs which bind penicillins but not cephalosporins. We have revised the previously reported cephamycin C and clavulanic acid gene clusters and, in addition, we have searched for novel β-lactam gene clusters in protein databases. Notably, in S. clavuligerus and Nocardia lactamdurans, the β-lactamases are retained in the cell wall and do not affect the intracellular formation of isopenicillin N/penicillin N. The activity of the β-lactamase in S. clavuligerus may be modulated by the β-lactamase inhibitory protein BLIP at the cell-wall level. Analysis of the β-lactam cluster in actinobacteria suggests that these clusters have been moved by horizontal gene transfer between different actinobacteria and have culminated in S. clavuligerus with the organization of an elaborated set of genes designed for fine tuning of antibiotic resistance and cell wall remodeling for the survival of this Streptomyces species. This article is focused specifically on the enigmatic connection between β-lactam biosynthesis and β-lactam resistance mechanisms in the producer actinobacteria.
Collapse
Affiliation(s)
| | | | - Paloma Liras
- Departamento de Biología Molecular, Universidad de León, 24071 León, Spain; (J.F.M.); (R.A.-A.)
| |
Collapse
|
9
|
López C, Delmonti J, Bonomo RA, Vila AJ. Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm. J Biol Chem 2022; 298:101665. [PMID: 35120928 DOI: 10.1016/j.jbc.2022.101665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the evolution of metallo-β-lactamases (MBLs) is fundamental to deciphering the mechanistic basis of resistance to carbapenems in pathogenic and opportunistic bacteria. Presently, these MBL producing pathogens are linked to high rates of morbidity and mortality worldwide. However, the study of the biochemical and biophysical features of MBLs in vitro provides an incomplete picture of their evolutionary potential, since this limited and artificial environment disregards the physiological context where evolution and selection take place. Herein, we describe recent efforts aimed to address the evolutionary traits acquired by different clinical variants of MBLs in conditions mimicking their native environment (the bacterial periplasm) and considering whether they are soluble or membrane-bound proteins. This includes addressing the metal content of MBLs within the cell under zinc starvation conditions, and the context provided by different bacterial hosts that result in particular resistance phenotypes. Our analysis highlights recent progress bridging the gap between in vitro and in-cell studies.
Collapse
Affiliation(s)
- Carolina López
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Juliana Delmonti
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Medical Service and GRECC, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina.
| |
Collapse
|
10
|
Selim S, Faried OA, Almuhayawi MS, Mohammed OA, Saleh FM, Warrad M. Dynamic Gene Clusters Mediating Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates. Antibiotics (Basel) 2022; 11:antibiotics11020168. [PMID: 35203771 PMCID: PMC8868416 DOI: 10.3390/antibiotics11020168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Acinetobacter baumanni (A. baumannii), a nonfermenting Gram-negative bacterium, has recently been associated with a broad range of nosocomial infections. To gain more meaningful insight into the problem of nosocomial illnesses caused by the multidrug-resistant (MDR) A. baumannii, as well as the factors that increase the risk of catching these infections, this investigation included a total of 86 clinical A. baumannii infections. Repetitive extragenic palindromic (REP)-PCR was used to investigate imipenem-resistant A. baumannii isolates for dynamic gene clusters causing carbapenem resistance. Four distinct A. baumannii lineages were found in the REP-PCR-DNA fingerprints of all isolates, with 95% of the samples coming from two dominant lineages. Imipenem, amikacin, and ciprofloxacin were less effective against genotype (A) isolates because of enhanced antibiotic tolerance. Lastly, to gain more insight into the mode of action of imipenem, we explored the binding affinity of imipenem toward different Acinetobacter baumannii OXA beta-lactamase class enzymes.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence:
| | - Osama Ahmed Faried
- Medical Microbiology and Immunology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62513, Egypt;
| | - Mohamed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Osama A. Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia
| | - Fayez M. Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al-Quriat 77454, Saudi Arabia;
| |
Collapse
|
11
|
H. Abdellattif M, Elkamhawy A, Nada H. Synthesis, Biological Evaluation, and In Silico Studies of New Heterocycles Incorporating 4,5,6,7-Tetrabromophthalimide Moiety as Potential Antibacterial and Anticancer Agents. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Reja S, Mukherjee D, Das P, Kumar P, Das RK. 3-(1,3-Dioxoisoindolin-2-yl)-N,N-dimethylpropan-1-ammonium perchlorate: Synthesis, crystal structure, docking study and in vitro anticancer activity against the human hepatomas cell line (Hep G2). J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
14
|
Yang X, Ye W, Qi Y, Ying Y, Xia Z. Overcoming Multidrug Resistance in Bacteria Through Antibiotics Delivery in Surface-Engineered Nano-Cargos: Recent Developments for Future Nano-Antibiotics. Front Bioeng Biotechnol 2021; 9:696514. [PMID: 34307323 PMCID: PMC8297506 DOI: 10.3389/fbioe.2021.696514] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
In the recent few decades, the increase in multidrug-resistant (MDR) bacteria has reached an alarming rate and caused serious health problems. The incidence of infections due to MDR bacteria has been accompanied by morbidity and mortality; therefore, tackling bacterial resistance has become an urgent and unmet challenge to be properly addressed. The field of nanomedicine has the potential to design and develop efficient antimicrobials for MDR bacteria using its innovative and alternative approaches. The uniquely constructed nano-sized antimicrobials have a predominance over traditional antibiotics because their small size helps them in better interaction with bacterial cells. Moreover, surface engineering of nanocarriers offers significant advantages of targeting and modulating various resistance mechanisms, thus owe superior qualities for overcoming bacterial resistance. This review covers different mechanisms of antibiotic resistance, application of nanocarrier systems in drug delivery, functionalization of nanocarriers, application of functionalized nanocarriers for overcoming bacterial resistance, possible limitations of nanocarrier-based approach for antibacterial delivery, and future of surface-functionalized antimicrobial delivery systems.
Collapse
Affiliation(s)
- Xinfu Yang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wenxin Ye
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yajun Qi
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yin Ying
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhongni Xia
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Tang XL, Hu WY, Wang ZC, Zheng RC, Zheng YG. Efficient strategies to enhance plasmid stability for fermentation of recombinant Escherichia coli harboring tyrosine phenol lyase. Biotechnol Lett 2021; 43:1265-1276. [PMID: 33830386 DOI: 10.1007/s10529-021-03082-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/13/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To solve the bottleneck of plasmid instability during microbial fermentation of L-DOPA with recombinant Escherichia coli expressing heterologous tyrosine phenol lyase. RESULTS The tyrosine phenol lyase from Fusobacterium nucleatum was constitutively expressed in E. coli and a fed-batch fermentation process with temperature down-shift cultivation was performed. Efficient strategies including replacing the original ampicillin resistance gene, as well as inserting cer site that is active for resolving plasmid multimers were applied. As a result, the plasmid stability was increased. The co-use of cer site on plasmid and kanamycin in culture medium resulted in proportion of plasmid containing cells maintained at 100% after fermentation for 35 h. The specific activity of tyrosine phenol lyase reached 1493 U/g dcw, while the volumetric activity increased from 2943 to 14,408 U/L for L-DOPA biosynthesis. CONCLUSIONS The established strategies for plasmid stability is not only promoted the applicability of the recombinant cells for L-DOPA production, but also provides important guidance for industrial fermentation with improved microbial productivity.
Collapse
Affiliation(s)
- Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Wen-Ye Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Chao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
16
|
Othman IMM, Gad-Elkareem MAM, Amr AEGE, Al-Omar MA, Nossier ES, Elsayed EA. Novel heterocyclic hybrids of pyrazole targeting dihydrofolate reductase: design, biological evaluation and in silico studies. J Enzyme Inhib Med Chem 2021; 35:1491-1502. [PMID: 32668994 PMCID: PMC7470138 DOI: 10.1080/14756366.2020.1791842] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel series of pyrazole analogues including hydrazones, pyrazolo[4,3-c]-pyridazines, pyrazolo[3,4-e][1,2,4]triazine and pyrazolo[3,4-d][1,2,3]triazoles was designed, synthesised and screened for their in vitro antimicrobial and DHFR inhibition activity. Compounds bearing benzenesulphonamide moiety incorporated with 3-methyl-5-oxo-1H-pyrazol-4(5H)-ylidene) hydrazine 3a or 6-amino-7-cyano-3-methyl-5H-pyrazolo[4,3-c]pyridazine 6a revealed excellent and broad spectrum antimicrobial activity comparable to ciprofloxacin and amphotericin B as positive antibiotic and antifungal controls, respectively. Furthermore, these derivatives proved to be the most active DHFR inhibitors with IC50 values 0.11 ± 1.05 and 0.09 ± 0.91 µM, in comparison with methotrexate (IC50 = 0.14 ± 1.25 µM). The in silico studies were done to calculate the drug-likeness and toxicity risk parameters of the newly synthesised derivatives. Additionally, the high potency of the pyrazole derivatives bearing sulphonamide against DHFR was confirmed with molecular docking and might be used as an optimum lead for further modification.
Collapse
Affiliation(s)
- Ismail M M Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed A M Gad-Elkareem
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, Egypt.,Department of Chemistry, Faculty of Science and Arts of Baljurashi, Albaha University, Saudi Arabia
| | - Abd El-Galil E Amr
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Applied Organic Chemistry Department, National Research Centre, Giza, Egypt
| | - Mohamed A Al-Omar
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Elsayed A Elsayed
- Zoology Department, Bioproducts Research Chair, Faculty of Science, King Saud University, Riyadh, Saudi Arabia.,Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
17
|
França A, Gaio V, Lopes N, Melo LDR. Virulence Factors in Coagulase-Negative Staphylococci. Pathogens 2021; 10:170. [PMID: 33557202 PMCID: PMC7913919 DOI: 10.3390/pathogens10020170] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) have emerged as major pathogens in healthcare-associated facilities, being S. epidermidis, S. haemolyticus and, more recently, S. lugdunensis, the most clinically relevant species. Despite being less virulent than the well-studied pathogen S. aureus, the number of CoNS strains sequenced is constantly increasing and, with that, the number of virulence factors identified in those strains. In this regard, biofilm formation is considered the most important. Besides virulence factors, the presence of several antibiotic-resistance genes identified in CoNS is worrisome and makes treatment very challenging. In this review, we analyzed the different aspects involved in CoNS virulence and their impact on health and food.
Collapse
Affiliation(s)
- Angela França
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (V.G.); (N.L.)
| | | | | | - Luís D. R. Melo
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (V.G.); (N.L.)
| |
Collapse
|
18
|
Can We Exploit β-Lactamases Intrinsic Dynamics for Designing More Effective Inhibitors? Antibiotics (Basel) 2020; 9:antibiotics9110833. [PMID: 33233339 PMCID: PMC7700307 DOI: 10.3390/antibiotics9110833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
β-lactamases (BLs) represent the most frequent cause of antimicrobial resistance in Gram-negative bacteria. Despite the continuous efforts in the development of BL inhibitors (BLIs), new BLs able to hydrolyze the last developed antibiotics rapidly emerge. Moreover, the insurgence rate of effective mutations is far higher than the release of BLIs able to counteract them. This results in a shortage of antibiotics that is menacing the effective treating of infectious diseases. The situation is made even worse by the co-expression in bacteria of BLs with different mechanisms and hydrolysis spectra, and by the lack of inhibitors able to hit them all. Differently from other targets, BL flexibility has not been deeply exploited for drug design, possibly because of the small protein size, for their apparent rigidity and their high fold conservation. In this mini-review, we discuss the evidence for BL binding site dynamics being crucial for catalytic efficiency, mutation effect, and for the design of new inhibitors. Then, we report on identified allosteric sites in BLs and on possible allosteric inhibitors, as a strategy to overcome the frequent occurrence of mutations in BLs and the difficulty of competing efficaciously with substrates. Nevertheless, allosteric inhibitors could work synergistically with traditional inhibitors, increasing the chances of restoring bacterial susceptibility towards available antibiotics.
Collapse
|
19
|
Ramachandran B, Jeyakanthan J, Lopes BS. Molecular docking, dynamics and free energy analyses of Acinetobacter baumannii OXA class enzymes with carbapenems investigating their hydrolytic mechanisms. J Med Microbiol 2020; 69:1062-1078. [PMID: 32773005 DOI: 10.1099/jmm.0.001233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction. Acinetobacter baumannii is a critical priority pathogen listed by the World Health Organization due to increasing levels of resistance to carbapenem classes of antibiotics. It causes wound and other nosocomial infections, which can be life-threatening. Hence, there is an urgent need for the development of new classes of antibiotics.Aim. To study the interaction of carabapenems with class D beta-lactamases (oxacillinases) and analyse drug resistance by studying enzyme-substrate complexes using modelling approaches as a means of establishing correlations with the phenotypic data.Methodology. The three-dimensional structures of carbapenems (doripenem, ertapenem, imipenem and meropenem) were obtained from DrugBank and screened against class D beta-lactamases. Further, the study was extended with their variants. The variants' structure was homology-modelled using the Schrödinger Prime module (Schrödinger LLC, NY, USA).Results. The first discovered intrinsic beta-lactamase of Acinetobacter baumannii, OXA-51, had a binding energy value of -40.984 kcal mol-1, whereas other OXA-51 variants, such as OXA-64, OXA-110 and OXA-111, have values of -60.638, -66.756 and -67.751 kcal mol-1, respectively. The free energy values of OXA-51 variants produced better results than those of other groups.Conclusions. Imipenem and meropenem showed MIC values of 2 and 8 µg ml-1, respectively against OXA-51 in earlier studies, indicating that these are the most effective drugs for treatment of A. baumannii infection. According to our results, OXA-51 is an active enzyme that shows better interactions and is capable of hydrolyzing carbapenems. When correlating the hydrogen-bonding interaction with MIC values, the predicted results are in good agreement and might provide initial insights into performing similar studies related to OXA variants or other antibiotic-enzyme-based studies.
Collapse
Affiliation(s)
- Balajee Ramachandran
- Structural Biology and Bio-computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi - 630 004, Tamil Nadu, India
| | - Jeyaraman Jeyakanthan
- Structural Biology and Bio-computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi - 630 004, Tamil Nadu, India
| | - Bruno S Lopes
- School of Medicine, Medical Sciences and Nutrition, 0:025 Polwarth building, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
20
|
Thomas CM, Timson DJ. The Mechanism of Action of Praziquantel: Can New Drugs Exploit Similar Mechanisms? Curr Med Chem 2020; 27:676-696. [DOI: 10.2174/0929867325666180926145537] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/06/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
Abstract
Praziquantel (PZQ) is the drug of choice for treating infection with worms from the
genus Schistosoma. The drug is effective, cheap and has few side effects. However, despite its
use in millions of patients for over 40 years its molecular mechanism of action remains elusive.
Early studies demonstrated that PZQ disrupts calcium ion homeostasis in the worm and
the current consensus is that it antagonises voltage-gated calcium channels. It is hypothesised
that disruption of these channels results in uncontrolled calcium ion influx leading to uncontrolled
muscle contraction and paralysis. However, other experimental studies have suggested
a role for myosin regulatory light chains and adenosine uptake in the drug’s mechanism of
action. Assuming voltage-gated calcium channels do represent the main molecular target of
PZQ, the precise binding site for the drug remains to be identified. Unlike other commonly
used anti-parasitic drugs, there are few definitive reports of resistance to PZQ in the literature.
The lack of knowledge about PZQ’s molecular mechanism(s) undermines our ability to predict
how resistance might arise and also hinder our attempts to develop alternative antischistosomal
drugs which exploit the same target(s). Some PZQ derivatives have been identified
which also kill or paralyse schistosomes in culture. However, none of these are in widespread
clinical use. There is a pressing need for fundamental research into the molecular mechanism(
s) of action of PZQ. Such research would enable new avenues for antischsistosomal
drug discovery.
Collapse
Affiliation(s)
- Charlotte M. Thomas
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - David J. Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
21
|
Jakubczyk D, Dussart F. Selected Fungal Natural Products with Antimicrobial Properties. Molecules 2020; 25:E911. [PMID: 32085562 PMCID: PMC7070998 DOI: 10.3390/molecules25040911] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/14/2023] Open
Abstract
Fungal natural products and their effects have been known to humankind for hundreds of years. For example, toxic ergot alkaloids produced by filamentous fungi growing on rye poisoned thousands of people and livestock throughout the Middle Ages. However, their later medicinal applications, followed by the discovery of the first class of antibiotics, penicillins and other drugs of fungal origin, such as peptidic natural products, terpenoids or polyketides, have altered the historically negative reputation of fungal "toxins". The development of new antimicrobial drugs is currently a major global challenge, mainly due to antimicrobial resistance phenomena. Therefore, the structures, biosynthesis and antimicrobial activity of selected fungal natural products are described here.
Collapse
Affiliation(s)
- Dorota Jakubczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Francois Dussart
- Department of Agriculture, Horticulture and Engineering Science, Scotland’s Rural College (SRUC), Edinburgh EH9 3JG, UK;
| |
Collapse
|
22
|
On-chip MIC by Combining Concentration Gradient Generator and Flanged Chamber Arrays. MICROMACHINES 2020; 11:mi11020207. [PMID: 32079258 PMCID: PMC7074598 DOI: 10.3390/mi11020207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 01/31/2023]
Abstract
Minimum inhibition concentration (MIC) of antibiotic is an effective value to ascertain the agent and minimum dosage of inhibiting bacterial growth. However, current techniques to determine MIC are labor intensive and time-consuming, and require skilled operator and high initial concentration of bacteria. To simplify the operation and reduce the time of inhibition test, we developed a microfluidic system, containing a concentration generator and sub-micro-liter chambers, for rapid bacterial growth and inhibition test. To improve the mixing effect, a micropillar array in honeycomb-structure channels is designed, so the steady concentration gradient of amoxicillin can be generated. The flanged chambers are used to culture bacteria under the condition of continuous flow and the medium of chambers is refreshed constantly, which could supply the sufficient nutrient for bacteria growth and take away the metabolite. Based on the microfluidic platform, the bacterial growth with antibiotic inhibition on chip can be quantitatively measured and MIC can be obtained within six hours using low initial concentration of bacteria. Overall, this microfluidic platform has the potential to provide rapidness and effectiveness to screen bacteria and determine MIC of corresponding antibiotics in clinical therapies.
Collapse
|
23
|
Othman IMM, Gad-Elkareem MAM, El-Naggar M, Nossier ES, Amr AEGE. Novel phthalimide based analogues: design, synthesis, biological evaluation, and molecular docking studies. J Enzyme Inhib Med Chem 2019; 34:1259-1270. [PMID: 31287341 PMCID: PMC6691772 DOI: 10.1080/14756366.2019.1637861] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pyrazolylphthalimide derivative 4 was synthesized and reacted with different reagents to afford the target compounds imidazopyrazoles 5-7, pyrazolopyrimidines 9, 12, 14 and pyrazolotriazines 16, 17 containing phthalimide moiety. The prepared compounds were established by different spectral data and elemental analyses. Additionally, all synthesized derivatives were screened for their antibacterial activity against four types of Gram + ve and Gram-ve strains, and for antifungal activity against two fungi micro-organisms by well diffusion method. Moreover, the antiproliferative activity was tested for all compounds against human liver (HepG-2) cell line in comparison with the reference vinblastine. Moreover, drug-likeness and toxicity risk parameters of the newly synthesized compounds were calculated using in silico studies. The data from structure-actvity relationship (SAR) analysis suggested that phthalimide derivative bearing 3-aminopyrazolone moiety, 4 illustrated the best antimicrobial and antitumor activities and might be considered as a lead for further optimization. To investigate the mechanism of the antimicrobial and anticancer activities, enzymatic assay and molecular docking studies were carried out on E. coli topoisomerase II DNA gyrase B and VEGFR-2 enzymes.
Collapse
Affiliation(s)
- Ismail M M Othman
- a Department of Chemistry, Faculty of Science , Al-Azhar University , Assiut , Egypt
| | - Mohamed A M Gad-Elkareem
- a Department of Chemistry, Faculty of Science , Al-Azhar University , Assiut , Egypt.,b Department of Chemistry, Faculty of Science and Arts of Baljurashi , Albaha University , Saudi Arabia
| | - Mohamed El-Naggar
- c Chemistry Department, Faculty of Sciences , University of Sharjah , Sharjah , UAE
| | - Eman S Nossier
- d Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy (Girls) , Al-Azhar University , Cairo , Egypt
| | - Abd El-Galil E Amr
- e Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC) , College of Pharmacy, King Saud University , Riyadh , Saudi Arabia.,f Applied Organic Chemistry Department , National Research Centre , Giza , Egypt
| |
Collapse
|
24
|
Torelli NJ, Akhtar A, DeFrees K, Jaishankar P, Pemberton OA, Zhang X, Johnson C, Renslo AR, Chen Y. Active-Site Druggability of Carbapenemases and Broad-Spectrum Inhibitor Discovery. ACS Infect Dis 2019; 5:1013-1021. [PMID: 30942078 DOI: 10.1021/acsinfecdis.9b00052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Serine and metallo-carbapenemases are a serious health concern due to their capability to hydrolyze nearly all β-lactam antibiotics. However, the molecular basis for their unique broad-spectrum substrate profile is poorly understood, particularly for serine carbapenemases, such as KPC-2. Using substrates and newly identified small molecules, we compared the ligand binding properties of KPC-2 with the noncarbapenemase CTX-M-14, both of which are Class A β-lactamases with highly similar active sites. Notably, compared to CTX-M-14, KPC-2 was more potently inhibited by hydrolyzed β-lactam products (product inhibition), as well as by a series of novel tetrazole-based inhibitors selected from molecular docking against CTX-M-14. Together with complex crystal structures, these data suggest that the KPC-2 active site has an enhanced ability to form favorable interactions with substrates and small molecule ligands due to its increased hydrophobicity and flexibility. Such properties are even more pronounced in metallo-carbapenemases, such as NDM-1, which was also inhibited by some of the novel tetrazole compounds, including one displaying comparable low μM affinities against both KPC-2 and NDM-1. Our results suggest that carbapenemase activity confers an evolutionary advantage on producers via a broad β-lactam substrate scope but also a mechanistic Achilles' heel that can be exploited for new inhibitor discovery. The complex structures demonstrate, for the first time, how noncovalent inhibitors can be engineered to simultaneously target both serine and metallo-carbapenemases. Despite the relatively modest activity of the current compounds, these studies also demonstrate that hydrolyzed products and tetrazole-based chemotypes can provide valuable starting points for broad-spectrum inhibitor discovery against carbapenemases.
Collapse
Affiliation(s)
- Nicholas J. Torelli
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Afroza Akhtar
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Kyle DeFrees
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 600 16th Street, Genentech Hall N572B, San Francisco, California 94158, United States
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 600 16th Street, Genentech Hall N572B, San Francisco, California 94158, United States
| | - Orville A. Pemberton
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Cody Johnson
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 600 16th Street, Genentech Hall N572B, San Francisco, California 94158, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| |
Collapse
|
25
|
Khan NH, Bui AA, Xiao Y, Sutton RB, Shaw RW, Wylie BJ, Latham MP. A DNA aptamer reveals an allosteric site for inhibition in metallo-β-lactamases. PLoS One 2019; 14:e0214440. [PMID: 31009467 PMCID: PMC6476477 DOI: 10.1371/journal.pone.0214440] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
The hydrolysis of β-lactam antibiotics by β-lactamase enzymes is the most prominent antibiotic resistance mechanism for many pathogenic bacteria. Out of this broad class of enzymes, metallo-β-lactamases are of special clinical interest because of their broad substrate specificities. Several in vitro inhibitors for various metallo-β-lactamases have been reported with no clinical efficacy. Previously, we described a 10-nucleotide single stranded DNA aptamer (10-mer) that inhibits Bacillus cereus 5/B/6 metallo-β-lactamase very effectively. Here, we find that the aptamer shows uncompetitive inhibition of Bacillus cereus 5/B/6 metallo-β-lactamase during cefuroxime hydrolysis. To understand the mechanism of inhibition, we report a 2.5 Å resolution X-ray crystal structure and solution-state NMR analysis of the free enzyme. Chemical shift perturbations were observed in the HSQC spectra for several residues upon titrating with increasing concentrations of the 10-mer. In the X-ray crystal structure, these residues are distal to the active site, suggesting an allosteric mechanism for the aptamer inhibition of the enzyme. HADDOCK molecular docking simulations suggest that the 10-mer docks 26 Å from the active site. We then mutated the three lysine residues in the basic binding patch to glutamine and measured the catalytic activity and inhibition by the 10-mer. No significant inhibition of these mutants was observed by the 10-mer as compared to wild type. Interestingly, mutation of Lys50 (Lys78; according to standard MBL numbering system) resulted in reduced enzymatic activity relative to wild type in the absence of inhibitor, further highlighting an allosteric mechanism for inhibition.
Collapse
Affiliation(s)
- Nazmul H. Khan
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Anthony A. Bui
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Yang Xiao
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - R. Bryan Sutton
- Department of Cell Physiology & Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Robert W. Shaw
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Benjamin J. Wylie
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Michael P. Latham
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
26
|
Salimraj R, Hinchliffe P, Kosmopoulou M, Tyrrell JM, Brem J, van Berkel SS, Verma A, Owens RJ, McDonough MA, Walsh TR, Schofield CJ, Spencer J. Crystal structures of VIM-1 complexes explain active site heterogeneity in VIM-class metallo-β-lactamases. FEBS J 2019; 286:169-183. [PMID: 30430727 PMCID: PMC6326847 DOI: 10.1111/febs.14695] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/06/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Metallo-β-Lactamases (MBLs) protect bacteria from almost all β-lactam antibiotics. Verona integron-encoded MBL (VIM) enzymes are among the most clinically important MBLs, with VIM-1 increasing in carbapenem-resistant Enterobacteriaceae (Escherichia coli, Klebsiella pneumoniae) that are among the hardest bacterial pathogens to treat. VIM enzymes display sequence variation at residues (224 and 228) that in related MBLs are conserved and participate in substrate binding. How they accommodate this variability, while retaining catalytic efficiency against a broad substrate range, has remained unclear. Here, we present crystal structures of VIM-1 and its complexes with a substrate-mimicking thioenolate inhibitor, ML302F, that restores meropenem activity against a range of VIM-1 producing clinical strains, and the hydrolysed product of the carbapenem meropenem. Comparison of these two structures identifies a water-mediated hydrogen bond, between the carboxylate group of substrate/inhibitor and the backbone carbonyl of the active site zinc ligand Cys221, that is common to both complexes. Structural comparisons show that the responsible Cys221-bound water is observed in all known VIM structures, participates in carboxylate binding with other inhibitor classes, and thus effectively replicates the role of the conserved Lys224 in analogous complexes with other MBLs. These results provide a mechanism for substrate binding that permits the variation at positions 224 and 228 that is a hallmark of VIM MBLs. ENZYMES: EC 3.5.2.6 DATABASES: Co-ordinates and structure factors for protein structures described in this manuscript have been deposited in the Protein Data Bank (www.rcsb.org/pdb) with accession codes 5N5G (VIM-1), 5N5H (VIM-1:ML302F complex) and 5N5I (VIM-1-hydrolysed meropenem complex).
Collapse
Affiliation(s)
- Ramya Salimraj
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | | | | | | | - Jürgen Brem
- Department of ChemistryUniversity of OxfordUK
| | | | - Anil Verma
- Oxford Protein Production Facility UKRutherford Appleton LaboratoryOxfordshireUK
| | - Raymond J. Owens
- Oxford Protein Production Facility UKRutherford Appleton LaboratoryOxfordshireUK
| | | | | | | | - James Spencer
- School of Cellular and Molecular MedicineUniversity of BristolUK
| |
Collapse
|
27
|
Shi P, Zhang Y, Li Y, Bian L. Probing the interaction of l
-captopril with metallo-β-lactamase CcrA by fluorescence spectra and molecular dynamic simulation. LUMINESCENCE 2018; 33:954-961. [DOI: 10.1002/bio.3495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/18/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Penghui Shi
- College of Life Science; Northwest University; Xi'an Shaanxi People's Republic of China
| | - Yan Zhang
- College of Life Science; Northwest University; Xi'an Shaanxi People's Republic of China
| | - Yuhua Li
- College of Life Science; Northwest University; Xi'an Shaanxi People's Republic of China
| | - Liujiao Bian
- College of Life Science; Northwest University; Xi'an Shaanxi People's Republic of China
| |
Collapse
|
28
|
Bassegoda A, Ivanova K, Ramon E, Tzanov T. Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Appl Microbiol Biotechnol 2018; 102:2075-2089. [PMID: 29392390 DOI: 10.1007/s00253-018-8776-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 01/26/2023]
Abstract
Drug resistance occurrence is a global healthcare concern responsible for the increased morbidity and mortality in hospitals, time of hospitalisation and huge financial loss. The failure of the most antibiotics to kill "superbugs" poses the urgent need to develop innovative strategies aimed at not only controlling bacterial infection but also the spread of resistance. The prevention of pathogen host invasion by inhibiting bacterial virulence and biofilm formation, and the utilisation of bactericidal agents with different mode of action than classic antibiotics are the two most promising new alternative strategies to overcome antibiotic resistance. Based on these novel approaches, researchers are developing different advanced materials (nanoparticles, hydrogels and surface coatings) with novel antimicrobial properties. In this review, we summarise the recent advances in terms of engineered materials to prevent bacteria-resistant infections according to the antimicrobial strategies underlying their design.
Collapse
Affiliation(s)
- Arnau Bassegoda
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Kristina Ivanova
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Eva Ramon
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain.
| |
Collapse
|
29
|
Cohen-Khait R, Dym O, Hamer-Rogotner S, Schreiber G. Promiscuous Protein Binding as a Function of Protein Stability. Structure 2017; 25:1867-1874.e3. [DOI: 10.1016/j.str.2017.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/25/2017] [Accepted: 11/03/2017] [Indexed: 11/28/2022]
|
30
|
Lewandowski EM, Lethbridge KG, Sanishvili R, Skiba J, Kowalski K, Chen Y. Mechanisms of proton relay and product release by Class A β-lactamase at ultrahigh resolution. FEBS J 2017; 285:87-100. [PMID: 29095570 DOI: 10.1111/febs.14315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/15/2017] [Accepted: 10/28/2017] [Indexed: 01/25/2023]
Abstract
The β-lactam antibiotics inhibit penicillin-binding proteins (PBPs) by forming a stable, covalent, acyl-enzyme complex. During the evolution from PBPs to Class A β-lactamases, the β-lactamases acquired Glu166 to activate a catalytic water and cleave the acyl-enzyme bond. Here we present three product complex crystal structures of CTX-M-14 Class A β-lactamase with a ruthenocene-conjugated penicillin-a 0.85 Å resolution structure of E166A mutant complexed with the penilloate product, a 1.30 Å resolution complex structure of the same mutant with the penicilloate product, and a 1.18 Å resolution complex structure of S70G mutant with a penicilloate product epimer-shedding light on the catalytic mechanisms and product inhibition of PBPs and Class A β-lactamases. The E166A-penilloate complex captured the hydrogen bonding network following the protonation of the leaving group and, for the first time, unambiguously show that the ring nitrogen donates a proton to Ser130, which in turn donates a proton to Lys73. These observations indicate that in the absence of Glu166, the equivalent lysine would be neutral in PBPs and therefore capable of serving as the general base to activate the catalytic serine. Together with previous results, this structure suggests a common proton relay network shared by Class A β-lactamases and PBPs, from the catalytic serine to the lysine, and ultimately to the ring nitrogen. Additionally, the E166A-penicilloate complex reveals previously unseen conformational changes of key catalytic residues during the release of the product, and is the first structure to capture the hydrolyzed product in the presence of an unmutated catalytic serine. DATABASE Structural data are available in the PDB database under the accession numbers 5TOP, 5TOY, and 5VLE.
Collapse
Affiliation(s)
- Eric M Lewandowski
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| | - Kathryn G Lethbridge
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| | - Ruslan Sanishvili
- GMCA@APS, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, IL, USA
| | - Joanna Skiba
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Poland
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Poland
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
31
|
Gao M, Glenn AE, Blacutt AA, Gold SE. Fungal Lactamases: Their Occurrence and Function. Front Microbiol 2017; 8:1775. [PMID: 28974947 PMCID: PMC5610705 DOI: 10.3389/fmicb.2017.01775] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/31/2017] [Indexed: 01/07/2023] Open
Abstract
Fungi are absorptive feeders and thus must colonize and ramify through their substrate to survive. In so doing they are in competition, particularly in the soil, with myriad microbes. These microbes use xenobiotic compounds as offensive weapons to compete for nutrition, and fungi must be sufficiently resistant to these xenobiotics. One prominent mechanism of xenobiotic resistance is through production of corresponding degrading enzymes. As typical examples, bacterial β-lactamases are well known for their ability to degrade and consequently confer resistance to β-lactam antibiotics, a serious emerging problem in health care. We have identified many fungal genes that putatively encode proteins exhibiting a high degree of similarity to β-lactamases. However, fungal cell walls are structurally different from the bacterial peptidoglycan target of β-lactams. This raises the question, why do fungi have lactamases and what are their functions? Previously, we identified and characterized one Fusarium verticillioides lactamase encoding gene (FVEG_08291) that confers resistance to the benzoxazinoid phytoanticipins produced by maize, wheat, and rye. Since benzoxazinoids are γ-lactams with five-membered rings rather than the four-membered β-lactams, we refer to the predicted enzymes simply as lactamases, rather than β-lactamases. An overview of fungal genomes suggests a strong positive correlation between environmental niche complexity and the number of fungal lactamase encoding genes, with soil-borne fungi showing dramatic amplification of lactamase encoding genes compared to those fungi found in less biologically complex environments. Remarkably, Fusarium species frequently possess large (>40) numbers of these genes. We hypothesize that many fungal hydrolytic lactamases are responsible for the degradation of plant or microbial xenobiotic lactam compounds. Alignment of protein sequences revealed two conserved patterns resembling bacterial β-lactamases, specifically those possessing PFAM domains PF00753 or PF00144. Structural predictions of F. verticillioides lactamases also suggested similar catalytic mechanisms to those of their bacterial counterparts. Overall, we present the first in-depth analysis of lactamases in fungi, and discuss their potential relevance to fitness and resistance to antimicrobials in the environment.
Collapse
Affiliation(s)
- Minglu Gao
- Department of Plant Pathology, The University of Georgia, AthensGA, United States
| | - Anthony E. Glenn
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture – Agricultural Research Service, AthensGA, United States
| | - Alex A. Blacutt
- Department of Plant Pathology, The University of Georgia, AthensGA, United States
| | - Scott E. Gold
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture – Agricultural Research Service, AthensGA, United States
| |
Collapse
|
32
|
Ul Haq F, Abro A, Raza S, Liedl KR, Azam SS. Molecular dynamics simulation studies of novel β-lactamase inhibitor. J Mol Graph Model 2017; 74:143-152. [PMID: 28432959 DOI: 10.1016/j.jmgm.2017.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/31/2023]
Abstract
New Delhi Metallo-β-Lactamase-1 (NDM-1) has drawn great attention due to its diverse antibiotic resistant activity. It can hydrolyze almost all clinically available β-lactam antibiotics. To inhibit the activity of NDM-1 a new strategy is proposed using computational methods. Molecular dynamics (MD) simulations are used to analyze the molecular interactions between selected inhibitor candidates and NDM-1 structure. The enzyme-ligand complex is subject to binding free energy calculations using MM(PB/GB)SA methods. The role of each residue of the active site contributing in ligand binding affinity is explored using energy decomposition analysis. Furthermore, a hydrogen bonding network between ligand and enzyme active site is observed and key residues are identified ensuring that the ligand stays inside the active site and maintains its movement towards the active site pocket. A production run of 150ns is carried out and results are analyzed using root mean square deviation (RMSD), root mean square fluctuation (RMSF), and radius of gyration (Rg) to explain the stability of enzyme ligand complex. Important active site residue e.g. PHE70, VAL73, TRP93, HIS122, GLN123, ASP124, HIS189, LYS216, CYS208, LYS211, ALA215, HIS250, and SER251 were observed to be involved in ligand attachemet inside the active site pocket, hence depicting its inhibitor potential. Hydrogen bonds involved in structural stability are analyzed through radial distribution function (RDF) and contribution of important residues involved in ligand movement is explained using a novel analytical tool, axial frequency distribution (AFD) to observe the role of important hydrogen bonding partners between ligand atoms and active site residues.
Collapse
Affiliation(s)
- Farhan Ul Haq
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Asma Abro
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saad Raza
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Klaus R Liedl
- University of Innsbruck, Institute for General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80/82, 6020 Innsbruck, Austria
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
33
|
Zhang Y, Qiao P, Li S, Feng X, Bian L. Molecular recognition and binding of beta-lactamase II from Bacillus cereus with penicillin V and sulbactam by spectroscopic analysis in combination with docking simulation. LUMINESCENCE 2017; 32:932-941. [PMID: 28185399 DOI: 10.1002/bio.3274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/22/2016] [Accepted: 11/26/2016] [Indexed: 11/10/2022]
Abstract
The molecular recognition and binding interaction of beta-lactamase II from Bacillus cereus (Bc II) with penicillin V (PV) and sulbactam (Sul) at 277 K were studied by spectroscopic analysis and molecular docking. The results showed that a non-fluorescence static complex was separately formed between Bc II and two ligands, the molecular ratio of Bc II to PV or Sul was both 1:1 in the binding and the binding constants were 2.00 × 106 and 3.98 × 105 (L/mol), respectively. The negative free energy changes and apparent activation energies indicated that both the binding processes were spontaneous. Molecular docking showed that in the binding process, the whole Sul molecule entered into the binding pocket of Bc II while only part of the whole PV molecule entered into the pocket due to a long side chain, and electrostatic interactions were the major contribution to the binding processes. In addition, a weak conformational change of Bc II was also observed in the molecular recognition and binding process of Bc II with PV or Sul. This study may provide some valuable information for exploring the recognition and binding of proteins with ligands in the binding process and for the design of novel super-antibiotics.
Collapse
Affiliation(s)
- Yeli Zhang
- College of Life Science, Northwest University, Xi'an, Shaan'xi, People's Republic of China
| | - Pan Qiao
- College of Life Science, Northwest University, Xi'an, Shaan'xi, People's Republic of China
| | - Shuaihua Li
- College of Life Science, Northwest University, Xi'an, Shaan'xi, People's Republic of China
| | - Xuan Feng
- College of Life Science, Northwest University, Xi'an, Shaan'xi, People's Republic of China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an, Shaan'xi, People's Republic of China
| |
Collapse
|
34
|
|
35
|
Abstract
Selective pressures within the human host, including interactions with innate and adaptive immune responses, exposure to medical interventions such as antibiotics, and competition with commensal microbiota all facilitate the evolution of bacterial pathogens. In this chapter, we present examples of pathogen strategies that emerged as a result of selective pressures within the human host niche and discuss the resulting coevolutionary "arms race" between these organisms. In bacterial pathogens, many of the genes responsible for these strategies are encoded on mobile pathogenicity islands or plasmids, underscoring the importance of horizontal gene transfer in the emergence of virulent microbial species.
Collapse
|
36
|
Hernández J, González-Acuña D. Anthropogenic antibiotic resistance genes mobilization to the polar regions. Infect Ecol Epidemiol 2016; 6:32112. [PMID: 27938628 PMCID: PMC5149653 DOI: 10.3402/iee.v6.32112] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 11/14/2022] Open
Abstract
Anthropogenic influences in the southern polar region have been rare, but lately microorganisms associated with humans have reached Antarctica, possibly from military bases, fishing boats, scientific expeditions, and/or ship-borne tourism. Studies of seawater in areas of human intervention and proximal to fresh penguin feces revealed the presence of Escherichia coli strains least resistant to antibiotics in penguins, whereas E. coli from seawater elsewhere showed resistance to one or more of the following antibiotics: ampicillin, tetracycline, streptomycin, and trim-sulfa. In seawater samples, bacteria were found carrying extended-spectrum β-lactamase (ESBL)-type CTX-M genes in which multilocus sequencing typing (MLST) showed different sequence types (STs), previously reported in humans. In the Arctic, on the contrary, people have been present for a long time, and the presence of antibiotic resistance genes (ARGs) appears to be much more wide-spread than was previously reported. Studies of E coli from Arctic birds (Bering Strait) revealed reduced susceptibility to antibiotics, but one globally spreading clone of E. coli genotype O25b-ST131, carrying genes of ESBL-type CTX-M, was identified. In the few years between sample collections in the same area, differences in resistance pattern were observed, with E. coli from birds showing resistance to a maximum of five different antibiotics. Presence of resistance-type ESBLs (TEM, SHV, and CTX-M) in E. coli and Klebsiella pneumoniae was also confirmed by specified PCR methods. MLST revealed that those bacteria carried STs that connect them to previously described strains in humans. In conclusion, bacteria previously related to humans could be found in relatively pristine environments, and presently human-associated, antibiotic-resistant bacteria have reached a high global level of distribution that they are now found even in the polar regions.
Collapse
Affiliation(s)
- Jorge Hernández
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Clinic of Microbiology, Kalmar County Hospital, Kalmar, Sweden;
| | | |
Collapse
|
37
|
Rateb HS, Ahmed HEA, Ahmed S, Ihmaid S, Afifi TH. Discovery of novel phthalimide analogs: Synthesis, antimicrobial and antitubercular screening with molecular docking studies. EXCLI JOURNAL 2016; 15:781-796. [PMID: 28337109 PMCID: PMC5318679 DOI: 10.17179/excli2016-654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/01/2016] [Indexed: 12/30/2022]
Abstract
In continuation of our endeavor towards the design and development of potent and effective antimicrobial agents, three series of phthalimide derivatives (4a-i, 5a-f, and 6a-c) were synthesized, fully characterized and evaluated for their potential antibacterial, antifungal and antimycobacterial activities. These efforts led to the discovery of nine compounds 4c, 4f, 4g, 4h, 4i, 5c, 5d, 5e, and 6c (MIC range from 0.49 to 31.5 μg/mL) with potent antibacterial, antifungal, and antimycobacterial activities. Ampicillin, ciprofloxacin, amphotericin B were used as references for antibacterial and antifungal screening respectively, while isoniazid was used as a reference for antimycobacterial testing. Furthermore, molecular modeling studies were done to explore the binding mode of the most active derivatives to M. tuberculosis enoyl reductase (InhA) and DNA gyrase B. Our study showed the importance of both hydrogen bonding and hydrophobic interactions as a key interaction with the target enzymes.
Collapse
Affiliation(s)
- Heba S Rateb
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 30001, Saudi Arabia; Department of Pharmaceutical and Medicinal Chemistry, Pharmacy College, Misr University for Science and Technology, Cairo, Egypt
| | - Hany E A Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 30001, Saudi Arabia; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Sahar Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 30001, Saudi Arabia; Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Saleh Ihmaid
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 30001, Saudi Arabia
| | - Tarek H Afifi
- Chemistry Department, Faculty of Science, Taibah University, 30002, Al-Madinah Al-Munawarah, Saudi Arabia
| |
Collapse
|
38
|
Abstract
The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β-lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β-lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β-lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.
Collapse
Affiliation(s)
- Pradeep Bhadola
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - Nivedita Deo
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| |
Collapse
|
39
|
Begum N, Shamsuzzaman S. Emergence of carbapenemase-producing urinary isolates at a tertiary care hospital in Dhaka, Bangladesh. Tzu Chi Med J 2016; 28:94-98. [PMID: 28757733 PMCID: PMC5442910 DOI: 10.1016/j.tcmj.2016.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES A growing incidence of pathogens producing carbapenemases has been observed in many countries including Bangladesh. The present study was carried out to determine the presence of carbapenemase producers among uropathogens. MATERIALS AND METHODS A total of 138 Gram-negative uropathogens were isolated and identified by conventional methods and were screened for carbapenemase production using imipenem discs. Phenotypic identification of carbapenemase production was done by the double disc synergy test, combined disc assay, and modified Hodge test. The minimum inhibitory concentration of imipenem was determined by the agar dilution method. Genes encoding blaNDM-1, blaIMP, blaVIM, blaKPC and blaOXA-48/blaOXA-181 were identified by polymerase chain reaction. RESULTS Twenty (14.49%) imipenem resistant strains were detected among 138 Gram-negative uro-pathogens. The most common isolates were Escherichia coli and Klebsiella spp. Among 20 imipenem resistant strains, 16 (80%) carbapenemase producers were detected by polymerase chain reaction, 13 (65%) by double disc synergy, 15 (75%) by combined disc assay, and seven (35%) by modified Hodge test. The blaNDM-1 gene was most prevalent (55%), followed by blaOXA-48/OXA-181, blaKPC (20%), blaVIM (15%), and blaIMP (10%). More than one carbapenemase gene was present in nine (45%) of the isolates. The minimum inhibitory concentration of imipenem of the carbapenemase producers ranged from ≥128 μg/mL to 4 μg/mL. Overall, carbapenemase encoding genes were detected in 11.6% (16/138) of the studied Gram-negative uropathogens. All (100%) of the carbapenemase-producing organisms were resistant to all tested antibiotics apart from colistin. CONCLUSION The study shows a significant rate of urinary isolates were carbapenemase producers, including a high prevalence of blaNDM-1, in Bangladesh.
Collapse
Affiliation(s)
- Nurjahan Begum
- Department of Microbiology, Dhaka Medical College, Dhaka, Bangladesh
| | - S.M. Shamsuzzaman
- Department of Microbiology, Dhaka Medical College, Dhaka, Bangladesh
| |
Collapse
|
40
|
Montagner C, Nigen M, Jacquin O, Willet N, Dumoulin M, Karsisiotis AI, Roberts GCK, Damblon C, Redfield C, Matagne A. The Role of Active Site Flexible Loops in Catalysis and of Zinc in Conformational Stability of Bacillus cereus 569/H/9 β-Lactamase. J Biol Chem 2016; 291:16124-37. [PMID: 27235401 DOI: 10.1074/jbc.m116.719005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 11/06/2022] Open
Abstract
Metallo-β-lactamases catalyze the hydrolysis of most β-lactam antibiotics and hence represent a major clinical concern. The development of inhibitors for these enzymes is complicated by the diversity and flexibility of their substrate-binding sites, motivating research into their structure and function. In this study, we examined the conformational properties of the Bacillus cereus β-lactamase II in the presence of chemical denaturants using a variety of biochemical and biophysical techniques. The apoenzyme was found to unfold cooperatively, with a Gibbs free energy of stabilization (ΔG(0)) of 32 ± 2 kJ·mol(-1) For holoBcII, a first non-cooperative transition leads to multiple interconverting native-like states, in which both zinc atoms remain bound in an apparently unaltered active site, and the protein displays a well organized compact hydrophobic core with structural changes confined to the enzyme surface, but with no catalytic activity. Two-dimensional NMR data revealed that the loss of activity occurs concomitantly with perturbations in two loops that border the enzyme active site. A second cooperative transition, corresponding to global unfolding, is observed at higher denaturant concentrations, with ΔG(0) value of 65 ± 1.4 kJ·mol(-1) These combined data highlight the importance of the two zinc ions in maintaining structure as well as a relatively well defined conformation for both active site loops to maintain enzymatic activity.
Collapse
Affiliation(s)
- Caroline Montagner
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Michaël Nigen
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Olivier Jacquin
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Nicolas Willet
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Mireille Dumoulin
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Andreas Ioannis Karsisiotis
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Gordon C K Roberts
- the Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom, and
| | - Christian Damblon
- Département de Chimie, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| | - Christina Redfield
- the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - André Matagne
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| |
Collapse
|
41
|
Ahmed HEA, Abdel-Salam HA, Shaker MA. Synthesis, characterization, molecular modeling, and potential antimicrobial and anticancer activities of novel 2-aminoisoindoline-1,3-dione derivatives. Bioorg Chem 2016; 66:1-11. [PMID: 26986635 DOI: 10.1016/j.bioorg.2016.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
In an effort to establish new drug candidates with improved antimicrobial and anticancer activities, we report here synthesis, molecular modeling, and in vitro biological evaluation of novel substituted N-amino phthalamide derivatives (3a-b, 4a-b, 5a-j, and 6). Structures of the newly synthesized compounds were described by IR, (1)H &(13)CNMR and LC-MS spectral data. The novel compounds were evaluated for their antibacterial activity against four types of Gm+ve and two for Gm-ve types, and antifungal activity against three fungi microorganisms by well diffusion method. Of these novel compounds, Schiff bases showed mostly promising antibacterial activity compared to reference drugs. A successful step was done for explanation of their mode of action through molecular docking of most active molecules at DNA gyrase B enzyme and further were biologically tested. Moreover, the antiproliferative activity was tested against two human carcinoma cell lines (Human colon carcinoma (HCT-116) and human breast adenocarcinoma (MCF-7)) showing promising anticancer activity compared to doxorubicin drug. The data from structure-activity relationship (SAR) analysis revealed that the lypophilic properties of these compounds might be essential parameter for their activity and suggest that 2-amino phthalamide scaffold derivatives 5g and 5h exhibited good antimicrobial and anticancer activities and might used as leads for further optimization.
Collapse
Affiliation(s)
- Hany Emary Ali Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, P.O. Box 30039, Al-Madinha Al-Munawaraha 41477, Saudi Arabia; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11651, Cairo 11884, Egypt.
| | - Hassan A Abdel-Salam
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, P.O. Box 30039, Al-Madinha Al-Munawaraha 41477, Saudi Arabia; Department of Microbiology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A Shaker
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, P.O. Box 30039, Al-Madinha Al-Munawaraha 41477, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Helwan University, P.O. Box 11795, Cairo, Egypt
| |
Collapse
|
42
|
Tripathi R, Nair NN. Deacylation Mechanism and Kinetics of Acyl-Enzyme Complex of Class C β-Lactamase and Cephalothin. J Phys Chem B 2016; 120:2681-90. [PMID: 26918257 DOI: 10.1021/acs.jpcb.5b11623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Understanding the molecular details of antibiotic resistance by the bacterial enzymes β-lactamases is vital for the development of novel antibiotics and inhibitors. In this spirit, the detailed mechanism of deacylation of the acyl-enzyme complex formed by cephalothin and class C β-lactamase is investigated here using hybrid quantum-mechanical/molecular-mechanical molecular dynamics methods. The roles of various active-site residues and substrate in the deacylation reaction are elucidated. We identify the base that activates the hydrolyzing water molecule and the residue that protonates the catalytic serine (Ser64). Conformational changes in the active sites and proton transfers that potentiate the efficiency of the deacylation reaction are presented. We have also characterized the oxyanion holes and other H-bonding interactions that stabilize the reaction intermediates. Together with the kinetic and mechanistic details of the acylation reaction, we analyze the complete mechanism and the overall kinetics of the drug hydrolysis. Finally, the apparent rate-determining step in the drug hydrolysis is scrutinized.
Collapse
Affiliation(s)
- Ravi Tripathi
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208016, India
| |
Collapse
|
43
|
Lewandowski EM, Skiba J, Torelli NJ, Rajnisz A, Solecka J, Kowalski K, Chen Y. Antibacterial properties and atomic resolution X-ray complex crystal structure of a ruthenocene conjugated β-lactam antibiotic. Chem Commun (Camb) 2015; 51:6186-9. [PMID: 25753149 DOI: 10.1039/c5cc00904a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have determined a 1.18 Å resolution X-ray crystal structure of a novel ruthenocenyle-6-aminopenicillinic acid in complex with CTX-M β-lactamase, showing unprecedented details of interactions between ruthenocene and protein. As the first product complex with an intact catalytic serine, the structure also offers insights into β-lactamase catalysis and inhibitor design.
Collapse
Affiliation(s)
- Eric M Lewandowski
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Soo RM, Woodcroft BJ, Parks DH, Tyson GW, Hugenholtz P. Back from the dead; the curious tale of the predatory cyanobacterium Vampirovibrio chlorellavorus. PeerJ 2015; 3:e968. [PMID: 26038723 PMCID: PMC4451040 DOI: 10.7717/peerj.968] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/30/2015] [Indexed: 01/03/2023] Open
Abstract
An uncultured non-photosynthetic basal lineage of the Cyanobacteria, the Melainabacteria, was recently characterised by metagenomic analyses of aphotic environmental samples. However, a predatory bacterium, Vampirovibrio chlorellavorus, originally described in 1972 appears to be the first cultured representative of the Melainabacteria based on a 16S rRNA sequence recovered from a lyophilised co-culture of the organism. Here, we sequenced the genome of V. chlorellavorus directly from 36 year-old lyophilised material that could not be resuscitated confirming its identity as a member of the Melainabacteria. We identified attributes in the genome that likely allow V. chlorellavorus to function as an obligate predator of the microalga Chlorella vulgaris, and predict that it is the first described predator to use an Agrobacterium tumefaciens-like conjugative type IV secretion system to invade its host. V. chlorellavorus is the first cyanobacterium recognised to have a predatory lifestyle and further supports the assertion that Melainabacteria are non-photosynthetic.
Collapse
Affiliation(s)
- Rochelle M Soo
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland , St Lucia, QLD , Australia
| | - Ben J Woodcroft
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland , St Lucia, QLD , Australia
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland , St Lucia, QLD , Australia
| | - Gene W Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland , St Lucia, QLD , Australia ; Advanced Water Management Centre, The University of Queensland , St Lucia, QLD , Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland , St Lucia, QLD , Australia ; Institute for Molecular Bioscience, The University of Queensland , St Lucia, QLD , Australia
| |
Collapse
|
45
|
Motta RHL, Groppo FC, Bergamaschi CDC, Ramacciato JC, Baglie S, de Mattos-Filho TR. Isolation and Antimicrobial Resistance ofStaphylococcus aureusIsolates in a Dental Clinic Environment. Infect Control Hosp Epidemiol 2015; 28:185-90. [PMID: 17265400 DOI: 10.1086/510867] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 07/14/2005] [Indexed: 11/03/2022]
Abstract
Objective.To determine the number ofStaphylococcus aureusisolates collected in a dental clinical environment and to determine their susceptibility to antimicrobial agents commonly used in dentistry.Setting.Undergraduate clinic of the Dental School of Piracicaba, University of Campinas, Brazil.Methods.Sterile cotton swabs were used to collect the samples from dental-chair push buttons, light handles, 3-in-l syringes, computer “Enter” keys, doorknobs, and X-ray tubes before, during, and after clinical procedures. These samples were spread on brain-heart infusion agar and were incubated at 37°C for 24 hours. The resultingS. aureusisolates were counted and classified using Gram staining and biochemical tests. The counts among the 3 periods and the groups were analyzed by Kruskal-Wallis and Dunn tests (α= 5%). Commercial paper disks containing widely prescribed antimicrobial agents (β-lactams, macrolides, clindamycin, and vancomycin) were used to perform the antimicrobial susceptibility tests.Results.An increase in the number of microorganisms was observed during clinical procedures (P< .05). The highest bacterial resistance rates were observed for theβ-lactam group. All isolated strains were sensitive to vancomycin, and 2% of them were resistant to methicillin.Conclusions.Clinical procedures increased the number and proportion of antimicrobial-resistantS. aureusisolates dispersed in a dental clinical environment. The present study highlights the need to establish strategies to prevent emergence of drug-resistant bacterial strains in dental settings.
Collapse
|
46
|
Upadhyay A, Upadhyaya I, Kollanoor-Johny A, Venkitanarayanan K. Combating pathogenic microorganisms using plant-derived antimicrobials: a minireview of the mechanistic basis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:761741. [PMID: 25298964 PMCID: PMC4178913 DOI: 10.1155/2014/761741] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/05/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022]
Abstract
The emergence of antibiotic resistance in pathogenic bacteria has led to renewed interest in exploring the potential of plant-derived antimicrobials (PDAs) as an alternative therapeutic strategy to combat microbial infections. Historically, plant extracts have been used as a safe, effective, and natural remedy for ailments and diseases in traditional medicine. Extensive research in the last two decades has identified a plethora of PDAs with a wide spectrum of activity against a variety of fungal and bacterial pathogens causing infections in humans and animals. Active components of many plant extracts have been characterized and are commercially available; however, research delineating the mechanistic basis of their antimicrobial action is scanty. This review highlights the potential of various plant-derived compounds to control pathogenic bacteria, especially the diverse effects exerted by plant compounds on various virulence factors that are critical for pathogenicity inside the host. In addition, the potential effect of PDAs on gut microbiota is discussed.
Collapse
Affiliation(s)
- Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Extension, Unit 4040, Storrs, CT 06269, USA
| | - Indu Upadhyaya
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Extension, Unit 4040, Storrs, CT 06269, USA
| | - Anup Kollanoor-Johny
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Extension, Unit 4040, Storrs, CT 06269, USA
| | - Kumar Venkitanarayanan
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Extension, Unit 4040, Storrs, CT 06269, USA
| |
Collapse
|
47
|
Vidossich P, Magistrato A. QM/MM molecular dynamics studies of metal binding proteins. Biomolecules 2014; 4:616-45. [PMID: 25006697 PMCID: PMC4192665 DOI: 10.3390/biom4030616] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/16/2022] Open
Abstract
Mixed quantum-classical (quantum mechanical/molecular mechanical (QM/MM)) simulations have strongly contributed to providing insights into the understanding of several structural and mechanistic aspects of biological molecules. They played a particularly important role in metal binding proteins, where the electronic effects of transition metals have to be explicitly taken into account for the correct representation of the underlying biochemical process. In this review, after a brief description of the basic concepts of the QM/MM method, we provide an overview of its capabilities using selected examples taken from our work. Specifically, we will focus on heme peroxidases, metallo-β-lactamases, α-synuclein and ligase ribozymes to show how this approach is capable of describing the catalytic and/or structural role played by transition (Fe, Zn or Cu) and main group (Mg) metals. Applications will reveal how metal ions influence the formation and reduction of high redox intermediates in catalytic cycles and enhance drug metabolism, amyloidogenic aggregate formation and nucleic acid synthesis. In turn, it will become manifest that the protein frame directs and modulates the properties and reactivity of the metal ions.
Collapse
Affiliation(s)
- Pietro Vidossich
- Department of Chemistry, Autonomous University of Barcelona, 08193 Cerdanyola del Vallés, Spain.
| | - Alessandra Magistrato
- CNR-IOM-Democritos National Simulation Center c/o, International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34165 Trieste, Italy.
| |
Collapse
|
48
|
Hargis JC, White JK, Chen Y, Woodcock HL. Can molecular dynamics and QM/MM solve the penicillin binding protein protonation puzzle? J Chem Inf Model 2014; 54:1412-24. [PMID: 24697903 PMCID: PMC4036751 DOI: 10.1021/ci5000517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Benzylpenicillin, a member of the
β-lactam antibiotic class, has been widely used to combat bacterial
infections since 1947. The general mechanism is well-known: a serine
protease enzyme (i.e., DD-peptidase) forms a long lasting intermediate
with the lactam ring of the antibiotic known as acylation, effectively
preventing biosynthesis of the bacterial cell wall. Despite this overall
mechanistic understanding, many details of binding and catalysis are
unclear. Specifically, there is ongoing debate about active site protonation
states and the role of general acids/bases in the reaction. Herein,
a unique combination of MD simulations, QM/MM minimizations, and QM/MM
orbital analyses is combined with systematic variation of active site
residue protonation states. Critical interactions that maximize the
stability of the bound inhibitor are examined and used as metrics.
This approach was validated by examining cefoxitin interactions in
the CTX-M β-lactamase from E. coli and compared to an ultra high-resolution (0.88 Å) crystal structure.
Upon confirming the approach used, an investigation of the preacylated Streptomyces R61 active site with bound benzylpenicillin
was performed, varying the protonation states of His298 and Lys65.
We concluded that protonated His298 and deprotonated Lys65 are most
likely to exist in the R61 active site.
Collapse
Affiliation(s)
- Jacqueline C Hargis
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | |
Collapse
|
49
|
Abstract
The production of β-lactamase is one of the primary resistance mechanisms used by Gram-negative bacterial pathogens to counter β-lactam antibiotics, such as penicillins, cephalosporins and carbapenems. There is an urgent need to develop novel β-lactamase inhibitors in response to ever evolving β-lactamases possessing an expanded spectrum of β-lactam hydrolyzing activity. Whereas traditional high-throughput screening has proven ineffective against serine β-lactamases, fragment-based approaches have been successfully employed to identify novel chemical matter, which in turn has revealed much about the specific molecular interactions possible in the active site of serine and metallo β-lactamases. In this review, we summarize recent progress in the field, particularly: the identification of novel inhibitor chemotypes through fragment-based screening; the use of fragment-protein structures to understand key features of binding hot spots and inform the design of improved leads; lessons learned and new prospects for β-lactamase inhibitor development using fragment-based approaches.
Collapse
Affiliation(s)
- Derek A Nichols
- University of South Florida College of Medicine, Department of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry & Small Molecule Discovery Center, University of California San Francisco, 1700 4th Street, Byers Hall S504, San Francisco, CA 94158, USA
| | - Yu Chen
- University of South Florida College of Medicine, Department of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612, USA
| |
Collapse
|
50
|
Furuyama T, Ishii Y, Ohya N, Tateda K, Hanson ND, Shimizu-Ibuka A. Purification, crystallization and preliminary X-ray analysis of IMP-18, a class B carbapenemase from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1397-400. [PMID: 24316839 PMCID: PMC3855729 DOI: 10.1107/s1744309113030480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/06/2013] [Indexed: 06/02/2023]
Abstract
Class B β-lactamases are known as metallo-β-lactamases (MBLs) and they hydrolyze most β-lactams, including carbapenems. IMP-18, an MBL cloned from Pseudomonas aeruginosa, was overexpressed, purified and crystallized by vapour diffusion for X-ray crystallographic analysis. Preliminary X-ray analysis showed that the crystal diffracted to 2.4 Å resolution and belonged to the tetragonal space group P4(1)2(1)2, with unit-cell parameters a = b = 120.77, c = 96.54 Å, α = β = γ = 90°, suggesting the presence of two molecules in the asymmetric unit.
Collapse
Affiliation(s)
- Takamitsu Furuyama
- Department of Material and Biological Chemistry, Graduate School of Science and Engineering, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ohta-ku, Tokyo 143-8540, Japan
| | - Norimasa Ohya
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ohta-ku, Tokyo 143-8540, Japan
| | - Nancy D. Hanson
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Akiko Shimizu-Ibuka
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan
| |
Collapse
|