1
|
Abstract
Heat-labile enterotoxins (LTs) of Escherichia coli are closely related to cholera toxin (CT), which was originally discovered in 1959 in culture filtrates of the gram-negative bacterium Vibrio cholerae. Several other gram-negative bacteria also produce enterotoxins related to CT and LTs, and together these toxins form the V. cholerae-E. coli family of LTs. Strains of E. coli causing a cholera-like disease were designated enterotoxigenic E. coli (ETEC) strains. The majority of LTI genes (elt) are located on large, self-transmissible or mobilizable plasmids, although there are instances of LTI genes being located on chromosomes or carried by a lysogenic phage. The stoichiometry of A and B subunits in holotoxin requires the production of five B monomers for every A subunit. One proposed mechanism is a more efficient ribosome binding site for the B gene than for the A gene, increasing the rate of initiation of translation of the B gene independently from A gene translation. The three-dimensional crystal structures of representative members of the LT family (CT, LTpI, and LTIIb) have all been determined by X-ray crystallography and found to be highly similar. Site-directed mutagenesis has identified many residues in the CT and LT A subunits, including His44, Val53, Ser63, Val97, Glu110, and Glu112, that are critical for the structures and enzymatic activities of these enterotoxins. For the enzymatically active A1 fragment to reach its substrate, receptor-bound holotoxin must gain access to the cytosol of target cells.
Collapse
|
2
|
Functional pentameric formation via coexpression of the Escherichia coli heat-labile enterotoxin B subunit and its fusion protein subunit with a neutralizing epitope of ApxIIA exotoxin improves the mucosal immunogenicity and protection against challenge by Actinobacillus pleuropneumoniae. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:2168-77. [PMID: 22030372 DOI: 10.1128/cvi.05230-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A coexpression strategy in Saccharomyces cerevisiae using episomal and integrative vectors for the Escherichia coli heat-labile enterotoxin B subunit (LTB) and a fusion protein of an ApxIIA toxin epitope produced by Actinobacillus pleuropneumoniae coupled to LTB, respectively, was adapted for the hetero-oligomerization of LTB and the LTB fusion construct. Enzyme-linked immunosorbent assay (ELISA) with GM1 ganglioside indicated that the LTB fusion construct, along with LTB, was oligomerized to make the functional heteropentameric form, which can bind to receptors on the mucosal epithelium. The antigen-specific antibody titer of mice orally administered antigen was increased when using recombinant yeast coexpressing the pentameric form instead of recombinant yeast expressing either the LTB fusion form or antigen alone. Better protection against challenge infection with A. pleuropneumoniae was also observed for coexpression in recombinant yeast compared with others. The present study clearly indicated that the coexpression strategy enabled the LTB fusion construct to participate in the pentameric formation, resulting in an improved induction of systemic and mucosal immune responses.
Collapse
|
3
|
Zhang X, Yuan Z, Guo X, Li J, Li Z, Wang Q. Expression of Chlamydophila psittaci MOMP heat-labile toxin B subunit fusion gene in transgenic rice. Biologicals 2008; 36:296-302. [DOI: 10.1016/j.biologicals.2008.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 11/24/2007] [Accepted: 04/15/2008] [Indexed: 10/21/2022] Open
|
4
|
Vasserman Y, Pitcovski J. Genetic detoxification and adjuvant-activity retention of Escherichia coli enterotoxin LT. Avian Pathol 2006; 35:134-40. [PMID: 16595306 DOI: 10.1080/03079450600597873] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Intensive effort has been invested in the search for new effective vaccines that can be conveniently administered, with minimal handling of birds. Heat-labile enterotoxin (LT) of Escherichia coli H10407 is known as a powerful adjuvant for injection and oral administration. However, to use the toxin as an immunostimulator in animals, its toxicity must be neutralized. To this aim, we modified the LT gene by changing two amino acids (threonine 50 and valine 53) of the A subunit to proline. The modified non-toxic LT gene (nLT) was cloned and expressed in E. coli as a soluble protein. The protein was efficiently purified, reaching levels of about 20 mg active hexameric nLT per litre of induced culture. The mutated protein, nLT, and the wild-type protein (wtLT) were administered orally to chickens. Those treated with the wtLT exhibited diarrhoea, whereas chickens treated with the nLT showed no signs of disease compared with untreated birds. The new non-toxic, purified nLT stimulated antibody production in birds treated by injection or by oral administration. A field trial with layers that included a series of injections of Bovine Serum Albumin mixed with nLT showed this modified LT's ability to act as an adjuvant for the antigen mixed with it. This study demonstrates the efficient expression and purification of LT, in which toxicity was neutralized by genetic modification. Such an approach will enable the use of a non-toxic LT molecule with a modified A subunit by the poultry industry, to enhance immune responses against antigens co-vaccinated with it.
Collapse
Affiliation(s)
- Yelena Vasserman
- MIGAL South Industrial Zone, P.O.B. 831, Kiryat Shmona, 10200, Israel
| | | |
Collapse
|
5
|
Pitcovski J, Bazak Z, Wasserman E, Elias O, Levy A, Peretz T, Fingerut E, Frankenburg S. Heat labile enterotoxin of E. coli: a potential adjuvant for transcutaneous cancer immunotherapy. Vaccine 2006; 24:636-43. [PMID: 16157421 DOI: 10.1016/j.vaccine.2005.08.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 06/03/2005] [Accepted: 08/08/2005] [Indexed: 11/17/2022]
Abstract
Escherichia coli heat labile enterotoxin (LT) has been shown to penetrate intact skin and to activate adaptive immunity. A nontoxic mutant, nLT, and its B subunit (LTB), have been evaluated separately for their potential use as a tool for transcutaneous delivery of antigens for cancer immunotherapy. We have shown that FITC-labeled nLT is taken up by human dendritic cells (hDC) in vitro and in mouse skin, and induces maturation and activation of hDC in vitro. hDC matured with nLT enhanced nonspecific melanoma antigen uptake and presentation to autologous CD8+ T cells. In mouse in vivo studies, nLT or LTB were applied on the skin either mixed with recombinant gp100 or genetically fused with a multiepitope polypeptide (MEP). Fused LTB-MEP induced antibody production that was dependent on LTB cell binding. We conclude that LT derivatives may be useful for the transcutaneous delivery of tumor antigens for cancer immunotherapy.
Collapse
|
6
|
Fingerut E, Gutter B, Meir R, Eliahoo D, Pitcovski J. Vaccine and adjuvant activity of recombinant subunit B of E. coli enterotoxin produced in yeast. Vaccine 2005; 23:4685-96. [PMID: 15951067 DOI: 10.1016/j.vaccine.2005.03.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 03/16/2005] [Indexed: 10/25/2022]
Abstract
Escherichia coli heat-labile enterotoxin (LT) and cholera toxin (CT) have been studied intensively as vaccines against diseases caused by those bacteria and as adjuvants for mucosal vaccination. Two major problems interfere with the use of these promising adjuvants: their toxicity and the residual bacterial endotoxins mixed with the desired LT. In this study, subunit B of LT was expressed in Pichia pastoris yeast cells (yrLTB) and the recombinant protein was purified and concentrated by ion-exchange chromatography. The final yield of the recombinant protein was 5-8 mg/l induction medium. The molecule is in pentameric form and binds to GM1 gangliosides. When given orally to chickens, anti-LTB antibodies were produced, exhibiting its ability to cross the digestive system and induce an immune response. The adjuvant activity of yrLTB was proven by fusing it to viral protein 2 (VP2) of infectious bursal disease virus. Birds intramuscularly vaccinated with this molecule exhibit 70-100% protection, in a dose-response-dependent manner. This method eliminated the bacterial endotoxins and enabled the production of large quantities of LTB. Expression in a eukaryotic system allows the production of fusion proteins that require post-translational modifications. This may allow oral vaccination with a protein fused to yrLTB. The approach described in this study will enable the efficient production of a non-toxic, eukaryotically expressed enterotoxin as a vaccine against the toxin itself or as a carrier or adjuvant for foreign vaccine molecules.
Collapse
Affiliation(s)
- E Fingerut
- Migal, Immunology Department, Industrial Zone POB 831, Kiryat Shmona 11016, Israel
| | | | | | | | | |
Collapse
|
7
|
Fan E, O'Neal CJ, Mitchell DD, Robien MA, Zhang Z, Pickens JC, Tan XJ, Korotkov K, Roach C, Krumm B, Verlinde CLMJ, Merritt EA, Hol WGJ. Structural biology and structure-based inhibitor design of cholera toxin and heat-labile enterotoxin. Int J Med Microbiol 2004; 294:217-23. [PMID: 15532979 DOI: 10.1016/j.ijmm.2004.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Structural biology studies on cholera toxin and the closely related heat-labile enterotoxin from enterotoxigenic Escherichia coli over the past decade have shed light on the mechanism of toxin action at molecular and atomic levels. Also, components of the extracellular protein secretion apparatus that translocate the toxins across the outer membrane are being investigated. At the same time, structure-based design has led to various classes of compounds targeting different toxin sites, including highly potent multivalent inhibitors that block the toxin receptor-binding process.
Collapse
Affiliation(s)
- Erkang Fan
- Department of Biochemistry, Biomolecular Structure Center, University of Washington, Box 357742, Seattle WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sánchez J, Wallerström G, Fredriksson M, Angström J, Holmgren J. Detoxification of cholera toxin without removal of its immunoadjuvanticity by the addition of (STa-related) peptides to the catalytic subunit. A potential new strategy to generate immunostimulants for vaccination. J Biol Chem 2002; 277:33369-77. [PMID: 12089141 DOI: 10.1074/jbc.m112337200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptides related to the heat-stable enterotoxin STa were fused to the N terminus of the A-subunit of cholera toxin (CTA) to explore whether peptide additions could help generate detoxified cholera toxin (CT) derivatives. Proteins carrying APRPGP (6-CTA), ASRCAELCCNPACPAP (16-CTA), or ANSSNYCCELCCNPACTGCYPGP (23-CTA) were genetically constructed. Using a two-plasmid system these derivatives were co-expressed in Vibrio cholerae with cholera toxin B-subunit (CTB) to allow formation and secretion of holotoxin-like molecules (engineered CT, eCTs). Purified eCTs maintained all normal CT properties yet they were more than 10-fold (eCT-6), 100-fold (eCT-16), or 1000-fold (eCT-23) less enterotoxic than wild-type CT. The inverse correlation between enterotoxicity and peptide length indicated sterical interference with the ADP-ribosylating active site in CTA. This interpretation agreed with greater than 1000-fold reductions in cAMP induction, with reductions, albeit not proportional, in in vitro agmatine ADP-ribosylation, and was supported by molecular simulations. Intranasal immunization of mice demonstrated that eCTs retained their inherent immunogenicity and ability to potentiate immune responses to a co-administered heterologous protein antigen, although in variable degrees. Therefore, the addition of STa-related peptides to CTA reduced the toxicity of CT while partly preserving its natural immunoadjuvanticity. These results suggest peptide extensions to CTA are a useful alternative to site-directed mutagenesis to detoxify CT. The simplicity of the procedure, combined with efficient expression and assembly of derivatives, suggests this approach could allow for large scale production of detoxified, yet immunologically active CT molecules.
Collapse
Affiliation(s)
- Joaquín Sánchez
- Department of Medical Microbiology and Immunology, Göteborg University and the Göteborg University Vaccine Research Institute, Guldhedsgatan 10A, Göteborg SE 413 46, Sweden.
| | | | | | | | | |
Collapse
|
9
|
Jobling MG, Holmes RK. Biological and biochemical characterization of variant A subunits of cholera toxin constructed by site-directed mutagenesis. J Bacteriol 2001; 183:4024-32. [PMID: 11395467 PMCID: PMC95286 DOI: 10.1128/jb.183.13.4024-4032.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cholera toxin (CT) is the prototype for the Vibrio cholerae-Escherichia coli family of heat-labile enterotoxins having an AB5 structure. By substituting amino acids in the enzymatic A subunit that are highly conserved in all members of this family, we constructed 23 variants of CT that exhibited decreased or undetectable toxicity and we characterized their biological and biochemical properties. Many variants exhibited previously undescribed temperature-sensitive assembly of holotoxin and/or increased sensitivity to proteolysis, which in all cases correlated with exposure of epitopes of CT-A that are normally hidden in native CT holotoxin. Substitutions within and deletion of the entire active-site-occluding loop demonstrated a prominent role for His-44 and this loop in the structure and activity of CT. Several novel variants with wild-type assembly and stability showed significantly decreased toxicity and enzymatic activity (e.g., variants at positions R11, I16, R25, E29, and S68+V72). In most variants the reduction in toxicity was proportional to the decrease in enzymatic activity. For substitutions or insertions at E29 and Y30 the decrease in toxicity was 10- and 5-fold more than the reduction in enzymatic activity, but for variants with R25G, E110D, or E112D substitutions the decrease in enzymatic activity was 12- to 50-fold more than the reduction in toxicity. These variants may be useful as tools for additional studies on the cell biology of toxin action and/or as attenuated toxins for adjuvant or vaccine use.
Collapse
Affiliation(s)
- M G Jobling
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80220, USA
| | | |
Collapse
|
10
|
Minke WE, Hong F, Verlinde CL, Hol WG, Fan E. Using a galactose library for exploration of a novel hydrophobic pocket in the receptor binding site of the Escherichia coli heat-labile enterotoxin. J Biol Chem 1999; 274:33469-73. [PMID: 10559230 DOI: 10.1074/jbc.274.47.33469] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of the B subunits of Escherichia coli heat-labile enterotoxin (LT) to epithelial cells lining the intestines is a critical step for the toxin to invade the host. This mechanism suggests that molecules which possess high affinity to the receptor binding site of the toxin would be good leads for the development of therapeutics against LT. The natural receptor for LT is the complex ganglioside GM1, which has galactose as its terminal sugar. A chemical library targeting a novel hydrophobic pocket in the receptor binding site of LT was constructed based on galactose derivatives and screened for high affinity to the receptor binding site of LT. This screening identified compounds that have 2-3 orders of magnitude higher affinity toward the receptor binding site of LT than the parent compound, galactose. The present findings will pave the way for developing simple and easily synthesizable molecules, instead of complex oligosaccharides, as drugs and/or prophylactics against LT-caused disease.
Collapse
Affiliation(s)
- W E Minke
- Department of Biological Structure, the Biomolecular Structure Center, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
11
|
De Haan L, Holtrop M, Verweij WR, Agsteribbe E, Wilschut J. Mucosal immunogenicity and adjuvant activity of the recombinant A subunit of the Escherichia coli heat-labile enterotoxin. Immunology 1999; 97:706-13. [PMID: 10457227 PMCID: PMC2326879 DOI: 10.1046/j.1365-2567.1999.00817.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Escherichia coli heat-labile enterotoxin (LT) is an exceptionally effective mucosal immunogen and mucosal immunoadjuvant towards coadministered antigens. Although, in general, the molecular basis of these properties is poorly understood, both the toxic ADP-ribosylation activity of the LTA subunit and the cellular toxin receptor, ganglioside, GM1-binding properties of the LTB-pentamer have been suggested to be involved. In recent studies we found that GM1-binding is not essential for the adjuvanticity of LT, suggesting an important role for the LTA subunit in immune stimulation. We now describe the immunomodulatory properties of recombinant LTA molecules with or without ADP-ribosylation activity, LTA(His)10 and LTA-E112K(His)10, respectively. These molecules were expressed as fusion proteins with an N-terminal His-tag to allow simple purification on nickel-chelate columns. Their immunogenic and immunoadjuvant properties were assessed upon intranasal administration to mice, and antigen-specific serum immunoglobulin-isotype and -subtype responses and mucosal secretory immunoglobulin A (IgA) responses were monitored using enzyme-linked immunosorbent assay. With respect to immunogenicity, both LTA(His)10 and LTA-E112K(His)10 failed to induce antibody responses. On the other hand, immunization with both LT and the non-toxic LT-E112K mutant not only induced brisk LTB-specific, but also LTA-specific serum and mucosal antibody responses. Therefore, we conclude that linkage of LTA to the LTB pentamer is essential for the induction of LTA-specific responses. With respect to adjuvanticity, both LTA(His)10 and LTA-E112K(His)10 were found to stimulate serum and mucosal antibody responses towards coadministered influenza subunit antigen. Remarkably, responses obtained with LTA(His)10 were comparable in both magnitude and serum immunoglobulin isotype and subtype distributions to those observed after coimmunization with LT, LT-E112K, or recombinant LTB. We conclude that LTA, by itself, can act as a potent adjuvant for intranasally administered antigens in a fashion independent of ADP-ribosylation activity and association with the LTB pentamer.
Collapse
Affiliation(s)
- L De Haan
- Department of Physiological Chemistry, Groningen Utrecht Institute for Drug Exploration (GUIDE), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | | | | | | | | |
Collapse
|
12
|
Hovey BT, Verlinde CL, Merritt EA, Hol WG. Structure-based discovery of a pore-binding ligand: towards assembly inhibitors for cholera and related AB5 toxins. J Mol Biol 1999; 285:1169-78. [PMID: 9887271 DOI: 10.1006/jmbi.1998.2340] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholera toxin (CT) and Escherichia coli heat-labile enterotoxin (LT) are two closely related multi-subunit AB5 proteins responsible for significant morbidity and mortality worldwide. An attractive strategy to prevent disease by these organisms is to interfere with the assembly process of these toxins, since prevention of toxin formation is better than preventing the effects of a toxin which is already formed. The B subunits form a ring with a central pore which surrounds the C-terminal residues of the A subunit. Low molecular mass compounds which would bind in the pore are likely to inhibit proper assembly of the AB5 toxins. In a pharmacophore search based on two side-chains of the A subunit, 3-methylthio-1,4-diphenyl-1H-1, 3,4-triazolium (MDT) was identified as a candidate ligand which might "plug" the pore. A 2.0 A co-crystal structure revealed that a triplet of MDTs indeed bound to the targeted region in two independent LT B pentamers in a remarkably similar manner. Clearly, MDT is a lead for developing assembly antagonists of CT and LT.
Collapse
Affiliation(s)
- B T Hovey
- Department of Biochemistry, University of Washington, Seattle, 98195, USA
| | | | | | | |
Collapse
|
13
|
Verweij WR, de Haan L, Holtrop M, Agsteribbe E, Brands R, van Scharrenburg GJ, Wilschut J. Mucosal immunoadjuvant activity of recombinant Escherichia coli heat-labile enterotoxin and its B subunit: induction of systemic IgG and secretory IgA responses in mice by intranasal immunization with influenza virus surface antigen. Vaccine 1998; 16:2069-76. [PMID: 9796066 DOI: 10.1016/s0264-410x(98)00076-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The Escherichia coli heat-labile enterotoxin (LT) is a very potent mucosal immunogen. LT also has strong adjuvant activity towards coadministered unrelated antigens and is therefore of potential interest for development of mucosal vaccines. However, despite the great demand for such mucosal vaccines, the use of LT holotoxin as an adjuvant is essentially precluded by its toxicity. LT is composed of an A subunit, carrying the toxic ADP-ribosylation activity, and a pentamer of identical B subunits, which mediates binding to ganglioside GM1, the cellular receptor for the toxin. In this paper, we demonstrate that recombinant enzymatically inactive variants of LT, including the LTB pentamer by itself, retain the immunoadjuvant activity of LT holotoxin in a murine influenza model. Mice were immunized intranasally (i.n.) with influenza virus subunit antigen, consisting mostly of the isolated surface glycoprotein hemagglutinin (HA), supplemented with either recombinant LTB (rLTB), a nontoxic LT mutant (E112K, with a Glu112-->Lys substitution in the A subunit), or LT holotoxin, and the induction of systemic IgG and local S-IgA responses was evaluated by direct enzyme-linked immunosorbent assay (ELISA). Immunization with subunit antigen alone resulted in a poor systemic IgG response and no detectable S-IgA. However, supplementation of the antigen with E112K or rLTB resulted in a substantial stimulation of the serum IgG level and in induction of a strong S-IgA response in the nasal cavity. The adjuvant activity of E112K or rLTB under these conditions was essentially the same as that of the LT holotoxin. The present results demonstrate that nontoxic variants of LT, rLTB in particular, represent promising immunoadjuvants for potential application in an i.n. influenza virus subunit vaccine. Nontoxic LT variants may also be used in i.n. vaccine formulations directed against other mucosal pathogens. In this respect, it is of interest that LT(B)-stimulated antibody responses after i.n. immunization were also observed at distant mucosal sites, including the urogenital system. This, in principle, opens the possibility to develop i.n. vaccines against sexually transmitted infectious diseases.
Collapse
Affiliation(s)
- W R Verweij
- Department of Physiological Chemistry, Groningen-Utrecht Institute for Drug Exploration (GUIDE), University of Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
de Haan L, Verweij WR, Feil IK, Holtrop M, Hol WG, Agsteribbe E, Wilschut J. Role of GM1 binding in the mucosal immunogenicity and adjuvant activity of the Escherichia coli heat-labile enterotoxin and its B subunit. Immunology 1998; 94:424-30. [PMID: 9767427 PMCID: PMC1364263 DOI: 10.1046/j.1365-2567.1998.00535.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli (E. coli) heat-labile toxin (LT) is a potent mucosal immunogen and immunoadjuvant towards co-administered antigens. LT is composed of one copy of the A subunit, which has ADP-ribosylation activity, and a homopentamer of B subunits, which has affinity for the toxin receptor, the ganglioside GM1. Both the ADP-ribosylation activity of LTA and GM1 binding of LTB have been proposed to be involved in immune stimulation. We investigated the roles of these activities in the immunogenicity of recombinant LT or LTB upon intranasal immunization of mice using LT/LTB mutants, lacking either ADP-ribosylation activity, GM1-binding affinity, or both. Likewise, the adjuvant properties of these LT/LTB variants towards influenza virus subunit antigen were investigated. With respect to the immunogenicity of LT and LTB, we found that GM1-binding activity is essential for effective induction of anti-LTB antibodies. On the other hand, an LT mutant lacking ADP-ribosylation activity retained the immunogenic properties of the native toxin, indicating that ADP ribosylation is not critically involved. Whereas adjuvanticity of LTB was found to be directly related to GM1-binding activity, adjuvanticity of LT was found to be independent of GM1-binding affinity. Moreover, a mutant lacking both GM1-binding and ADP-ribosylation activity, also retained adjuvanticity. These results demonstrate that neither ADP-ribosylation activity nor GM1 binding are essential for adjuvanticity of LT, and suggest an ADP-ribosylation-independent adjuvant effect of the A subunit.
Collapse
Affiliation(s)
- L de Haan
- Department of Physiological Chemistry, Groningen Utrecht Institute for Drug Exploration (GUIDE), University of Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
de Haan L, Feil IK, Verweij WR, Holtrop M, Hol WG, Agsteribbe E, Wilschut J. Mutational analysis of the role of ADP-ribosylation activity and GM1-binding activity in the adjuvant properties of the Escherichia coli heat-labile enterotoxin towards intranasally administered keyhole limpet hemocyanin. Eur J Immunol 1998; 28:1243-50. [PMID: 9565364 DOI: 10.1002/(sici)1521-4141(199804)28:04<1243::aid-immu1243>3.0.co;2-e] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Escherichia coli heat-labile enterotoxin (LT) is known for its potent mucosal immunoadjuvant activity towards co-administered antigens. LT is composed of one A subunit, which has ADP-ribosylation activity, and a homopentameric B subunit, which has high affinity for the toxin receptor, ganglioside GM1. In previous studies, we have investigated the role of the LTA and LTB subunits in the adjuvanticity of LT towards influenza virus hemagglutinin (HA), administered intranasally to mice. We now studied the adjuvant properties of LT and LT variants towards keyhole limpet hemocyanin (KLH), which, in contrast to HA, does not bind specifically to mucosal surfaces. It is demonstrated that LT mutants without ADP-ribosylation activity, as well as LTB, retain mucosal immunoadjuvant activity when administered intranasally to mice in conjunction with KLH. As with influenza HA, adjuvanticity of LTB required GM1-binding activity, whereas GM1-binding was not essential for adjuvant activity of LT. Furthermore, we found that also recombinant LTA alone acts as a potent mucosal adjuvant, and that this adjuvanticity is independent of ADP-ribosylation activity. It is concluded that binding of the antigen to mucosal surfaces does not play an essential role in the immunostimulation by LT and LT variants, and that both recombinant LTA and LTB represent powerful nontoxic mucosal adjuvants.
Collapse
Affiliation(s)
- L de Haan
- Department of Physiological Chemistry, Groningen Utrecht Institute for Drug Exploration, University of Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
van den Akker F, Feil IK, Roach C, Platas AA, Merritt EA, Hol WG. Crystal structure of heat-labile enterotoxin from Escherichia coli with increased thermostability introduced by an engineered disulfide bond in the A subunit. Protein Sci 1997; 6:2644-9. [PMID: 9416616 PMCID: PMC2143605 DOI: 10.1002/pro.5560061219] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cholera toxin (CT) produced by Vibrio cholerae and heat-labile enterotoxin (LT-I), produced by enterotoxigenic Escherichia coli, are AB5 heterohexamers with an ADP-ribosylating A subunit and a GM1 receptor binding B pentamer. These toxins are among the most potent mucosal adjuvants known and, hence, are of interest both for the development of anti-diarrheal vaccines against cholera or enterotoxigenic Escherichia coli diarrhea and also for vaccines in general. However, the A subunits of CT and LT-I are known to be relatively temperature sensitive. To improve the thermostability of LT-I an additional disulfide bond was introduced in the A1 subunit by means of the double mutation N40C and G166C. The crystal structure of this double mutant of LT-I has been determined to 2.0 A resolution. The protein structure of the N40C/G166C double mutant is very similar to the native structure except for a few local shifts near the new disulfide bond. The introduction of this additional disulfide bond increases the thermal stability of the A subunit of LT-I by 6 degrees C. The enhancement in thermostability could make this disulfide bond variant of LT-I of considerable interest for the design of enterotoxin-based vaccines.
Collapse
Affiliation(s)
- F van den Akker
- Department of Biochemistry, University of Washington, Seattle 98195-7420, USA
| | | | | | | | | | | |
Collapse
|
17
|
Merritt EA, Sarfaty S, Feil IK, Hol WG. Structural foundation for the design of receptor antagonists targeting Escherichia coli heat-labile enterotoxin. Structure 1997; 5:1485-99. [PMID: 9384564 DOI: 10.1016/s0969-2126(97)00298-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Escherichia coli heat-labile enterotoxin (LT) is the causative agent of traveller's diarrhoea, and it is also responsible for the deaths of hundreds of thousands of children per year in developing countries. LT is highly homologous in sequence, structure and function to cholera toxin (CT). Both toxins attack intestinal epithelial cells via specific binding to the branched pentasaccharide of ganglioside GM1 at the cell surface. A receptor-binding antagonist which blocked this interaction would potentially constitute a prophylactic drug conferring protection both against the severe effects of cholera itself and against the milder but more common disease caused by LT. RESULTS Four derivatives of the simple sugar galactose, members of a larger series of receptor antagonists identified by computer modeling and competitive binding studies, have been co-crystallized with either the full LT AB5 holotoxin or the LT B pentamer. These crystal structures have provided detailed views of the toxin in complex with each of the four antagonists: melibionic acid at 2.8 A resolution, lactulose at 2.65 A resolution, metanitrophenylgalactoside (MNPG) at 2.2 A resolution and thiodigalactoside (TDG) at 1.7 A resolution. The binding mode of each galactose derivative was observed 5-15 times, depending on the number of crystallographically independent toxin B pentamers per asymmetric unit. There is a remarkable consistency, with one important exception, in the location and hydrogen-bonding involvement of well-ordered water molecules at the receptor-binding site. CONCLUSIONS The bound conformations of these receptor antagonist compounds preserve the toxin-galactose interactions previously observed for toxin-sugar complexes, but gain additional favorable interactions. The highest affinity compound, MNPG, is notable in that it displaces a water molecule that is observed to be well-ordered in all other previous and current crystal structures of toxin-sugar complexes. This could be a favorable entropic factor contributing to the increased affinity. The highest affinity members of the present set of antagonists (MNPG and TDG) bury roughly half (400 A2) of the binding-site surface covered by the full receptor GM1 pentasaccharide, despite being considerably smaller. This provides an encouraging basis for the creation of subsequent generations of derived compounds that can compete effectively with the natural receptor.
Collapse
Affiliation(s)
- E A Merritt
- Department of Biological Structure University of Washington Seattle, WA 98195-7742, USA
| | | | | | | |
Collapse
|
18
|
de Haan L, Verweij WR, Feil IK, Lijnema TH, Hol WG, Agsteribbe E, Wilschut J. Mutants of the Escherichia coli heat-labile enterotoxin with reduced ADP-ribosylation activity or no activity retain the immunogenic properties of the native holotoxin. Infect Immun 1996; 64:5413-6. [PMID: 8945598 PMCID: PMC174540 DOI: 10.1128/iai.64.12.5413-5416.1996] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Escherichia coli heat-labile enterotoxin (LT) is a potent inducer of mucosal immune responses. In a previous study (L. DeHaan, W. R. Verweij, M. Holtrop, E. Agsteribbe, and J. Wilschut, Vaccine 14:620-626, 1996), we have shown that efficient induction of an LTB-specific mucosal immune response by LT requires the presence of the LTA chain, suggesting a possible role of the enzymatic activity of LTA in the induction of these responses. In the present study, we generated LT mutants with altered ADP-ribosylation activities and evaluated their immunogenicity upon intranasal administration to mice. The results demonstrate that the mucosal immunogenicity of LT is not dependent on its ADP-ribosylation activity.
Collapse
Affiliation(s)
- L de Haan
- Department of Physiological Chemistry, Groningen Institute for Drug Studies, University of Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|