1
|
Gao X, Pi D, Chen N, Li X, Liu X, Yang H, Wei W, Zhang X. Survival, Virulent Characteristics, and Transcriptomic Analyses of the Pathogenic Vibrio anguillarum Under Starvation Stress. Front Cell Infect Microbiol 2018; 8:389. [PMID: 30505805 PMCID: PMC6250815 DOI: 10.3389/fcimb.2018.00389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Many bacteria have developed strategies for metamorphosis into sophisticated survival forms to survive extended periods of environmental stress. As a global causative agent of vibriosis in marine fish farming, Vibrio anguillarum (V. anguillarum) can efficiently grow and proliferate under environmental stress, but the specific mechanism is not clear. In the present study, survival, virulent characteristics, and transcriptomic analysis of the V. anguillarum BH1 were performed under starvation stress. The results demonstrated that V. anguillarum was still culturable and showed rippled surface after 6 months of starvation. Starved cells maintained their infectivity in half-smooth tongue sole (Cynoglossus semilaevi). Detection of virulence factors and virulence-associated genes in starved cells showed that the starved strain still produced β-hemolysis on rabbit blood agar, caseinase, dnase, and gelatinase, and possessed empA, vah1, vah2, vah3, vah4, vah5, rtxA, flaA, flaD, flaE, virC, tonB, mreB, toxR, rpoS, and ftsZ virulence-related genes. In addition, we first reported the RNA-seq study for V. anguillarum with and without starvation treatment for a period of 6 months and emphasized the regulation of gene expression at the whole transcriptional level. It indicated that V. anguillarum expressed 3,089 and 3,072 genes in the control group and starvation stress group, respectively. The differently expressed genes (DEGs) of the starved strain were thereby identified, including 251 up-regulated genes and 272 down-regulated genes in comparison with the non-starved strain. Gene Ontology (GO) analysis and Kyto Encyclopedia Genes and Genomes (KEGG) enrichment analysis of DEGs were also analyzed. GO functional classification revealed that among the significantly regulated genes with known function categories, more genes affiliated with signal transducer activity, molecular transducer activity, and cell communication were significantly up-regulated, and more genes affiliated with cellular macromolecule, cellular component, and structural molecule activity were significantly down-regulated. In addition, the DEGs involved in the pathway of two-component system was significantly up-regulated, and the pathways of ribosome and flagellar assembly were significantly down-regulated. This study provides valuable insight into the survival strategies of V. anguillarum and suggests that a portion of the bacterial populations may remain pathogenic while persisting under starvation stress by up-regulating or down-regulating a series of genes.
Collapse
Affiliation(s)
- Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Daming Pi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Nan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xixi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wanhong Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Guanhua Y, Wang C, Wang X, Ma R, Zheng H, Liu Q, Zhang Y, Ma Y, Wang Q. Complete genome sequence of the marine fish pathogen Vibrio anguillarum and genome-wide transposon mutagenesis analysis of genes essential for in vivo infection. Microbiol Res 2018; 216:97-107. [DOI: 10.1016/j.micres.2018.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
|
3
|
Li Y, Ma Q. Iron Acquisition Strategies of Vibrio anguillarum. Front Cell Infect Microbiol 2017; 7:342. [PMID: 28791260 PMCID: PMC5524678 DOI: 10.3389/fcimb.2017.00342] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/11/2017] [Indexed: 12/03/2022] Open
Abstract
The hemorrhagic septicemic disease vibriosis caused by Vibrio anguillarum shows noticeable similarities to invasive septicemia in humans, and in this case, the V. anguillarum–host system has the potential to serve as a model for understanding native eukaryotic host–pathogen interactions. Iron acquisition, as a fierce battle occurring between pathogenic V. anguillarum and the fish host, is a pivotal step for virulence. In this article, advances in defining the roles of iron uptake pathways in growth and virulence of V. anguillarum have been summarized, divided into five aspects, including siderophore biosynthesis and secretion, iron uptake, iron release, and regulation of iron uptake. Understanding the molecular mechanisms of iron acquisition will have important implications for the pathogenicity of this organism.
Collapse
Affiliation(s)
- Yingjie Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Qingjun Ma
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| |
Collapse
|
4
|
Abstract
ABSTRACT
Plasmids confer genetic information that benefits the bacterial cells containing them. In pathogenic bacteria, plasmids often harbor virulence determinants that enhance the pathogenicity of the bacterium. The ability to acquire iron in environments where it is limited, for instance the eukaryotic host, is a critical factor for bacterial growth. To acquire iron, bacteria have evolved specific iron uptake mechanisms. These systems are often chromosomally encoded, while those that are plasmid-encoded are rare. Two main plasmid types, ColV and pJM1, have been shown to harbor determinants that increase virulence by providing the cell with essential iron for growth. It is clear that these two plasmid groups evolved independently from each other since they do not share similarities either in the plasmid backbones or in the iron uptake systems they harbor. The siderophores aerobactin and salmochelin that are found on ColV plasmids fall in the hydroxamate and catechol group, respectively, whereas both functional groups are present in the anguibactin siderophore, the only iron uptake system found on pJM1-type plasmids. Besides siderophore-mediated iron uptake, ColV plasmids carry additional genes involved in iron metabolism. These systems include ABC transporters, hemolysins, and a hemoglobin protease. ColV- and pJM1-like plasmids have been shown to confer virulence to their bacterial host, and this trait can be completely ascribed to their encoded iron uptake systems.
Collapse
|
5
|
Plasmid-Mediated Antibiotic Resistance and Virulence in Gram-negatives: the Klebsiella pneumoniae Paradigm. Microbiol Spectr 2014; 2:1-15. [PMID: 25705573 DOI: 10.1128/microbiolspec.plas-0016-2013] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plasmids harbor genes coding for specific functions including virulence factors and antibiotic resistance that permit bacteria to survive the hostile environment found in the host and resist treatment. Together with other genetic elements such as integrons and transposons, and using a variety of mechanisms, plasmids participate in the dissemination of these traits resulting in the virtual elimination of barriers among different kinds of bacteria. In this article we review the current information about physiology and role in virulence and antibiotic resistance of plasmids from the gram-negative opportunistic pathogen Klebsiella pneumoniae. This bacterium has acquired multidrug resistance and is the causative agent of serious communityand hospital-acquired infections. It is also included in the recently defined ESKAPE group of bacteria that cause most of US hospital infections.
Collapse
|
6
|
Plasmid- and chromosome-encoded siderophore anguibactin systems found in marine vibrios: biosynthesis, transport and evolution. Biometals 2013; 26:537-47. [PMID: 23660776 DOI: 10.1007/s10534-013-9629-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/28/2013] [Indexed: 01/04/2023]
Abstract
Vibrio anguillarum is a marine pathogen that causes vibriosis, a hemorrhagic septicemia in aquatic invertebrate as well as vertebrate animals. The siderophore anguibactin system is one of the most important virulence factors of this bacterium. Most of the anguibactin biosynthesis and transport genes are located in the 65-kb pJM1 virulence plasmid although some of them are found in the chromosome of this fish pathogen. Over 30 years of research unveiled the role numerous chromosomal and pJM1 genes play in the synthesis of anguibactin and the transport of cognate ferric complexes into the bacterial cell. Furthermore, these studies showed that pJM1-carrying strains might be originated from pJM1-less strains producing the chromosome-mediated siderophore vanchrobactin. Additionally, we recently identified a chromosome-mediated anguibactin system in V. harveyi suggesting the possible evolutional origin of the V. anguillarum anguibactin system. In this review, we present our current understanding of the mechanisms and evolution hypothesis of the anguibactin system that might have occurred in these pathogenic vibrios.
Collapse
|
7
|
Secondary structure of antisense RNAβ, an internal transcriptional terminator of the plasmid-encoded iron transport-biosynthesis operon of Vibrio anguillarum. Biometals 2012; 25:577-86. [DOI: 10.1007/s10534-012-9542-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
|
8
|
Two replication regions in the pJM1 virulence plasmid of the marine pathogen Vibrio anguillarum. Plasmid 2012; 67:95-101. [PMID: 22239981 DOI: 10.1016/j.plasmid.2011.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 11/24/2022]
Abstract
Vibrio anguillarum is a fish pathogen that causes vibriosis, a serious hemorrhagic septicemia, in wild and cultured fish. Many serotype O1 strains of this bacterium harbor the 65kb plasmid pJM1 carrying the majority of genes encoding the siderophore anguibactin iron transport system that is one of the most important virulence factors of this bacterium. We previously identified a replication region of the pJM1 plasmid named ori1. In this work we determined that ori1 can replicate in Escherichia coli and that the chromosome-encoded proteins DnaB, DnaC and DnaG are essential for its replication whereas PolI, IHF and DnaA are not required. The copy number of the pJM1 plasmid is 1-2, albeit cloned smaller fragments of the ori1 region replicate with higher copy numbers in V. anguillarum while in E. coli we did not observe an obvious difference of the copy numbers of these constructs which were all high. Furthermore, we were able to delete the ori1 region from the pJM1 plasmid and identified a second replication region in pJM1 that we named ori2. This second replication region is located on ORF25 that is within the trans-acting factor (TAFr) region, and showed that it can only replicate in V. anguillarum.
Collapse
|
9
|
Naka H, López CS, Crosa JH. Role of the pJM1 plasmid-encoded transport proteins FatB, C and D in ferric anguibactin uptake in the fish pathogen Vibrio anguillarum. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:104-111. [PMID: 21304833 PMCID: PMC3034151 DOI: 10.1111/j.1758-2229.2009.00110.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Vibrio anguillarum serotype O1 is part of the natural flora in the aquatic habitat, but under certain circumstances it can cause terminal haemorrhagic septicemia in marine and fresh water fish due to the action of the anguibactin iron uptake system encoded by the virulence plasmid pJM1. This plasmid harbours the genes for the biosynthesis of the siderophore anguibactin and the ferric anguibactin transport proteins FatD, C, B and A encoded in the iron transport operon. The FatA protein is the outer membrane receptor for the ferric siderophore complex and the FatB lipoprotein provides the periplasmic domain for its internalization, whereas the FatC and D proteins are located in the cytoplasmic membrane and might play a role as part of the ABC transporter for internalization of the ferric siderophore. In this work we demonstrate the essential role of these two inner membrane proteins in ferric anguibactin transport and that the lipo-protein nature of FatB is not necessary for ferric anguibactin transport.
Collapse
Affiliation(s)
| | | | - Jorge H. Crosa
- For correspondence. ; Tel. (+1) 503 494 7583; Fax (+1) 503 494 6862
| |
Collapse
|
10
|
Di Lorenzo M, Stork M, Naka H, Tolmasky ME, Crosa JH. Tandem heterocyclization domains in a nonribosomal peptide synthetase essential for siderophore biosynthesis in Vibrio anguillarum. Biometals 2008; 21:635-48. [PMID: 18553137 DOI: 10.1007/s10534-008-9149-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 05/27/2008] [Indexed: 11/24/2022]
Abstract
Anguibactin, the siderophore produced by Vibrio anguillarum 775, is synthesized via a nonribosomal peptide synthetase (NRPS) mechanism. Most of the genes required for anguibactin biosynthesis are harbored by the pJM1 plasmid. Complete sequencing of this plasmid identified an orf encoding a 108 kDa predicted protein, AngN. In this work we show that AngN is essential for anguibactin biosynthesis and possesses two domains with homology to cyclization (Cy) domains of NRPSs. Substitution by alanine of the aspartic acid residues within a conserved motif of either Cy1 or Cy2 domain demonstrated the importance of these two domains in AngN function during siderophore biosynthesis. Site-directed mutations in both domains (D133A/D575A and D138A/D580A) resulted in anguibactin-deficient phenotypes while mutations in each domain did not abolish siderophore production but caused a reduction in the amounts produced. The mutations D133A/D575A and D138A/D580A also resulted as expected in a dramatic attenuation of the virulence of V. anguillarum 775 highlighting the importance of this gene for the biosynthesis of anguibactin within the vertebrate host. Regulation of the angN gene follows the patterns observed at the iron transport-biosynthesis promoter with angN transcription repressed in the presence of iron and enhanced by AngR and trans-acting factor (TAF) under iron limitation.
Collapse
Affiliation(s)
- Manuela Di Lorenzo
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | | | | | | | | |
Collapse
|
11
|
Abstract
High-affinity iron acquisition is mediated by siderophore-dependent pathways in the majority of pathogenic and nonpathogenic bacteria and fungi. Considerable progress has been made in characterizing and understanding mechanisms of siderophore synthesis, secretion, iron scavenging, and siderophore-delivered iron uptake and its release. The regulation of siderophore pathways reveals multilayer networks at the transcriptional and posttranscriptional levels. Due to the key role of many siderophores during virulence, coevolution led to sophisticated strategies of siderophore neutralization by mammals and (re)utilization by bacterial pathogens. Surprisingly, hosts also developed essential siderophore-based iron delivery and cell conversion pathways, which are of interest for diagnostic and therapeutic studies. In the last decades, natural and synthetic compounds have gained attention as potential therapeutics for iron-dependent treatment of infections and further diseases. Promising results for pathogen inhibition were obtained with various siderophore-antibiotic conjugates acting as "Trojan horse" toxins and siderophore pathway inhibitors. In this article, general aspects of siderophore-mediated iron acquisition, recent findings regarding iron-related pathogen-host interactions, and current strategies for iron-dependent pathogen control will be reviewed. Further concepts including the inhibition of novel siderophore pathway targets are discussed.
Collapse
Affiliation(s)
- Marcus Miethke
- Philipps Universität Marburg, FB Chemie Biochemie, Hans Meerwein Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|
12
|
Stork M, Di Lorenzo M, Welch TJ, Crosa JH. Transcription termination within the iron transport-biosynthesis operon of Vibrio anguillarum requires an antisense RNA. J Bacteriol 2007; 189:3479-88. [PMID: 17337574 PMCID: PMC1855896 DOI: 10.1128/jb.00619-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The iron transport-biosynthesis (ITB) operon in Vibrio anguillarum includes four genes for ferric siderophore transport, fatD, -C, -B, and -A, and two genes for siderophore biosynthesis, angR and angT. This cluster plays an important role in the virulence mechanisms of this bacterium. Despite being part of the same polycistronic mRNA, the relative levels of transcription for the fat portion and for the whole ITB message differ profoundly, the levels of the fat transcript being about 17-fold higher. Using S1 nuclease mapping, lacZ transcriptional fusions, and in vitro studies, we were able to show that the differential gene expression within the ITB operon is due to termination of transcription between the fatA and angR genes, although a few transcripts proceeded beyond the termination site to the end of this operon. This termination process requires a 427-nucleotide antisense RNA that spans the intergenic region and acts as a novel transcriptional terminator.
Collapse
Affiliation(s)
- Michiel Stork
- Department of Molecular Microbiology and Immunology L-220, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97201-3098, USA
| | | | | | | |
Collapse
|
13
|
Alice AF, López CS, Crosa JH. Plasmid- and chromosome-encoded redundant and specific functions are involved in biosynthesis of the siderophore anguibactin in Vibrio anguillarum 775: a case of chance and necessity? J Bacteriol 2005; 187:2209-14. [PMID: 15743971 PMCID: PMC1064064 DOI: 10.1128/jb.187.6.2209-2214.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the identification of a novel chromosome cluster of genes in Vibrio anguillarum 775 that includes redundant functional homologues of the pJM1 plasmid-harbored genes angE and angC that are involved in anguibactin biosynthesis. We also identified in this cluster a chromosomal angA gene that is essential in anguibactin biosynthesis.
Collapse
Affiliation(s)
- Alejandro F Alice
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
14
|
Di Lorenzo M, Stork M, Tolmasky ME, Actis LA, Farrell D, Welch TJ, Crosa LM, Wertheimer AM, Chen Q, Salinas P, Waldbeser L, Crosa JH. Complete sequence of virulence plasmid pJM1 from the marine fish pathogen Vibrio anguillarum strain 775. J Bacteriol 2003; 185:5822-30. [PMID: 13129954 PMCID: PMC193973 DOI: 10.1128/jb.185.19.5822-5830.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virulence plasmid pJM1 enables the fish pathogen Vibrio anguillarum, a gram-negative polarly flagellated comma-shaped rod bacterium, to cause a highly fatal hemorrhagic septicemic disease in salmonids and other fishes, leading to epizootics throughout the world. The pJM1 plasmid 65,009-nucleotide sequence, with an overall G+C content of 42.6%, revealed genes and open reading frames (ORFs) encoding iron transporters, nonribosomal peptide enzymes, and other proteins essential for the biosynthesis of the siderophore anguibactin. Of the 59 ORFs, approximately 32% were related to iron metabolic functions. The plasmid pJM1 confers on V. anguillarum the ability to take up ferric iron as a complex with anguibactin from a medium in which iron is chelated by transferrin, ethylenediamine-di(o-hydroxyphenyl-acetic acid), or other iron-chelating compounds. The fatDCBA-angRT operon as well as other downstream biosynthetic genes is bracketed by the homologous ISV-A1 and ISV-A2 insertion sequences. Other clusters on the plasmid also show an insertion element-flanked organization, including ORFs homologous to genes involved in the biosynthesis of 2,3-dihydroxybenzoic acid. Homologues of replication and partition genes are also identified on pJM1 adjacent to this region. ORFs with no known function represent approximately 30% of the pJM1 sequence. The insertion sequence elements in the composite transposon-like structures, corroborated by the G+C content of the pJM1 sequence, suggest a modular composition of plasmid pJM1, biased towards acquisition of modules containing genes related to iron metabolic functions. We also show that there is considerable microheterogeneity in pJM1-like plasmids from virulent strains of V. anguillarum isolated from different geographical sources.
Collapse
Affiliation(s)
- Manuela Di Lorenzo
- Department of Molecular Microbiology and Immunology, Oregon HealthScience University, Portland, Oregon 97201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Stork M, Di Lorenzo M, Welch TJ, Crosa LM, Crosa JH. Plasmid-mediated iron uptake and virulence in Vibrio anguillarum. Plasmid 2002; 48:222-8. [PMID: 12460538 DOI: 10.1016/s0147-619x(02)00111-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The plasmid pJM1 of Vibrio anguillarum harbors genes encoding proteins that enable the bacterial cell to survive under iron limiting conditions. A subset of these proteins are involved in the biosynthesis of the siderophore anguibactin and in the internalization of the ferric-siderophore into the cell cytosol. We have identified several genes encoding non-ribosomal peptide synthetases that catalyze the synthesis of anguibactin, these genes are: angB/G, angM, angN, angR, and angT. In addition, the genes fatA, fatB, fatC, and fatD are involved in the transport of ferric-anguibactin complexes. These transport genes, together with the biosynthesis genes angR and angT, are included in the iron transport biosynthesis operon (ITBO). Both the biosynthesis and the transport genes are under tight positive as well as negative control. We have identified four regulators; two of them, a chromosomally encoded Fur and a plasmid-mediated antisense RNA, RNAbeta, act in a negative fashion, while positive regulation is facilitated by AngR and TAFr. We also have evidence that the siderophore itself plays a positive role in the regulatory mechanism of the expression of both transport and biosynthesis genes.
Collapse
Affiliation(s)
- Michiel Stork
- Department of Molecular Microbiology and Immunology, School of Medicine L-220, Oregon Health and Science University, Portland, Oregon 97201, USA
| | | | | | | | | |
Collapse
|
16
|
Crosa JH, Walsh CT. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 2002; 66:223-49. [PMID: 12040125 PMCID: PMC120789 DOI: 10.1128/mmbr.66.2.223-249.2002] [Citation(s) in RCA: 556] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulatory logic of siderophore biosynthetic genes in bacteria involves the universal repressor Fur, which acts together with iron as a negative regulator. However in other bacteria, in addition to the Fur-mediated mechanism of regulation, there is a concurrent positive regulation of iron transport and siderophore biosynthetic genes that occurs under conditions of iron deprivation. Despite these regulatory differences the mechanisms of siderophore biosynthesis follow the same fundamental enzymatic logic, which involves a series of elongating acyl-S-enzyme intermediates on multimodular protein assembly lines: nonribosomal peptide synthetases (NRPS). A substantial variety of siderophore structures are produced from similar NRPS assembly lines, and variation can come in the choice of the phenolic acid selected as the N-cap, the tailoring of amino acid residues during chain elongation, the mode of chain termination, and the nature of the capturing nucleophile of the siderophore acyl chain being released. Of course the specific parts that get assembled in a given bacterium may reflect a combination of the inventory of biosynthetic and tailoring gene clusters available. This modular assembly logic can account for all known siderophores. The ability to mix and match domains within modules and to swap modules themselves is likely to be an ongoing process in combinatorial biosynthesis. NRPS evolution will try out new combinations of chain initiation, elongation and tailoring, and termination steps, possibly by genetic exchange with other microorganisms and/or within the same bacterium, to create new variants of iron-chelating siderophores that can fit a particular niche for the producer bacterium.
Collapse
Affiliation(s)
- Jorge H Crosa
- Department of Molecular Microbiology and Immunology, School of Medicine Oregon Health and Science University, Portland, Oregon 97201, USA.
| | | |
Collapse
|
17
|
Welch TJ, Chai S, Crosa JH. The overlapping angB and angG genes are encoded within the trans-acting factor region of the virulence plasmid in Vibrio anguillarum: essential role in siderophore biosynthesis. J Bacteriol 2000; 182:6762-73. [PMID: 11073922 PMCID: PMC111420 DOI: 10.1128/jb.182.23.6762-6773.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Products encoded in the trans-acting factor (TAF) region are necessary for the biosynthesis of anguibactin and for maximal expression of iron transport and biosynthesis genes in the plasmid-encoded iron-scavenging system of Vibrio anguillarum. Here we identify angB, a locus located in the TAF region, which encodes products essential for anguibactin biosynthesis. We demonstrate that a 287-amino-acid polypeptide, encoded by angB and designated AngB, has an isochorismate lyase activity necessary for the synthesis of 2, 3-dihydroxybenzoic acid, an anguibactin biosynthesis intermediate. Complementation of various angB mutations provided evidence that an additional, overlapping gene exists at this locus. This second gene, designated angG, also has an essential biosynthetic function. The angG gene directs the expression of three polypeptides when overexpressed in Escherichia coli, all of which are translated in the same frame as AngB. The results of site-directed mutagenesis and in vivo phosphorylation experiments suggest that the carboxy-terminal end of AngB and the AngG polypeptide(s) function as aryl carrier proteins involved in the assembly of the anguibactin molecule. Our results also show that the regulatory functions of the TAF are encoded in a region, TAFr, which is distinct from and independent of the angB and angG genes.
Collapse
Affiliation(s)
- T J Welch
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | |
Collapse
|
18
|
Abstract
Bacterial siderophores assist pathogens in iron acquisition inside their hosts. They are often essential for achieving a successful infection, and their biosynthesis represents an attractive antibiotic target. Recently, several siderophore biosynthetic loci have been identified, and in vitro studies have advanced our knowledge of the biosynthesis of aryl-capped peptide and peptide-polyketide siderophores from Mycobacterium spp., Pseudomonas spp., Yersinia spp. and other bacteria. These studies also provided insights into the assembly of related siderophores and many secondary metabolites of medical relevance. Assembly of aryl-capped peptide and peptide-polyketide siderophores involves non-ribosomal peptide synthetase, polyketide synthase and non-ribosomal-peptide polyketide hybrid subunits. Analysis of these subunits suggests that their domains and modules are functionally and structurally independent. It appears that nature has selected a set of functional domains and modules that can be rearranged in different order and combinations to biosynthesize different products. Although much remains to be learned about modular synthetases and synthases, it is already possible to conceive strategies to engineer these enzymes to generate novel products.
Collapse
Affiliation(s)
- L E Quadri
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
19
|
Butterton JR, Choi MH, Watnick PI, Carroll PA, Calderwood SB. Vibrio cholerae VibF is required for vibriobactin synthesis and is a member of the family of nonribosomal peptide synthetases. J Bacteriol 2000; 182:1731-8. [PMID: 10692380 PMCID: PMC94472 DOI: 10.1128/jb.182.6.1731-1738.2000] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 7.5-kbp fragment of chromosomal DNA downstream of the Vibrio cholerae vibriobactin outer membrane receptor, viuA, and the vibriobactin utilization gene, viuB, was recovered from a Sau3A lambda library of O395 chromosomal DNA. By analogy with the genetic organization of the Escherichia coli enterobactin gene cluster, in which the enterobactin biosynthetic and transport genes lie adjacent to the enterobactin outer membrane receptor, fepA, and the utilization gene, fes, the cloned DNA was examined for the ability to restore siderophore synthesis to E. coli ent mutants. Cross-feeding studies demonstrated that an E. coli entF mutant complemented with the cloned DNA regained the ability to synthesize enterobactin and to grow in low-iron medium. Sequence analysis of the cloned chromosomal DNA revealed an open reading frame downstream of viuB which encoded a deduced protein of greater than 2,158 amino acids, homologous to Yersinia sp. HMWP2, Vibrio anguillarum AngR, and E. coli EntF. A mutant with an in-frame deletion of this gene, named vibF, was created with classical V. cholerae strain O395 by in vivo marker exchange. In cross-feeding studies, this mutant was unable to synthesize ferric vibriobactin but was able to utilize exogenous siderophore. Complementation of the mutant with a cloned vibF fragment restored vibriobactin synthesis to normal. The expression of the vibF promoter was found to be negatively regulated by iron at the transcriptional level, under the control of the V. cholerae fur gene. Expression of vibF was not autoregulatory and neither affected nor was affected by the expression of irgA or viuA. The promoter of vibF was located by primer extension and was found to contain a dyad symmetric nucleotide sequence highly homologous to the E. coli Fur binding consensus sequence. A footprint of purified V. cholerae Fur on the vibF promoter, overlapping the Fur binding consensus sequence, was observed using DNase I footprinting. The protein product of vibF is homologous to the multifunctional nonribosomal protein synthetases and is necessary for the biosynthesis of vibriobactin.
Collapse
Affiliation(s)
- J R Butterton
- Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | | | | | |
Collapse
|
20
|
Wertheimer AM, Verweij W, Chen Q, Crosa LM, Nagasawa M, Tolmasky ME, Actis LA, Crosa JH. Characterization of the angR gene of Vibrio anguillarum: essential role in virulence. Infect Immun 1999; 67:6496-509. [PMID: 10569768 PMCID: PMC97060 DOI: 10.1128/iai.67.12.6496-6509.1999] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to utilize the iron bound by high-affinity iron-binding proteins in the vertebrate host is an important virulence factor for the marine fish pathogen Vibrio anguillarum. Virulence in septicemic infections is due to the presence of a highly efficient plasmid-encoded iron transport system. AngR, a 110-kDa protein component of this system, appears to play a role in both regulation of the expression of the iron transport genes fatDCBA and the production of the siderophore anguibactin. Therefore, study of the expression of the angR gene and the properties of its product, the AngR protein, may contribute to the understanding of the mechanisms of virulence of this pathogen. In this work, we present genetic and molecular evidence from transposition mutagenesis experiments and RNA analysis that angR, which maps immediately downstream of the fatA gene, is part of a polycistronic transcript that also includes the iron transport genes fatDCBA and angT, a gene located downstream of angR which showed domain homology to certain thioesterases involved in nonribosomal peptide synthesis of siderophores and antibiotics. In order to dissect the specific domains of AngR associated with regulation of iron transport gene expression, anguibactin production, and virulence, we also generated a panel of site-directed angR mutants, as well as deletion derivatives. Both virulence and anguibactin production were dramatically affected by each one of the angR modifications. In contrast to the need for an intact AngR molecule for anguibactin production and virulence, the regulation of iron transport gene expression does not require the entire AngR molecule, since truncation of the carboxy terminus carrying the nonribosomal peptide synthetase cores, as well as the site-directed mutations, resulted in derivatives that retained their ability to regulate gene expression which was only abolished after truncation of amino-terminal sequences containing helix-turn-helix and leucine zipper motifs and a specialized heterocyclization and condensation domain found in certain nonribosomal peptide synthetases. The evidence, while not rigorously eliminating the possibility that a separate regulatory polypeptide exists and is encoded somewhere within the 5'-end region of the angR gene, strongly supports the idea that AngR is a bifunctional protein and that it plays an essential role in the virulence mechanisms of V. anguillarum. We also show in this study that the angT gene, found downstream of angR, intervenes in the mechanism of anguibactin production but is not essential for virulence or iron transport gene expression.
Collapse
Affiliation(s)
- A M Wertheimer
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pedersen K, Kühn I, Seppänen J, Hellström A, Tiainen T, Rimaila-Pärnänen E, Larsen JL. Clonality of Vibrio anguillarum strains isolated from fish from the Scandinavian countries, Sweden, Finland and Denmark. J Appl Microbiol 1999; 86:337-47. [PMID: 10063633 DOI: 10.1046/j.1365-2672.1999.00658.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to investigate whether outbreaks of vibriosis in the Baltic region were caused by the spread of certain pathogenic clones, 291 Vibrio anguillarum isolates from Finland (n = 156), Sweden (n = 88) and Denmark (n = 47) were studied with respect to serogroup, ribotype, plasmid content, and biochemical phenotypes as expressed with the PhenePlate (PhP) typing system. For comparison, 54 V. anguillarum serogroup O1 from other countries worldwide were included. Most isolates from Finland, Sweden and Denmark belonged to serogroup O1 (255), followed by O2 (30). Four Finnish isolates cross-reacted strongly with antisera against two new serogroups VaNT2 and VaNT4, whereas two strains were non-typeable. The serogroup O1 isolates displayed ten different ribotype patterns, whereas the other strains were considerably more diverse with respect to ribotypes. Most of the O1 isolates carried the 67 kb virulence plasmid and a group of Finnish isolates, in addition, carried an 86 kb plasmid. Additional plasmids with molecular weights of 63, 76, 135 or 260-290 kb were found in single O1 isolates. With few exceptions, strains of serogroup O2 either had no plasmids or carried one or two small plasmids. PhenePlate typing revealed considerable diversity within the species, serogroup O1 being the most homogeneous. A few PhP types were dominant, whereas other types were observed only in one to four isolates. The prevalence of the different types changed significantly from one year to another but in Finland, one clonal lineage became increasingly important from 1992 (20% of isolates) to 1996 (80%). Remaining clones were mostly restricted to specific geographic areas. By cluster analysis, it was demonstrated that most of the isolates from Finland, Sweden and Denmark belonged to two clusters, and most of the strains from Southern Europe fell into two other, distinct clusters. Most isolates from the UK, North America, Chile and Tasmania grouped together in a distinct cluster. For the typing of V. anguillarum, O-serotyping should be the primary method. For isolates belonging to serogroups other than O1, plasmid profiling in combination with ribotyping gives a very good discrimination between strains, whereas for serogroup O1, another method is required. It is concluded that PhP typing is a tool that provides a good discrimination between O1 isolates.
Collapse
Affiliation(s)
- K Pedersen
- Laboratory of Fish Diseases, Royal Veterinary and Agricultural University, Frederiksberg, Denmark.
| | | | | | | | | | | | | |
Collapse
|
22
|
Chai S, Welch TJ, Crosa JH. Characterization of the interaction between Fur and the iron transport promoter of the virulence plasmid in Vibrio anguillarum. J Biol Chem 1998; 273:33841-7. [PMID: 9837975 DOI: 10.1074/jbc.273.50.33841] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of iron transport genes fatDCBA in Vibrio anguillarum strain 775 is negatively regulated by two iron-responsive repressors, the Fur protein and the antisense RNA, RNAalpha. Here we report the identification of the promoter for the iron transport genes and studied the interaction between the V. anguillarum Fur protein and this promoter. The iron transport promoter was localized in a region approximately 300 base pairs upstream of fatD by both primer extension and S1 mapping analysis. High activity of the promoter was measured in response to iron depletion in the wild-type strain when a promoter-lacZ fusion was examined, whereas the promoter was constitutive in the Fur-deficient strain. Gel retardation and DNase I footprint analysis showed that Fur binds specifically to two contiguous sites comprising the promoter region and the region downstream of the transcription start site. The identified Fur binding sites showed a low degree of homology to each other as well as to the consensus sequence for the Escherichia coli Fur protein. DNase I footprints pattern suggested a sequential interaction of Fur with these two sites that renders a protection in the template strand and a hypersensitivity to the nuclease in the nontemplate strand. The periodicity of the hypersensitive sites suggested that the promoter DNA undergoes a structural change upon binding to Fur, which might play a role in the repression of gene expression.
Collapse
Affiliation(s)
- S Chai
- Department of Molecular Microbiology and Immunology, School of Medicine L-220, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
23
|
|
24
|
Abstract
Siderophores are low molecular weight iron chelators, produced by virtually all bacteria, fungi and some plants. They serve to deliver the essential element iron, barely soluble under aerobic conditions, into microbial cells. Siderophores are therefore important secondary metabolites which are very often based on amino acids and their derivatives. Biosynthesis, transport, regulation and chemical synthesis of natural siderophores and their analogues is of considerable interest for the protein and peptide chemist. This review gives an overview of the structural classes of peptidic siderophores, along with data on their biosynthesis. On a number of representative examples, strategies and schemes of their chemical synthesis are described.
Collapse
Affiliation(s)
- H Drechsel
- Universität Tübingen, Institut für Organische Chemie, Germany
| | | |
Collapse
|
25
|
|
26
|
Crosa JH. Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 1997; 61:319-36. [PMID: 9293185 PMCID: PMC232614 DOI: 10.1128/mmbr.61.3.319-336.1997] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Iron is an essential element for nearly all living cells. Thus, the ability of bacteria to utilize iron is a crucial survival mechanism independent of the ecological niche in which the microorganism lives, because iron is scarce both in potential biological hosts, where it is bound by high-affinity iron-binding proteins, and in the environment, where it is present as part of insoluble complex hydroxides. Therefore, pathogens attempting to establish an infection and environmental microorganisms must all be able to utilize the otherwise unavailable iron. One of the strategies to perform this task is the possession of siderophore-mediated iron uptake systems that are capable of scavenging the hoarded iron. This metal is, however, a double-edged sword for the cell because it can catalyze the production of deadly free hydroxyl radicals, which are harmful to the cells. It is therefore imperative for the cell to control the concentration of iron at levels that permit key metabolic steps to occur without becoming a messenger of cell death. Early work identified a repressor, Fur, which as a complex with iron repressed the expression of most iron uptake systems as well as other iron-regulated genes when the iron concentration reached a certain level. However, later work demonstrated that this regulation by Fur was not the only answer under low-iron conditions, there was a need for activation of iron uptake genes as well as siderophore biosynthetic genes. Furthermore, it was also realized that in some instances the actual ferric iron-siderophore complex induced the transcription of the cognate receptor and transport genes. It became evident that control of the expression of iron-regulated genes was more complex than originally envisioned. In this review, I analyze the processes of signal transduction, transcriptional control, and posttranscriptional control of iron-regulated genes as reported for the ferric dicitrate system in Escherichia coli; the pyochelin, pyoverdin, and enterobactin systems in Pseudomonas species; the irgB system in Vibrio cholerae; and the plasmid-mediated anguibactin system in Vibrio anguillarum. I hope that by using these diverse paradigms, I will be able to convey a unifying picture of these mechanism and their importance in the maintenance and prosperity of bacteria within their ecological niches.
Collapse
Affiliation(s)
- J H Crosa
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201, USA.
| |
Collapse
|